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ABSTRACT

This is the first part of a two part paper on flow around vibrating wind turbine

airfoils. In this part 1, the unsteady, incompressible, viscous and laminar flow

over a forced oscillating airfoil is computed using a method based on a

commercial Computational Fluid Dynamics (CFD) code. Beforehand, the

Navier-Stokes equations are solved for the unsteady flow around a NACA

0012 airfoil at a fixed 20° incidence and the low Reynolds numbers of 103

and 104 to check the reliability of the CFD computations. Then the flow

around a pitching airfoil is simulated for prescribed values of the reduced

frequency. The Navier-Stokes equations are expressed in ALE formulation

and solved with moving mesh. The effects of the discretization scheme

and the moving mesh technique are investigated. The hysteresis loops of

the dynamic stall phenomenon are highlighted.

Keywords: Unsteady flow, aeroelasticity, Navier-Stokes equations, ALE,

moving mesh

1. INTRODUCTION
Wind turbines are subjected to a hard environment as the atmospheric turbulence, the ground
boundary layer, the rapid variations in wind speed and direction and the tower shadow for
downwind turbine. With the architecture of the rotor, the time delay of the yawing system
and the resulting yawing error, the blades are experiencing cyclic variations of the attack
angle which lead to 3D unsteady aerodynamics and dynamic stall [1, 2]. The dynamic stall
results in fluctuating blade force which leads to blade pitch oscillations, flap-wise or lead-lag
oscillations, known as aeroelastic phenomena. Then problems of aeroelastic stability can be
encountered in particular on the new large wind turbine blades. Indeed, the new blade lengths
are more and more important and as they are fixed at only one extremity, they are subject to
high bending and torsion stress. Aeroelastic stability problems are also encountered on
parked wind turbine at high wind speeds [3, 4].

Most of the wind turbine aeroelastic analyses were performed with the use of engineering
methods where the blade forces were often computed by the BEM theory and the dynamic
stall was modelled with empirical models such as the ONERA or the Beddoes-Leishman.
The dynamic response of the wind turbine was then determined using aeroelastic tools with
a reference rotor speed which was assumed constant [5–7]. The problems of viscous fluid
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flow and of elastic body deformation were then studied separately. These weak coupled
approaches are limited to small deformations. For the large displacements, the interaction
between those two media and the modelling of the unsteady aerodynamics and dynamic stall
are of great importance for the aeroelastic stability study. Then there is a need to perform
aeroelastic computations by means of a strong coupled approach with Computational Fluid
Dynamics (CFD) simulations of the viscous fluid flow.

To the authors’ knowledge, the first coupled analysis of the aeroelastic stability of a wind
turbine was accomplished in the frame of the European project KNOW-BLADE at RISOE:
Ellipsys3D, an in-house 3D Navier-Stokes equations solver, was coupled to a 3D structural
model based on the beam element theory. Then the problem of lead-lag oscillation of a wind
turbine blade was investigated [8]. Others Fluid Structure Interaction studies can be found in
the literature. However, most of them are intended for high-speed turbo-machinery and the
applied CFD codes solve the compressible Navier-Stokes equations.

In this paper, the problem of classical Flutter phenomenon is dealt with a strong coupled
method where the dynamic response of the wind turbine blade is determined in time accurate
sequences. The numerical simulations are performed using a commercial CFD code which is
coupled to a computational structural code for the solution of the dynamic equations of the
blade. The aim of this study is to propose a straightforward technique to be used with general
computer tools.

All computations are performed for a 2D airfoil with moving mesh. Beforehand, to check
the reliability of the CFD computations, the cases of the unsteady flow field around (i) a
NACA 0012 airfoil at a fixed large angle of attack and (ii) around this airfoil in forced pitch
oscillations are considered. The effects of the discretization schemes and the moving mesh
technique are investigated. The hystereris loops of the dynamic stall are highlighted with the
moving mesh computations. This is the purpose of this part 1 of the present paper. The
problems of flow induced vibrations of a symmetrical NACA 0012 airfoil in pitch oscillations
and that of a cambered NACA 632 415 airfoil in flutter are considered in the part 2 of the
present paper.

2. NUMERICAL APPROACH
It is generally assumed that the flow around wind turbines is turbulent and incompressible.
The Mach number is lower than 0.2 and the Reynolds number lies between 105 and 2 × 106.
However, according to Leishman [1], although the fluid velocities are relatively low
compared to a helicopter rotor, the justification of an incompressible flow require also that
the frequency of the sources of the unsteady effects must be small compared to the sonic
velocity. In this paper, the computations are performed for low values of the reduced
frequency to justify the assumption of an incompressible flow. In addition, the computations
are implemented with the low Reynolds numbers 103 and 104, and it is assumed that the flow
is laminar. These simulations of a laminar flow allow us to perform direct numerical
simulation (DNS): the equations are not averaged as with the RANS methods. The
computations of the fluid flow around the oscillating airfoil are performed with a 2D moving
mesh.

2.1. FLUID EQUATIONS
The governing equations are described in the Arbitrary Lagrangian Eulerian (ALE)
coordinates where the grid is treated as a referential frame moving with an arbitrary
velocity. A detailed description of the derivation of the ALE formulation can be found in
Refs. [9, 10] among others.
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Let Ωf ∈ R2 the spatial domain occupied by the fluid. The incompressible Navier-Stokes
equations defined in ALE coordinates are written as, in tensor notation:

(1)

where t, is the time, xi the Cartesian coordinate of a point of Ωf , ui, the absolute velocity
component in the direction i, uci, the velocity of the moving grid, p, the pressure, ρ, the fluid 

density, the determinant of the metric tensor and τij, the stress tensor components
defined as, in the case of laminar flows,

(2)

with µ, the molecular dynamic fluid viscosity. An additional equation called the Space –
Conservation Law (SCL) is enforced for the moving coordinate velocity components.

The boundary conditions are prescribed as follows. On the West boundary, the inflow
condition is applied having defined the free-stream velocity. The outflow condition is set on
the East boundary. A symmetry condition is applied on the South and the North boundaries.
At the airfoil surface, the fluid velocity is equal to the airfoil speed:

u = vb (3)

where u is the fluid velocity adjacent to the airfoil surface and vb is the velocity of the airfoil.
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Figure 1 Block topology applied for the oscillating airfoil.



2.2. COMPUTATION OF THE AERODYNAMIC FORCES
The resultant of the aerodynamic forces is obtained from the solution of the Navier-Stokes
equations by integrating the pressure p and the shear stress τw over the blade surface S:

(4)

where:
• is the outward-pointing vector normal to the airfoil surface
• N is the number of cells on the airfoil surface
• pi, τwi and δSi are the wall cell pressure, shear stress and face area respectively
• is the outward-pointing vector normal to δSi

FX, the drag force and FY, the lift force are then computed as:
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Figure 2 Time histories of the lift and drag coefficients computed for a NACA 0012
airfoil at a fixed incidence of 20° and Re = 103.



(5)

and are the unit vectors in the parallel and vertical directions of the flow, respectively.
The lift and drag coefficients CL and CD are derived from the computed values of the
aerodynamic force components and with:

(6)

Aref is the reference area and V∞ is the reference velocity set to the free stream velocity.
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Figure 3 Time histories of the lift and drag coefficients computed for a NACA 0012
airfoil at a fixed incidence of 20° and Re = 104 computed with both differencing
schemes.



2.3. DYNAMIC EQUATIONS OF THE AIRFOIL
The instantaneous angle of attack of the NACA 0012 airfoil in forced pitch oscillations is
given by the relation:

α(t) = α0 + αm sin(ω t) (7)

where α0 is the mean angle of attack of the oscillating airfoil, αm is the oscillation amplitude
and ω = 2π f with f, the frequency of oscillation.

2.4. MOVING MESH TECHNIQUE
An overview of the computational domain is shown in Fig. 1. The axis of rotation of the
airfoil is located at 25% chord length from the leading edge. The grid is an O–H block
structured mesh, allowing a meshing technique easy to implement. Moreover, it was shown
in [11] that solutions obtained with structured meshes are of higher accuracy. To check the
meshing technique implemented for moving the grid, results are compared to that obtained
with the Arbitrary Sliding Interface (ASI) method which is built-in the CFD code. Both
moving grid techniques are described in the following:

(i) With the ASI technique, the computational grid is split into a moving part
around the airfoil and a fixed part. The cells of the circular sub-domain of
radius R1 (Fig. 1) move at the airfoil speed. The mesh movement is defined
explicitly by specifying time-varying position for all the moving mesh block
vertices. An interface boundary surrounding the moving mesh part slides at
the specified velocity.
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Figure 4 Mesh near the airfoil at fixed incidence of 20°.



(ii) In the meshing technique, the coordinates of the moving cells are expressed
in cylindrical coordinates (Ri, θi). As with the ASI technique, the grid of the
circular sub-domain of radius R1 moves with the airfoil as it oscillates. An
algebraic interpolation is applied for moving the vertices of the annular sub-
domain delimited by the radius R2 and R1. The grid of the outer domain of
radius Ri ≥ R2 remains stationary. At each time step tn, the angular position 
of the vertices is then given by the relation:

(8)

where:
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α = 20° -- Re = 1E03 t* = 20

a) Near the airfoil

b) In the whole computational  domain

α = 20° -- Re = 1E03 t* = 30

α = 20° -- Re = 1E03 t* = 20 α = 20° -- Re = 1E03 t* = 30

Figure 5 Instantaneous velocity contours around the airfoil at a fixed incidence of
20° with Re = 103 at the dimensionless times t∗ = 20 and t∗ = 30.



(9c)

∆t is the time step and is the airfoil angular velocity:

(10)

With this moving mesh algorithm, the mesh distortions are small and the original mesh
quality is preserved. Given an appropriate choice of the radius R1 and R2, this technique can
be applied even for large displacements of the airfoil. The method is implemented in a User
subroutine called by the CFD code at each time step.

All simulations are carried out with StarCD, a commercial computer code based on the
solution of the Navier-Stokes equations by the finite volume method. The PISO algorithm is
applied for the solution of the coupled pressure-velocity equations. This algorithm is similar
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Figure 6 Instantaneous velocity contours around the airfoil at a fixed incidence of
20° with Re = 104.



to SIMPLE but has more than one pressure corrector step. In the original model, there are
two correction levels [12]. In StarCD, the maximal number of PISO correctors is 20 but
when the solution converges, only 3 or 4 corrector steps are applied. The UPWIND scheme,
a first order accurate differencing scheme, is applied for the interpolation of the convective
terms. The QUICK scheme, a high order differencing scheme would be more accurate.
However, stability problems have been encountered as it is shown on Figs. 2 and 3 which
compare the time histories of the lift and drag coefficients computed with both differencing
schemes for a stationary airfoil at 20° angle of incidence. The lift and drag coefficients
calculated with the QUICK scheme vary with large amplitudes and the amplitude variation
of the force coefficients increases as the Reynolds number increases. These results are due to
the instability of the QUICK scheme when the Peclet number is too high. As for the
simulations of the flow around the oscillating airfoil it is important to distinguish the
numerical instabilities of the solution from the unsteady flow associated with the airfoil
movements, the computations are performed with the first order UPWIND scheme, less
accurate, but more stable. For the temporal discretization of the equations, the implicit θ -
scheme is applied with a factor equal to 0.8.

3. APPLICATION
These simulations are performed for a NACA 0012 airfoil which is used on vertical axis wind
turbine. First computations are carried out for the simulation of the unsteady flow around a
stationary NACA 0012 airfoil at the large angle of attack α = 20°. Then the case of this airfoil
in forced pitch oscillations is considered. All computations are performed with an airfoil of
1m chord length. The properties of the fluid are those of air with a density ρ = 1.2 kg/m3 and
a dynamic viscosity coefficient µ = 1.8 Pas.
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Figure 7 Mesh near the oscillating airfoil.



3.1. FLOW AROUND A FIXED NACA 0012 AIRFOIL AT α = 20°
These calculations are carried out with a constant integration time step ∆t =10–2s for the
chord Reynolds numbers Re = U∞ C/ν = 103 and 104 where U∞ is the free-stream velocity,
C, the airfoil chord and υ = µ�ρ, the kinematic viscosity. The computational domain extends
on a distance equal to –8.1 × C at upstream and the outlet boundary is located at a distance
equal to 15 × C. The North and South boundaries are located at ± 10 × C respectively. The grid
is a C-H block structured mesh and consists of 66 600 cells with 320 cells around the airfoil.
The height of the first cell row around the airfoil is y0/C ≈ 3.5 × 10–3 (Fig. 4). It is assumed
that the solution has converged when the temporal variations of the force coefficients are
periodic. The force coefficients are then obtained by calculating the arithmetic average of the
instantaneous values corresponding to the last iterations of the periodic solution.

Fig. 5 shows the instantaneous velocity contours obtained with Re = 103 at the
dimensionless times τ∗ = U∞ t/C = 30 and 45. It can be seen that the flow on the upper surface
of the airfoil separates near x/C = 0.5 and that the shape of the separation zone changes with
time. A regular vortex shedding appears which is attenuated in the wake. When Re = 104, the
flow around the airfoil and in the wake is more complex as it is shown on Fig. 6 which

α = −9.76° α = 9.93°t* = 3.21

t* = 3.22 α = 9.42°t* = 3.69 

t* = 3.73

a) ASI method

b) Meshing method

α = −9.86

Figure 8 Contours of velocity magnitudes over the oscillating airfoil computed with
both moving mesh techniques and k* = 0.45.
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represents the instantaneous contours of the velocity magnitude at the dimensionless times
τ∗ = U∞ t/C = 30 and 67.5. The shape and the changes of the separation zone are different to
those obtained with Re = 103 and the wake vortices are not dampened. This reflects that the
oscillations of the flow are of larger scale than with Re = 103.

The computed lift and drag coefficients are summarized in Table 1 compared to the values
calculated by Hoarau and al [13] and to data measured by Sunada et al [14] for Re = 4 × 103,
Laitone [15] for Re = 2.07 × 104 and Critzos et al [16] for Re = 5.0 × 105: 

(i) A mismatch is found for the lift coefficient computed with Re = 103 and
the computed values of Ref. [13]. Note that a closely related value was
obtained in our computations with the QUICK scheme. However, as
the QUICK scheme is unstable, this result is uncertain.

(ii) The force coefficients calculated here with Re = 104 are closer to the
values found in [13].

(iii) The computed CL and CD coefficients are larger to experimental data of
Refs. [14], [15] and [16].

The low agreement of the computational results with measurements is attributed to
uncertainties in the experimental data. Indeed, although the NACA 0012 airfoil was the subject
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Figure 9 Contours of velocity magnitudes in the whole computational domain
computed with both moving mesh techniques and k* = 0.45.



of numerous experiments [15–19] and numerical simulations [13, 19, 20], there are very few
data for low Reynolds and Mach numbers. Laitone [15] explained this gap by the insufficient
precision (or sensitivity) of the strain gauges. Moreover, as shown in Table 1, data found in
the literature are somewhat different. In addition, various values of the static stall angle of
attack and the corresponding CL, max are given in Refs. [15–17, 19, 20]. Nevertheless, it is
generally found that the lift coefficient increases (and the drag coefficient decreases) as the
Reynolds number increases even at the Reynolds numbers in the range 103 ≤ Re ≤ 105. These
suggest that our results are more reliable than those of Ref. [13].

3.2. NACA 0012 IN FORCED PITCH OSCILLATIONS
The computational domain extends are defined as previously. An overview of the block
topology is shown on Fig. 1. The O-H mesh used for these computations consist of 111 000
cells with 500 cells around the airfoil and 720 cells at the periphery of the sub-domain of
radius R1 (Fig. 7).

The calculations are performed for the chord Reynolds numbers Re = 104 with a constant
integration time step ∆t = 10–4 s. The instantaneous value of the angle of attack is given by the
equation (7) with α0 = 0°, αm = 10° and ω corresponding to k* = 0.19 and 0.45 where k* = ω
C/2U∞ is the dimensionless reduced frequency based on half chord and the free-stream
velocity. At time t = 0 s, the airfoil incidence is zero. Preliminary computations are carried out
for a fixed airfoil with the initial angle of attack to get the initial flow field. The simulations
for the airfoil in forced oscillations are initiated when the solution becomes stable. The

378 Numerical simulation of the flow around oscillating wind turbine airfoils

1.5

1.0

0.5

0.0

−0.5

−1.0
0 1 2 3 4 5

C
L

Time (S)

ASI
Meshing

Fig 10 Time evolution of the lift coefficient computed with both moving mesh
method and k* = 0.45.

Table 1. Lift and drag coefficients computed for the NACA 0012 airfoil at 20° fixed
incidence

Ref StarCD Hoarau et al [13] Sunada [14] Laitone [15] Critzos [16]
Re 103 104 103 104 4 × 103 2.07 × 104 5 × 105

CL 0.717 0.756 ≈0.95 ≈ 0.75 ≈ 0.58 ≈ 0.58 ≈ 0.65
CD 0.364 0.352 ≈ 0.45 ≈ 0.30 ≈ 0.26 - ≈ 0.24
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Figure 11 Contours of the velocity magnitudes over the oscillating airfoil with
k* = 0.19 at selected times within the oscillating cycle.
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Figure 12 Contours of the velocity magnitudes over the oscillating airfoil with
k* = 0.45 at selected times within the oscillating cycle.



convergence of the solution for the flow field around the oscillating airfoil is checked both
with the number of PISO correctors and the maximal value of the CUNO parameter, a
number analogous to the CFL number but whose calculation is based on the face fluxes. It is
recommended to check that the peak values of the CUNO do not exceed about 300
(http://www.adapco-online.com/). However, this criterion proved to be insufficient and
values lower than 20 have been set. All results are depicted as a function of the dimensionless
time t* = t/T where T = 2π/ω is the period of oscillation.

3.2.1. Comparison of the two moving mesh techniques
Figs. 8 and 9 show that the contours of velocity magnitude obtained with both moving mesh
techniques, the ASI method and the meshing method are similar, as well as over the airfoil
(Fig. 8) than in the wake (Fig. 9). The time-wise variations of the calculated lift coefficient
with both moving mesh techniques are compared on Fig. 10. This figure shows again that the
obtained results with both moving mesh techniques are similar and confirms the suitability
of the meshing technique.
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3.2.2. Instantaneous velocity magnitude
On Fig. 9, it is shown that the wake vortices follow the airfoil oscillations. The velocity
contours around the airfoil at selected times within the oscillating cycle, are depicted on
Figs. 11 and 12 for the reduced frequency k* = 0.19 and 0.45 respectively. Similar flow
patterns are found for same positions of the airfoil when it is upstroke (or down stroke)
cycle (Figs. 11a and 11f or Figs. 12a and 12e). At opposite positions, the flow patterns are
similar but reversed (Figs. 11b and 11d, 11c and 11e or Figs. 12b and 12d). With the larger
reduced frequency, the near wake vortex shedding is more important.

On Fig. 13 are depicted the time histories of the velocity magnitude and pressure at a point
located near the airfoil surface, in the vicinity of the leading edge. The amplitude of the
velocity magnitude variation is lower when the reduced frequency decreases. On the
opposite, the time-wise variations of the pressure are similar however a higher peak is get
with the lower reduced frequency.
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3.2.3. Force and moment coefficients
The time evolutions of the force and moment coefficients are depicted on Fig. 14,
compared to the oscillations of the airfoil. The lift and moment coefficients have the same
frequency (TCL) as that of the airfoil oscillation (T): TCL = T = 111.70 s when k* = 0.19 and
TCL = 46.54 s with k* = 0.45. The variation of the lift and moment are in phase with the
airfoil oscillations when k* = 0.45. The drag's frequency (TCD) is one half the lift's
frequency (TCD = TCL/2). Similar behaviour was found in [21] with Euler computations of
the flow over an oscillating airfoil. In Brevins [22, p.47], it is reported that this has been
shown in experiments and that it is a consequence of the geometry of the vortex street.

The hysteresis loops CL(α) and CD(α) are depicted on Fig. 15. When the airfoil is oscillating,
both lift and drag coefficients increase compared to the 2D steady state: (i) The mean values of the
drag coefficient corresponding to α = 0° are CD = 0.0775 and 0.0684 with k*=0.19 and 0.45
respectively. In previous computations of the drag coefficient for the fixed airfoil at zero incidence,
it was found that CD = 0.0374. (ii) The lift coefficients vary roughly between ± 0.37 and ± 0.12
respectively. The lift hysteresis loops are then larger when the reduced frequency is lower.
However, the predicted maximum lift and drag coefficients increase with the reduced frequency.
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Figure 15 The hysteresis loops for the lift, drag and moment coefficients for the
oscillating airfoil with k* = 0.19 and 0.45.
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4. SUMMARY AND CONCLUSION
Simulations of the fluid flow around an airfoil in forced pitch oscillations have been
performed with a commercial CFD code based on the solution of the Navier-Stokes
equations by the finite volume method. The governing fluid equations are described in ALE
coordinates and solved with a moving mesh technique that is implemented in a user
subroutine called by the CFD code at each time step. The meshing technique is
straightforward and suited to structured grids.

The hysteresis loops of the dynamic stall phenomenon are highlighted with the moving
mesh computations. It is found that the period of the drag coefficient CD is twice the period
of the lift coefficient CL. Both coefficients increase with the unsteady motion in comparison
to the 2D steady state. As expected, the hysteresis loops and time evolutions of the lift and
drag coefficients vary with the reduced frequency k*.
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