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Abstract 

Multi-physics coupled simulations imposes stringent demands on high-performance 

computing(HPC) resources, particularly regarding physical memory consumption. The 

inappropriate allocation of HPC resources may result in computational task failures or 

inefficient resource utilization. To enhance the utilization rate of the scarce large-memory 

computing resources in HPC clusters, this study explores the prediction methods for 

resource requirements and computation time of multi-physics coupling calculations, as well 

as rational allocation strategies for computing resources.By analyzing the characteristics 

of multi-physics coupling computational tasks and utilizing actual data collected from fluid-

structure-acoustic(FSA) coupling computations, this study establishes an effective 

resource prediction model for FSA coupling calculations based on various machine 

learning algorithms. Subsequently, based on the forecasting results and HPC node 

configurations, an optimal allocation model for computing nodes is developed using an 

improved selection and elimination method based on weight estimation. This approach 

achieves a balanced optimization between computation time and resource 

allocation.Experimental results indicate that the proposed methods can effectively predict 

the resource requirements and computation time for multi-physics coupling calculations 

and provide optimal strategies for resource allocation, thereby resulting in an average 

decrease of 17.5% in computation time and an improvement of 20.4% in resource 

utilization efficiency. 

Keywords: Computing resource prediction, machine learning, multi-physics coupling, 

resource allocation, multi-objective decision-making. 

 

1. Introduction 

The development of ships, aircraft, rockets, and other products is a highly complex system engineering task, 

involving multiple disciplines such as structure, fluid dynamics, acoustics, and thermodynamics. Each sub-system 

from these disciplines is often designed and simulated using different CAD/CAE software. However, with the 

growing complexity of technology and intensifying competition in these fields, traditional development methods 

that rely on ground testing and single-discipline simulation analysis are increasingly unable to meet the demands 

for high-precision and rapid development of complex products. Ignoring the coupling effects between multiple 

disciplines may lead to the loss of the optimal overall performance design. 

Multi-physics coupled simulation based on unified modeling can ensure data consistency and transfer accuracy 

between different physical fields and enable the unified solution of different discipline performances, making it 

an ideal method for multi-physics coupled calculation. Yet, this approach involves building multi-physics solution 

matrices within the same software, causing an exponential increase in computational degrees of freedom and 

demanding substantial computational resources. Generally, parallel computing with large-memory computing 

nodes is used. Moreover, during the coupling process, physical field interactions may cause geometric 
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deformation (e.g., changes in the flow field due to structural vibration), requiring dynamic mesh reconstruction 

and synchronous updating of the coupling interface. This places extremely high demands on memory bandwidth 

and the real-time communication efficiency of computing nodes. 

Currently, when requesting multi-physics coupled computing resources through high-performance scheduling 

systems, reliance on engineers' personal experience is common. To prevent computational task failures, excessive 

resources are often requested, making it difficult to access scarce large-memory computing nodes and potentially 

leading to project delays. Additionally, as the number of distributed computing nodes increases, so does the 

communication latency between them. Simply increasing the number of computing nodes may result in cross-

node communication overhead that offsets parallel computing benefits. Therefore, accurately predicting multi-

physics coupled computing resource requirements and computation time, and implementing reasonable resource 

allocation is of utmost importance. 

To address these issues, this paper proposes a machine-learning-based method for predicting multi-physics 

coupled high-performance computing resource requirements and computation time, as well as an improved 

selection and elimination algorithm based on weight estimation for generating optimal high-performance 

computing resource allocation strategies，the overall technical approach is shown in Figure 1. 

 
Figure 1. Overall technical approach 

The effectiveness of the proposed method is verified using FSA coupled simulation calculations in COMSOL 

software[1], a multi-physics coupled simulation software commonly used in the shipping industry. The main 

contributions of this paper are two-fold: 

1)A multi-physics coupled simulation computing resource prediction model is proposed. Based on machine 

learning algorithms and trained with COMSOL multi-physics coupled calculation example data, this model can 

quickly and accurately predict the actual computing resources and computation time required for computing tasks 

under different numbers of computing nodes. 

2)An improved selection and elimination method based on weight estimation is proposed to obtain multi-physics 

coupled computing resource scheduling strategies. This strategy balances the conflict between physical memory 

usage and computation time, providing the optimal computing resource allocation strategy. 

2. Related Work 

The prediction of multi-physics coupled computing resource requirements and computation time is influenced by 

multiple factors, such as the number of computing nodes, grid cells in the model, degrees of freedom, solver 

algorithm types, and computational accuracy. It can be abstracted as a multi-input and multi-output predictive 

regression problem.  

Most current research on multi-input and multi-output predictive regression models is based on neural networks, 

which perform well for tasks with large datasets. For example, LSTM has been used for precipitation prediction 

in [2]. Dynamic recurrent neural networks have been applied for structural response prediction in [3]. A CNN-

Transformer hybrid framework has been proposed for predicting diesel vehicle ammonia emissions in [4]. 
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Additionally, BP neural networks have been utilized to achieve accurate construction cost prediction for large-

scale building projects in [5]. However, neural-network-based methods have significant limitations when the 

dataset is small. Even with data augmentation and network-structure adjustments to optimize the model, these 

limitations persist. Multi-physics coupled computing tasks, due to their long computation time and high resource 

demands, cannot generate large amounts of data in the short term. Thus, neural networks are not well-suited for 

predicting resource usage in multi-physics coupled computing task. For multi-physics coupled computing tasks, 

the ideal scenario is to complete the computation as quickly as possible using the fewest computing resources. 

Yet these two objectives are conflicting. A single node's memory is limited, while multi-physics coupled 

computing requires massive memory, typically necessitating parallel computing across multiple nodes. Reducing 

computation time requires more computing nodes. These conflicting goals lead to a multi-objective optimization 

problem. Multi-objective optimization problems are common in engineering and scientific research. They involve 

simultaneously optimizing two or more conflicting and related objective functions. Finding a solution that 

optimizes all functions simultaneously is usually impossible. Instead, researchers aim to find a set of trade-off 

solutions, known as the Pareto optimal set. Decision-makers then select the best solution based on the Pareto set 

and frontier, considering practical needs and preferences. Selection methods for the best solution have become a 

research hotspot. For instance, in some studies, multi-objective problems were transformed into single-objective 

ones by assigning weights to each goal in [6]. In others, solution quality was evaluated by calculating distances 

between reference points and solutions in [7]. Many scholars have also explored specific multi-objective 

programming problems. For example, a green credit multi-objective optimization model with risk minimization 

and environmental benefit maximization as goals has been developed in [8]. The NSGA-II algorithm has been 

used to study hydrogen fuel cell performance in [9]. Power grid investment planning decisions have been analyzed 

with an improved ELECTRE method in [10]. However, most research focuses on finance, electricity, and water 

resources, with limited attention to multi-physics coupled computing resource allocation. 

3. Preliminary Knowledge 

3.1. Machine Learning 

Machine Learning(ML), a subfield of Artificial Intelligence(AI), enables computer systems to automatically learn 

patterns from data and make predictions or decisions without explicit programming. Its primary objective is to 

extract patterns from data and generalize them to new data. 

3.1.1. Common Machine Learning Algorithms 

(1) Supervised Learning  

Supervised learning involves training models with labeled datasets and is suitable for classification and regression 

problems.Typical algorithms include linear regression, decision trees(see [11]), and support vector machines(see 

[12]) et al.  

The random forest regression algorithm(see [13]), a tree-based ensemble learning method, makes predictions by 

constructing multiple decision trees and aggregating their results, as shown in Figure 2. 

 
Figure 2. Schematic diagram of the Random Forest algorithm 
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Support Vector Regression(see [14]) is a regression algorithm based on Support Vector Machines. Its core idea is 

to find an optimal hyperplane in a high-dimensional feature space that minimizes the sum of distances from all 

sample points to the hyperplane, as shown in Figure 3. 

 
Figure 3. Schematic diagram of the Support Vector Regression algorithm 

 

Gradient Boosting Regression(see [15]) is an ensemble-based regression algorithm. It combines multiple weak 

learners to form a strong learner, enhancing prediction accuracy. In each iteration, it fits the residuals of the 

previous prediction to gradually reduce the prediction error of the overall model, as shown in Figure 4. 

 
Figure 4. Schematic diagram of the Gradient Boosting Regression algorithm 

 

(2)Unsupervised Learning  

Unsupervised learning analyzes the internal structure of unlabeled data and is commonly used for clustering and 

dimensionality reduction. Typical algorithms include K-means clustering(see [16]) and Principal Component 

Analysis (PCA)(see [17]) et al. 

3.1.2. Common Evaluation Metrics for Machine Learning Algorithms 

In machine learning, evaluation metrics are crucial tools for assessing the predictive performance of models. By 

quantifying the discrepancy between predicted and actual values, these metrics help researchers evaluate the 

accuracy, robustness, and generalization ability of models. The commonly used evaluation metrics in machine 

learning are as follows: 

(1) Mean Squared Error (MSE) 

MSE is one of the most commonly used evaluation metrics for regression tasks. It calculates the average of the 

squares of the differences between predicted and actual values, with the formula as follows: 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛

𝑖=1
                                                                       (1) 

In the formula, yi represents the actual value,ŷi denotes the predicted value, and n is the number of samples. 

MSE is more sensitive to larger errors, making it suitable for scenarios where significant deviations from 

predictions need to be penalized. 

(2) Root Mean Squared Error (RMSE) 

RMSE is the square root of MSE, with the formula as follows: 
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𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸                                                                              (2) 

It retains the sensitivity of MSE to larger errors and has the same dimension as the original data, making it easier 

to interpret. RMSE is widely used in regression tasks, especially when a clear understanding of errors is needed. 

(3)Mean Absolute Error (MAE) 

MAE calculates the average of the absolute differences between predicted and actual values, with the formula as 

follows: 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|
𝑛
𝑖=1      (3) 

In the formula, yi represents the actual value,ŷi denotes the predicted value, and n is the number of samples. 

Unlike MSE and RMSE, MAE is less sensitive to outliers, making it suitable for datasets with anomalies. 

(4)Mean Absolute Percentage Error (MAPE) 

MAPE expresses prediction errors in percentages, with the formula as follows: 

𝑀𝐴𝑃𝐸 =
100%

𝑛
∑ |

𝑦𝑖−𝑦̂𝑖

𝑦𝑖
|

𝑛

𝑖=1
     (4) 

In the formula, yi represents the actual value,ŷi denotes the predicted value, and n is the number of samples. 

It is useful for comparing errors across different data scales but can become unstable when actual values are close 

to zero. 

(5)Mean Squared Logarithmic Error (MSLE) 

MSLE evaluates model performance by calculating the square of the difference between the logarithms of 

predicted and actual values, with the formula as follows: 

𝑀𝑆𝐿𝐸 =
1

𝑛
∑ (ln(𝑦𝑝𝑟𝑒𝑑𝑖 + 1) − log(𝑦𝑡𝑟𝑢𝑒𝑖 + 1))

2𝑛

𝑖=1
   (5) 

In the formula,ypredi represents the predicted value of the i-th sample,ytruei denotes the actual value of the i-th 

sample,n is the number of samples. 

It is suitable for regression tasks with non-negative target values across a wide range. 

3.2. Multi-Objective Optimization Methods 

3.2.1. Analytic Hierarchy Process (AHP) 

AHP(see [18]) is a decision-making method based on hierarchical structures, suitable for complex problems with 

multiple objectives and criteria. It determines relative weights through pairwise comparisons to achieve a global 

optimal solution. The implementation steps are as follows: 

(1)Hierarchy Model Construction: Decompose the decision problem into a goal layer(such as resource scheduling 

optimization)、criterion layer(such as computation time and memory utilization) and alternative layer, forming a 

tree-like hierarchy. 

(2)Judgment Matrix Generation: Use the 1-9 scale method(as shown in Table 1) to compare elements within the 

same level, constructing a judgment matrix B = (bij)n×n
, where bijrepresents the relative importance of element 

i compared to element j. 

Table 1. Ratio Scale 

Value Description 

1 Equally important 

3 Moderately more important 

5 Significantly more important 

7 Much more important 

9 Extremely more important 
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2,4,6,8 Intermediate values 

 
(3)Weight Calculation and Consistency Check: Solve the judgment matrix to obtain the maximum eigenvalue 

λmax  and eigenvector w, normalize to get the weight vector. Consistency of the matrix is verified using the 

Consistency Ratio (CR), which must be less than 0.1 to ensure the judgment matrix is acceptable. The calculation 

formula is as follows: 

{
𝐶𝑅 =

𝐶𝐼

𝑅𝐼

𝐶𝐼 =
𝜆𝑚𝑎𝑥−𝑛

𝑛−1

      (6) 

(4)Global Weight Synthesis: Aggregate weights across levels to compute the overall priority vector for 

alternatives, completing the consistency check. 

(5)Decision Making: Select the optimal alternative or rank alternatives based on the overall priority results. 

3.2.2. Elimination Et Choice Translating Reality (ELECTRE) Method 

ELECTRE(see [19]) is a multicriteria decision-making method that screens and ranks alternatives through 

concordance and discordance matrices. The steps are as follows: 

(1)Decision Matrix Construction: Form an m× n decision matrix X based on n criteria, where xij represents the 

matrix element, indicating the score of the i-th alternative on the j-th criterion; m is the number of alternatives. 

(2)Data Standardization: Normalize the decision matrix X  using the range method to eliminate dimensional 

differences,an m×n order standardized matrix X’ is obtained. where xij
′  is the matrix element, representing the 

normalized value of the j-th criterion for the i-th alternative. The normalization formula is as follows: 

xij
′ =

max
iϵ(1,m)

xij−xij

max
iϵ(1,m)

xij− min
iϵ(1,m)

xij
     (7) 

(3)Weighted Decision Matrix: Incorporate the weights of n criteria into the standardized matrix to obtain a m× n 

order weighted decision matrix R. rij is the element of matrix R, represents the weighted value of the j-th criterion 

for the i-th alternative. The formula is as follows: 

rij = xij
′ ωj     (8) 

In the formula,ωj represents the weight of the j-th criterion. 

(4)Concordance and Discordance Sets: Define concordance sets Hkl = {j|rkj ≥ rlj} and discordance sets Bkl =

{j|rkj < rlj} based on alternative pairs (k, l). 

(5)Concordance Matrix C: Based on the concordance set Hkl, construct an m×m order concordance matrix C to 

characterize the proportion of criteria weights where alternative k is better than alternative l. Here,ckl  is the 

element of this matrix, representing the concordance index of alternative k over alternative l. The calculation 

formula for ckl is as follows: 

ckl =
∑ ωjj∈Hkl

∑ ωjj∈J
      (9) 

The greater the value of ckl, the more significantly the criteria weight of alternative k exceeds that of alternative 

l. 

(6)Discordance Matrix D: Based on the discordant set Bkl , construct an m×m order discordant matrix D to 

reflect the maximum local differences where alternative k is inferior to alternative l. Here,dkl is the element of 

this matrix, represents the discordant index of alternative k with respect to alternative l. The calculation formula 

for dkl is as follows: 
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dkl =
max
j∈Bkl

|rkj−rlj|

max
j∈J

|rkj−rlj|
     (10) 

The larger the dkl value is, the more inferior the criterion scores of alternative k are to those of alternative l. 

(7)Comprehensive Domination Matrix E: Based on the concordance matrix C and the discordance matrix D, the 

m×m order comprehensive dominance matrix E is determined. This matrix reflects the relative advantages and 

disadvantages of different alternatives under multi-criteria decision making. ekl is the element of matrix E , 

represents the dominance index of alternative k over alternative l. The calculation formula for ekl is as follows: 

ekl = ckl − dkl     (11) 

The larger the ekl value, the greater the dominance strength of alternative k over alternative l, indicating that 

alternative k is superior to alternative l in the evaluation. 

(8)Net Domination Index Calculation: Based on the comprehensive dominance matrix, the net dominance index 

ξk for each alternative is calculated using the following formula: 

ξk = ∑ (eki − eik)
m
i=l，i≠k , k = 1,2,… ,m    (12) 

The ξk value reflects the overall evaluation score of an alternative under criterion integration. A larger ξk indicates 

a better overall evaluation. 

(9)Net Domination Ranking: Sort the alternatives in descending order of ξk. Based on the ranking results, carry 

out multi-physics coupled simulation computation resource scheduling strategy optimization. 

4. Machine Learning-Based Multi-Physics Coupled Simulation Resource Prediction Model 

4.1. Data Collection and Preprocessing 

Submit different multi-physics coupled models to a high-performance scheduling system. By selecting various 

numbers of large-memory nodes (96 CPU cores and 1.5TB memory per node), obtain model computation results 

under different resource conditions. The dataset includes 30 multi-physics coupled 3D models. Each model series 

has a mesh quantity ranging from 5 million to 50 million and a computing node count from 5 to 25. Data is stored 

in Excel, totaling 1,500 groups, with 70% for training and 30% for testing. The random shuffling rate is 42%. 

Some samples in the dataset are shown in Table 2. 

Table 2. Some Samples of the Collected Data 

Model 

Number 

Mesh Count 

(in ten 

thousands) 

Degrees of 

Freedom (in 

ten 

thousands) 

Number of 

Compute 

Nodes (in 

units) 

Computation 

Time (in 

seconds) 

Physical 

Memory (in 

GB) 

Virtual 

Memory (in 

GB) 

1 7371 11800 14 10674 1047 1110 

1 5407 7476 12 7920 524 590 

2 4479 14000 22 13950 1016 1152 

2 3134 9811 12 12757 926 1046 

3 2168 6943 7 10615 1046 1206 

3 1943 5883 9 8237 693 831 

4 4589 7060 12 8572 625 681 

4 4589 7060 11 7681 701 723 

5 2214 5063 9 5104 453 521 

5 2214 5063 7 5638 677 762 

6 3596 5116 20 8016 600 630 

6 2870 3997 11 8429 601 629 

7 3323 6533 20 10107 718 805 

7 1665 3360 7 7778 912 944 

8 3959 5891 20 9854 663 695 

8 1754 2536 7 7171 538 573 

9 1595 3356 9 6149 579 606 
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9 1190 2811 9 4330 348 431 

10 2082 5411 20 5619 397 419 

10 1188 2804 11 4754 447 477 

In Table 2, the first column represents different multi-physics coupling models. The second and third columns 

show the mesh count and degrees of freedom for these models under different meshing methods. The node count 

indicates the actual number of nodes used when submitting jobs. The mesh count, degrees of freedom, and node 

count serve as inputs for the computational resource prediction model, while computation time and physical 

memory usage are the outputs. 

The distribution of data based on model mesh and degrees of freedom is illustrated in Figures 5 and 6. It is evident 

that the mesh count and degrees of freedom in multi-physics coupling tasks are significantly large. Over 75% of 

the data have a mesh count exceeding 15 million, and over 80% have degrees of freedom exceeding 25 million. 

 
Figure 5. Data distribution of different grid quantitties 

 
Figure 6. Data distribution of different degrees of freedom 

 

4.2. Feature Selection and Extraction 

The computational resource requirements and computation time of multi-physics coupling computational models 

are mainly related to the number of computational nodes allocated, the mesh count of the model, the number of 
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degrees of freedom, the solution algorithm, and the computational accuracy. Considering that the default 

MUMPS(see [20]) solver is usually chosen in practical computations, which has high robustness, is effective in 

solving multi-physics coupling problems, and typically does not require adjustment of computational accuracy. 

Therefore, the cluster node count, mesh count, and degrees of freedom of the multi-physics coupling model are 

selected as the input features of the prediction model, while the output features of the model are computation time, 

physical memory usage, and virtual memory usage. 

4.3. Prediction Model Construction 

The multi-physics coupling computational resource prediction problem has the following characteristics: 

1)Low-dimensional input features: The number of features such as node count, mesh count, and degrees of 

freedom is limited, making it suitable for lightweight machine learning models; 

2)Limited data volume: Since multi-physics coupling computational tasks require a large amount of computational 

resources and longer computation time, the number of datasets is limited, and a large amount of data cannot be 

generated for training deep learning algorithms; 

3)Significant nonlinear relationships: Computational resource requirements and computation time change non-

linearly with the increase in node count in a segmented manner (such as the diminishing marginal returns caused 

by communication overhead). 

In view of the above characteristics, machine learning regression algorithms are particularly suitable for nonlinear 

regression problems with limited datasets. Random forest regression reduces variance by integrating multiple 

decision trees, has strong nonlinear relationship modeling capabilities, and supports feature importance analysis. 

Support vector regression (SVR) maps data to high-dimensional spaces using kernel functions to handle nonlinear 

regression and is suitable for small-sample scenarios. Gradient boosting regression (GBR) optimizes predictions 

by iteratively fitting residuals and is robust to outliers. Therefore, these three machine learning regression 

algorithms were chosen to construct the prediction models for computational resource usage and computation 

time.  

(1)FSA Coupling Simulation Computational Resource Prediction Model Based on Random Forest Regression  

The Random Forest Regressor class from the scikit-learn package(see [21]) was used to construct the model, with 

the following parameters needing adjustment: 

➢ n_estimators: the number of decision trees. Increasing the number of trees can enhance model performance 

but will increase training time and memory consumption.  

➢ max_depth: the maximum depth of the tree. It controls tree complexity and prevents over-fitting. It can be 

'None' (unrestricted depth) or a positive integer.  

➢ min_samples_split: the minimum number of samples required to split an internal node. It controls tree 
growth and prevents over-fitting.  

The actual training parameters are shown in Table 3. 

Table 3. Random Forest Regressor Algorithm Training Parameters 

Training Parameters Value 

n_estimators Range（50,50,1000） 

max_depth None，range（10,10,100） 

min_samples_split Range（2,2,10） 

error_function MSE,MAE,MSLE 

 

During training, a combination of Bayesian optimization and cross-validation was used to determine the optimal 

parameters, and the optimal parameters obtained are shown in Table 4. 
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Table 4. Optimal Training Parameters of Random Forest Regressor Algorithm 

Optimal Training Parameters Value 

n_estimators 800 

max_depth None 

min_samples_split 4 

error_function MAE 

Feature importance analysis was conducted on the training results, and the analysis results are shown in Figure 7. 

As can be seen from the figure, the number of degrees of freedom is the most important feature affecting the 

prediction results. this is due to the fact that it directly determines the dimension of the equation system during 

CAE solution, thereby influencing the solution time and resource requirements. 

 
Figure 7. Feature Importance Analysis 

 

The prediction errors of the random forest regression algorithm under optimal training parameters are shown in 

Table 5.  

Table 5. Prediction Error of Random Forest Regressor Algorithm 

Prediction Item 
Error Function 

MAE MAPE 

Computation Time 625.7 4.8% 

Physical Memory Usage 75.4 6.4% 

Virtual Memory Usage 84.9 4.8% 

As shown in the table, the MAPE values for the three prediction items are all within 7%. Figure 8 presents a 

comparison of the predicted and actual values of 30 randomly selected test samples from the test set. 

 
Figure 8. Comparison of predicted results and actual results by the Random Forest algorithm 
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(2)SVR Based FSA Coupling Simulation Resource Prediction Model 

This study aims to predict computational resource requirements and computation time by finding a decision 

boundary that minimizes the distance between predicted and actual values. The SVR class from the scikit-learn 

package was used to construct the model. The parameters to be adjusted are as follows: 

➢ C: Balances model complexity and training set fit. A large C leads to over-fitting, while a small C causes 

underfitting.  

➢ ε: Defines the maximum acceptable error between predicted and actual values. A proper ε enhances the 

model's generalization ability.  

➢ Kernel function and its parameters: Different kernel functions suit different data distributions. Common 

choices include linear, polynomial, and RBF kernels.  

The actual training parameters are shown in Table 6. 

Table 6. SVR Algorithm Training Parameters 

Training Parameters Value 

C Range（0.05,0.1,1） 

ε Range（0.01,0.1,1） 

kernel Linear,rbf 

error_function MSE,MAE,MSLE 

During training, a combination of Bayesian optimization and cross-validation was used to determine the optimal 

parameters, and the optimal parameters obtained are shown in Table 7. 

Table 7. Optimal Training Parameters of SVR 

Optimal Training Parameters Value 

C 1 

ε 1 

kernel Linear 

error_function MAE 

The prediction error of the SVR algorithm under the optimal training parameters  are as shown in Table 8. 

Table 8. Prediction Error of SVR Algorithm 

Prediction Item 
Error Function 

MAE MAPE 

Computation Time 938.7 15.0% 

Physical Memory Usage 928.5 11.5% 

Virtual Memory Usage 1017.8 9.5% 

As shown in the table, the MAPE values for the three prediction items are all within 15%. Figure 9 presents a 

comparison of the predicted and actual values of 30 randomly selected test samples from the test set. 

 
Figure 9. Comparison of SVR Algorithm Predicted Values and Actual Values. 
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(3)GBR Based FSA Coupling Simulation Computational Resource Prediction Model  

The GBR class from the scikit-learn package was used to construct the model. The parameters to be adjusted are 

as follows: 

➢ n_estimators: the number of iterations. Increasing this value can make the model more complex but may 

also increase the risk of over-fitting.  

➢ learning_rate: determines the contribution of each new learner in the iteration. A smaller learning rate can 

make the model more robust but may increase training time and the number of iterations needed.  

➢ max_depth: the maximum depth of each weak learner, which controls model complexity and prevents 

over-fitting.  

➢ min_samples_split: the minimum number of samples required to split a node, which controls decision tree 

growth.  

The actual training parameters are shown in Table 9. 

Table 9. GBR Algorithm Training Parameters 

Training Parameters Value 

n_estimators Range（50,50,1000） 

max_depth None，range（10,10,100） 

min_samples_split Range（2,2,10） 

Learning_rate [0.01,0.05,0.1] 

error_function MSE,MAE,MSLE 

 

During training, a combination of Bayesian optimization and cross-validation was used to determine the optimal 

parameters, and the optimal parameters obtained are shown in Table 10. 

Table 10. Optimal Training Parameters of GBR 

Optimal Training Parameters Value 

n_estimators 50 

max_depth None 

min_samples_split 10 

Learning_rate 0.05 

error_function MAE 

 

The prediction error of the GBR algorithm under the optimal training parameters  are as shown in Table 11. 

Table 11. Prediction Error of GBR Algorithm 

Prediction Item 
Error Function 

MAE MAPE 

Computation Time 652.3 5.7% 

Physical Memory Usage 770.5 7.7% 

Virtual Memory Usage 854.2 6.5% 

 

As shown in the table, the MAPE for the three prediction items are all within 8%. Figure 10 presents a comparison 

of the predicted and actual values of 30 randomly selected test samples from the test set. 
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Figure 10. Comparison of GBR Algorithm Predicted Values and Actual Values. 

 

4.4.  Model Training Results Analysis 

By comparing the error results of the three algorithms, it can be seen from Figure 11 that the Random Forest 

Regressor algorithm performs the best. Therefore, the Random Forest Regressor algorithm will be used as the 

predictive model for subsequent tasks. 

 
 

(a) (b) 
Figure 11. Compare of three algorithms : (a) MAPE; (b) MAE. 

 

5. Multi-physics Coupling Simulation Computing Resource Scheduling Strategy based on the 

Improved AHP-ELECTRE model  
5.1. Improvement strategies of the AHP-ELECTRE fusion model 

Aiming at the problem of resource scheduling in multi-physics coupled simulation computing, a hybrid decision-

making model based on dynamic weight estimation is proposed. The decision-making steps of this model are as 

follows: 

(1) Problem modeling 

For the multi-physics coupling simulation computing resource scheduling problem in this study, its decision-

making goal is to optimize the computing time and physical memory utilization rate on the premise of being able 

to complete the multi-physics coupling computing tasks normally. The reason why the usage of virtual memory 

is not considered here is that virtual memory can generally be converted from the disk space of the computing 

node, and it is usually not a factor restricting whether the multi-physics coupling computing task can be completed 

normally. Based on this, the mathematical expression of the objective function of the optimal scheduling strategy 

for multi-physics coupling simulation computing is as follows: 
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{
 
 

 
 

min𝑓1 = 𝑡

max𝑓2 =
𝑢𝑝

𝑢𝑡

𝑠. 𝑡. {
𝑡 ≥ 0

0 ≤ 𝑢𝑝 ≤ 1536

     (13) 

Among them, f1represents the objective function of computing time, and t represents the computing time, with 

the unit of seconds; f2 represents the objective function of physical memory usage, up represents the predicted 

physical memory usage of a single node, with the unit of GB, and ut represents the maximum physical memory 

usage of a single node, which is 1536GB in the experimental environment of this paper. 

(2) Dynamic weight correction of AHP 

The weights of the traditional AHP are static values, assuming that the decision-making environment is stable and 

the target priority is fixed. However, in dynamic scenarios such as multi-physics coupled computing resource 

scheduling, task types, environmental loads, and user preferences may change in real time, and static weights are 

difficult to adapt to time-varying demands. For example: 

⚫ Task type changes: Steady-state simulation and transient simulation have different priorities for ‘computing 

time’ and ‘memory usage rate’ 

⚫ Resource fluctuation: When cluster nodes fail or new nodes are added, the weights need to be dynamically 

adjusted to optimize resource allocation 

⚫ User preference migration: The requirements of different projects for time sensitivity or cost constraints may 

be dynamically adjusted according to users’ preference 

Static weights in these scenarios can lead to the rigidity of the scheduling strategy and prevent the realization of 

global optimality. 

The dynamic weight correction mechanism aims to dynamically update the judgment matrix and weight vector of 

AHP by providing real-time feedback data or environmental change signals, thereby enhancing the adaptability 

of the decision-making model. The core idea is to extend AHP from offline weight calculation to online dynamic 

optimization, which specifically includes the following steps: 

1) Dynamic signal perception 

Define the dynamic events that trigger weight correction, for example: 

⚫ Task type switching (such as from fluid-structure coupling to thermal  coupling) 

⚫ The resource usage rate exceeds the threshold (such as the memory usage rate persistently being higher than 

95%). 

⚫ The user manually adjusts the priority (such as temporarily requesting to shorten the calculation cycle) 

2) Judgment matrix online updates  

Adjust the element values of the criterion layer judgment matrix B according to dynamic events. For example, 

when the task transitions to transient simulation, users pay more attention to the computing time, and the 

importance ratio of ‘computing time’ relative to ‘physical memory usage rate’ needs to be increased. 

Suppose the original judgment matrix is: 

𝐁 = [
1 𝑏12
𝑏21 1

]      (14) 

After the dynamic event is triggered, it is updated in the following steps: 

⚫ Rule-driven: Preset Events-Weight mapping table (for example, changing b12 = 1/2  to b12 = 1/3  in a 

transient task) 

⚫ Data-driven: Train regression models based on historical task data to predict the optimal bij under new events 
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3) Weight recalculation and consistency check 

The updated judgment matrix needs to recalculate the weight vector W = [w1, w2]， and verify the consistency 

ratio (CR). If CR exceeds the limit, iterative optimization or manual intervention will be triggered. The eigenvector 

method is adopted to solve: B ⋅ W =λmax ⋅ W, and the dynamic weights are obtained through normalization. 

4) Smooth transition of weights 

To avoid strategy oscillations caused by sudden changes in weights, the exponential smoothing method is 

introduced to gradually adjust the weights: 

𝑊𝑡 = 𝛼 ⋅ 𝑊𝑛𝑒𝑤 + (1 − 𝛼) ⋅ 𝑊𝑡−1    (15) 

Among them, α ∈ (0,1) is the smoothing coefficient, which controls the rate of change of the weight. 

5.2. The generation process of resource scheduling strategies through multi-physics coupling 

simulation calculation 

Taking the two criteria (calculation time f1 and memory usage rate f2 as examples, the mathematical process of 

dynamic weight correction is demonstrated: 

1) Initial judgment matrix and static weights 

The initial matrix is: 

𝐁0 = [
1 2/3
3/2 1

]     (16) 

It is calculated by the eigenvector method that W0 = [0.4,0.6]. 

2) Dynamic events trigger matrix updates 

Suppose a ‘memory resource shortage’ event occurs, it is necessary to enhance the importance of memory usage. 

Update the judgment matrix to: 

𝐁1 = [
1 1/2
2 1

]      (17) 

Resolve the eigenvector to obtain W1 = [0.33,0.67]. 

3) Consistency check and smooth transition 

Calculate λ
max

= 2.0，CI = 0，CR = 0 (meeting the consistency requirements). If the smoothing coefficient 

α = 0.7, then the updated weight Wt = 0.7 ⋅ [0.33,0.67] + 0.3 ⋅ [0.4,0.6] = [0.35,0.65]. 

4) Embed the ELECTRE decision-making process 

Substitute the dynamic weight Wt into the weighted decision matrix R of ELECTRE, update the harmony matrix 

C, disharmony matrix D and comprehensive dominance matrix E, and finally generate the scheduling strategy 

adapted to the new weight. 

6. Results and Discussion 

6.1. Experimental environment 

In this experiment, the computing resource prediction model of multi-physics coupling simulation generated in 

Section 3.4 is used to predict the required computing time and resource usage under different node numbers, and 

the optimal computing resource scheduling strategy is obtained by screening according to the prediction results. 

The experiment adopted Excel 2016 software and the Python3.7 environment to implement the solution in a 64-

bit Windows7 computer. The overall running time of the program was within 1 second. 
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6.2. Experimental process 

15 different models were randomly selected. The multi-physics coupling simulation computing resource 

prediction model provided the computing time and resource usage of these 15 models under different numbers of 

computing nodes and stored them in the form of Excel table data. Due to space limitations, the prediction results 

of one of the models are listed in Table 12. 

Table 12. The predictions of one model 

Number of mesh  

(× 104) 

Number of 

freedom 

(× 104) 

Number of 

Compute 

Nodes 

Calculation 

time  

(s) 

Physical memory 

usage 

(GB) 

Physical memory 

usage rate 

(%) 

3176 5974 5 13250 1189 77.4% 

3176 5974 7 11023 1142 74.3% 

3176 5974 9 8532 1101 71.7% 

3176 5974 11 8400 1006 65.5% 

3176 5974 13 7864 843 54.9% 

3176 5974 15 7067 801 52.1% 

3176 5974 17 7028 782 50.9% 

3176 5974 19 7123 763 49.7% 

3176 5974 21 7236 725 47.2% 

3176 5974 23 7889 710 46.2% 

3176 5974 25 7927 689 44.9% 

 

It can be seen from the data in the table that the computing time and the physical memory usage rate are 

contradictory. When the number of nodes involved in the computing task increases, the computing time will 

decrease, but the physical memory usage rate is constantly declining. Moreover, when there are too many nodes 

for parallel computing, the communication overhead between nodes will instead increase the computing time. 

Suppose that when submitting the assignment, more attention is chosen to be paid to the reduction of calculation 

time, and an initial judgment matrix is formed based on the ratio scale:  

B0 = [
1 3/2
2/3 1

]     (18) 

The initial weight W0 = [0.6,0.4] is calculated by the feature vector method. 

Substitute the initial weight W0 into the weighted decision matrix R of ELECTRE, calculate the harmony matrix 

C, disharmony matrix D and comprehensive dominance matrix E, thereby obtaining the net dominance index ξ
k
. 

All the schemes were ranked according to the net dominance index ξ
k
, and the final ranking results are shown 

in Table 13 as follows: 

Table 13. The decision result of multi-physics coupling simulation computing resource scheduling focusing on 

computing time 

Compute node usage 
Calculation time  

(s) 

Physical memory usage rate 

(%) 
𝝃𝒌 Rank 

5 13250 77.4% -6.54 9 

7 11023 74.3% -3.72 8 

9 8532 71.7% 4.13 3 

11 8400 65.5% 1.44 6 

13 7864 54.9% 1.79 5 

15 7067 52.1% 11.02 1 

17 7028 50.9% 10.17 2 

19 7123 49.7% 3.95 4 

21 7236 47.2% -1.01 7 

23 7889 46.2% -8.53 10 

25 7927 44.9% -12.70 11 
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It can be seen from the results in the table that ξ
k
 is the highest when the node usage is 15, indicating that 

choosing the number of nodes at 15 in this task is the optimal strategy. 

Then submit another assignment. The prediction results of this assignment are shown in Table 14 as follows: 

Table 14. The predictions of one model 

Number of 

mesh  

(× 104) 

Number of 

freedom 

(× 104) 

Number of 

Compute Nodes 

Calculation 

time  

(s) 

Physical memory 

usage 

(GB) 

Physical memory 

usage rate 

(%) 

2214 5063 5 11050 1032 67.2% 

2214 5063 6 10024 982 63.9% 

2214 5063 7 9038 904 58.9% 

2214 5063 8 8263 763 49.7% 

2214 5063 9 7104 641 41.7% 

2214 5063 10 6552 502 32.7% 

 

Since 15 computing nodes have been used in this computing task and only 10 nodes are available on the entire 

scheduling platform, the platform system determines that a "memory resource shortage" event has occurred. It is 

necessary to enhance the importance of memory usage rate and update the judgment matrix as follows: 

B1 = [
1 1/2
2 1

]       (19) 

Resolving the feature vector yields W1 = [0.33,0.67]. 

Set the smoothing coefficient α = 0.6, then the updated weight is: Wt = 0.6 ⋅ [0.33,0.67] + 0.4 ⋅ [0.6,0.4] =

[0.44,0.56]. 

Substitute the updated weight Wt into the weighted decision matrix R of ELECTRE, update the harmony matrix 

C, disharmony matrix D and comprehensive dominance matrix E, thereby obtaining the net dominance index ξ
k

′
. 

All the schemes were ranked according to ξ
k

′
, and the final ranking results are shown in Table 15 as follows: 

Table 15. The decision result of multi-physics coupling simulation computing resource scheduling focusing on 

the utilization rate of computing resources 

Compute node usage   
Calculation time  

(s) 

Physical memory usage rate 

(%) 
𝝃𝐤
′  Rank 

5 11050 67.2% 0.95 3 

6 10024 63.9% 1.40 1 

7 9038 58.9% 1.17 2 

8 8263 49.7% -1.10 5 

9 7104 41.7% -0.43 4 

10 6552 32.7% -1.99 6 

It can be seen from the results in the table that ξ
k

′
 is the highest when the node usage is 6, indicating that the 

optimal strategy can be obtained when the number of nodes selected in this scheme is 6. 

6.3. Analysis of Practical application effects 

In order to verify the effectiveness of the computing resource scheduling strategy, the multi-physics coupling 

computing tasks with mesh numbers greater than 15 million on the high-performance platform within three 

months before and after the application of the resource scheduling strategy were counted and the computing time 

and resource usage of each task were recorded. The statistical data are shown in Table 16. 
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Table 16. The practical application situation of computing resource scheduling decision-making 

Date 

Number of 

computing 

tasks 

Average number 

of mesh  

(× 104) 

Average 

number of 

freedom 

(× 104) 

Average 

calculation 

time  

(s) 

Average physical 

memory usage 

rate 

(%) 

2024.7-2024.9 172 2227 5189 6475 33.8% 

2024.10-2024.12 113 2491 6538 5341 54.2% 

 

The table shows the number of computing tasks in the first three months (2024.7.1-2024.9.30) and the last three 

months (2024.10.1-2024.12.31) of using the computing resource scheduling strategy, as well as the computing 

time and resource utilization in each time period. 200 computing tasks were randomly selected from each of the 

two time periods, and their computing times and physical memory usage rates are plotted as shown in Figures 12 

and 13. 

 
Figure 12. Comparison of the computation time 

 
Figure 13. Comparison of physical memory usage 

 

It can be seen from the data in the figure that after using the computing resource scheduling strategy, the average 

computing time of the high-performance computing platform has decreased by 17.5%, and the physical memory 

usage rate has increased by 20.4%, reflecting that the resources of large-memory computing nodes have been 

utilized more fully. 
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7. Conclusions 

This paper aims to reduce computing waiting and improve the utilization rate of scarce large memory computing 

resources in high-performance clusters. For the first time, it combines the AHP dynamic weight correction 

mechanism with the ELECTRE method, solving the problem of rigid weights in time-varying task scenarios of 

traditional methods. For small sample data, a cascading model of "random forest prediction + improved 

ELECTRE scheduling" was proposed, which reduces the computational overhead while ensuring accuracy and 

realizes the optimal allocation strategy of comprehensive performance of computing time and physical memory 

usage rate. Through practical verification, the method proposed in this paper is applicable to the multi-physics 

coupling simulation software based on unified modeling, achieving the reduction of the average computing time 

on the high-performance computing platform and the improvement of the utilization rate of large-memory 

computing nodes. It can provide decision-making references for personnel related to multi-physics coupling 

simulation when performing computing tasks. 
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