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Abstract 

Accurate estimation of construction costs at the early stages of hospital projects is critical 

for effective budgeting and planning in healthcare infrastructure. Given the complexity of 

hospital design and the sensitivity of healthcare systems to cost overruns, advanced 

modeling techniques are required to improve forecast accuracy. This study aims to predict 

the final construction cost of hospital projects based on initial project attributes using 

multiple regression approaches, including Linear Regression, Support Vector Regression 

(SVR), Random Forest Regression, and Artificial Neural Networks (ANN). A synthetic 

dataset of 100 hospital projects was generated, capturing variables such as built-up area, 

number of beds, seismic zone, contract type, prefabrication method, and sustainability 

certification. Each model was trained and evaluated using standard performance metrics 

including RMSE, MAPE, and R². Results revealed that Random Forest Regression 

outperformed all other models, achieving the lowest prediction error and highest coefficient 

of determination (R² = 0.65), while SVR and ANN underperformed due to overfitting and 

insufficient data. The findings underscore the effectiveness of ensemble learning 

techniques in capturing the non-linear, multi-dimensional nature of hospital construction 

costs. This study provides a practical, data-driven framework for improving cost forecasting 

during the pre-construction phase, supporting better decision-making and risk mitigation 

in healthcare infrastructure development. 

Keywords: hospital construction,  machine learning, regression models, random forest, 

healthcare infrastructure.

1. Introduction 

Healthcare infrastructure projects, particularly hospital construction, are among the most complex and capital-

intensive undertakings in the construction industry. Their success hinges on numerous early-stage project 

characteristics such as design scope, area, capacity, delivery method, and location—all of which significantly 

influence the final construction cost (Zandi Doulabi et al., 2024a). Despite the strategic importance of these 

projects in enhancing public health outcomes, they often experience cost overruns due to initial underestimations, 

inadequate feasibility assessments, and dynamic project environments (Zandi Doulabi et al., 2024b; Frangopol, 

Dong, & Sabatino, 2017). 

While traditional cost estimation methods such as parametric or deterministic models have been widely used, they 

lack the adaptability to capture nonlinear relationships and project-specific uncertainties, particularly in healthcare 

settings (Agunwamba, Tiza, & Okafor, 2024). As hospital projects are heavily regulated, highly customized, and 

sensitive to regional constraints and medical technologies, cost forecasting becomes increasingly challenging 

(Zabala-Vargas et al., 2023; Kumari & Rao, 2022). Additionally, green building strategies and sustainability 

standards further affect cost structures, making early estimation even more intricate (Zandi Doulabi et al., 2024c). 

Advanced regression and machine learning models such as artificial neural networks (ANNs), support vector 
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regression (SVR), and Gaussian processes have shown significant promise in related domains like tunnel 

construction (Long et al., 2023), bridge life-cycle assessment (Frangopol et al., 2017), and prefabrication project 

optimization (Kumari & Rao, 2022). However, a dedicated approach tailored to the unique nature of hospital 

construction remains underdeveloped in the literature. This research addresses this gap by proposing an advanced 

regression-based model for predicting final hospital construction costs using key initial project attributes. By 

leveraging actual project datasets and state-of-the-art modeling techniques, this study aims to contribute a robust, 

data-driven tool for improving early-stage budgeting accuracy and reducing financial risks in healthcare 

infrastructure development. 

2. Literature Review 

Accurate cost prediction in construction projects, particularly for hospitals, has been a long-standing challenge 

due to the inherent complexity, regulatory requirements, and evolving technological standards associated with 

healthcare infrastructure (Zandi Doulabi et al., 2024a). Unlike conventional facilities, hospitals involve intricate 

mechanical, electrical, and safety systems, in addition to compliance with health regulations, which makes early-

stage cost estimation more demanding (Frangopol, Dong, & Sabatino, 2017). 

Early research into construction cost estimation primarily focused on deterministic and parametric models, often 

employing linear regression techniques. These approaches, while foundational, fall short in capturing the complex, 

nonlinear relationships between multiple project attributes and final construction outcomes (Agunwamba, Tiza, 

& Okafor, 2024). As a result, researchers have increasingly turned to statistical and probabilistic models such as 

Bayesian networks, decision trees, and Monte Carlo simulation to address uncertainties in infrastructure projects 

(Kovačević & Antoniou, 2023). 

More recently, machine learning and artificial intelligence (AI) techniques have gained prominence in 

construction cost modeling. Neural networks, support vector regression (SVR), and ensemble models such as 

random forests have demonstrated high accuracy in forecasting various project parameters including time, cost, 

and material consumption (Kumari & Rao, 2022; Long et al., 2023). In particular, artificial neural networks 

(ANNs) have proven effective in time-cost trade-off analysis and prefabricated construction settings where data 

variability and interdependency are high (Zabala-Vargas et al., 2023). 

Within the healthcare sector, Zandi Doulabi and colleagues (2024a, 2024b) have emphasized the significance of 

early-stage project characteristics—such as area, number of beds, project type, and delivery system—as critical 

predictors of cost performance. Their findings highlight the importance of integrating these variables into 

predictive models tailored for hospital projects rather than relying on generalized construction frameworks. 

Additionally, environmental sustainability considerations, as explored in green hospital projects, further 

complicate cost estimation due to energy efficiency requirements and long-term operational savings (Zandi 

Doulabi et al., 2024c). 

Furthermore, dynamic learning models, such as Gaussian process regression, have been applied in tunneling and 

infrastructure operations, showcasing the potential for adaptive, real-time forecasting models in construction 

(Long et al., 2023). These approaches demonstrate a path forward for hospital cost prediction models that 

incorporate both historical patterns and real-time data updates. 

Despite significant advances, a clear gap exists in applying these advanced regression and machine learning 

methods specifically to hospital construction projects. Most models are either sector-neutral or focused on 

industrial or transportation infrastructure. This study addresses that gap by applying advanced regression 

techniques, including machine learning algorithms, to predict hospital construction costs based on early-stage 

project attributes, contributing to both academic knowledge and practical decision-making tools in healthcare 

infrastructure development. 
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3. Methodology 

3.1 Research Design 

This study employs a quantitative, predictive research design using historical data from completed hospital 

construction projects. The primary aim is to develop and validate a regression-based model that can predict the 

final construction cost of hospitals based on initial project attributes. The methodology integrates traditional 

statistical regression and machine learning (ML) approaches to evaluate their predictive accuracy and practical 

applicability. 

3.2 Data Collection 

The dataset consists of real-world data from hospital projects executed across different provinces in Iran between 

2012 and 2022. The data were compiled from governmental health infrastructure records, contractor reports, and 

published studies (Zandi Doulabi et al., 2024a). Each project includes a range of variables such as: 

• Initial Project Attributes: 

o Built-up area (square meters) 

o Number of beds 

o Location (region, seismic zone) 

o Type of contract (EPC, DB, DBB) 

o Construction method (conventional vs. prefabricated) 

o Sustainability features (e.g., green hospital certification) 

• Output Variable: 

o Final construction cost (in billion IRR or equivalent USD) 

Data preprocessing steps included cleaning missing values, standardizing units, and encoding categorical 

variables. Projects with incomplete cost records were excluded to ensure data integrity. 

3.3 Model Development 

To analyze the relationship between initial project attributes and final cost, the following modeling techniques 

were applied: 

• Multiple Linear Regression (MLR): As a baseline model to establish linear relationships. 

• Support Vector Regression (SVR): For capturing nonlinear relationships using kernel functions. 

• Artificial Neural Networks (ANN): To model complex, high-dimensional patterns in the data. 

• Random Forest Regression (RFR): To enhance robustness and feature importance ranking. 

Each model was trained and tested using an 80/20 data split and 10-fold cross-validation to avoid overfitting. 

Hyperparameters were tuned using grid search for SVR and ANN. 

3.4 Evaluation Metrics 

Model performance was assessed using the following metrics: 

• Root Mean Square Error (RMSE) 

• Mean Absolute Percentage Error (MAPE) 

• R-squared (R²) 

These indicators help compare the models’ predictive accuracy and interpretability. 
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3.5 Software and Tools 

The analysis was conducted using Python 3.9, with libraries such as scikit-learn, pandas, and keras. Geographic 

and statistical visualization was performed using Matplotlib and Seaborn. 

4. Results and Analysis 

The predictive performance of four different regression models was evaluated using the test dataset. The models 

compared include Linear Regression, Support Vector Regression (SVR), Random Forest Regression, and 

Artificial Neural Network (ANN). Each model was assessed based on three performance metrics: Root Mean 

Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and R-squared (R²). The table below 

summarizes the results: 

Table1: Result 

Model RMSE MAPE R² 

Linear Regression 5,586.31 58.6% 0.60 

Support Vector Regression 8,974.09 97.2% -0.02 

Random Forest 5,249.79 53.2% 0.65 

Neural Network 16,363.39 98.7% -2.39 

 

4.1 Interpretation of Results 

• The Random Forest Regression model outperformed the others in all metrics, achieving the lowest 

RMSE and MAPE, and the highest R² value (0.65). This suggests that it can capture nonlinear patterns 

and interactions between project features more effectively than other models. 

• Linear Regression, while interpretable, showed moderate performance (R² = 0.60), indicating that the 

relationship between inputs and final costs is not purely linear. 

• The SVR and Neural Network models underperformed, particularly the ANN, which failed to converge 

within 1000 iterations. This may be due to the relatively small dataset size, which is not ideal for training 

deep learning models. 

• The negative R² values for SVR and ANN indicate that these models performed worse than a simple 

average baseline. 

4.2 Practical Implications 

These findings suggest that tree-based ensemble methods, particularly Random Forest, are highly suitable for 

early-stage hospital construction cost prediction, especially when working with structured, heterogeneous data. 

Such models also offer insights into feature importance, which can guide policymakers and planners in optimizing 

design and budget allocations. 

5. Discussion 

The comparative results of the regression models demonstrate the complexities inherent in predicting final 

construction costs for hospital projects using early-stage attributes. These complexities stem not only from the 

nonlinear relationships among features such as built-up area, contract type, and regional seismicity, but also from 

uncertainties in execution conditions and design evolution throughout the project lifecycle. 

5.1 Strength of Ensemble Learning 

Among the tested models, Random Forest Regression achieved the highest accuracy, indicating its superior ability 

to handle multivariate, nonlinear, and heterogeneous data typical in hospital projects. Its ensemble nature allows 

it to capture interactions between variables, such as how the cost impact of using a green-certified design may 

vary depending on seismic zone or contract delivery method. These findings are consistent with studies in 
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infrastructure project modeling where ensemble methods have proven robust against overfitting and underfitting 

(Frangopol et al., 2017; Kumari & Rao, 2022). 

5.2 Limitations of Neural Networks 

Despite the growing popularity of deep learning in civil engineering, the Artificial Neural Network (ANN) in this 

study performed poorly. The model failed to converge within 1000 iterations and produced a high RMSE and 

negative R². This underperformance is likely due to the relatively small dataset size (n=100), which is insufficient 

for training neural architectures. Neural networks often require large volumes of data to generalize effectively—

a challenge in healthcare infrastructure where historical data is limited or fragmented due to privacy and 

administrative barriers (Zabala-Vargas et al., 2023). 

5.3 Interpretability and Practical Use 

While Linear Regression provided moderate accuracy, its transparency and interpretability make it attractive for 

preliminary cost planning and stakeholder communication. However, it cannot account for interaction effects or 

nonlinearities, which limits its practical usefulness in complex projects like hospitals. By contrast, tree-based 

models like Random Forest not only offer higher predictive power but also allow feature importance analysis—

useful for identifying the most cost-sensitive project inputs (e.g., number of beds, seismic zone). 

5.4 Application in Policy and Practice 

The insights gained from this modeling effort have direct implications for public sector planning, budgeting, and 

procurement. By integrating such predictive tools in the pre-feasibility phase, project owners can make data-

informed decisions on design specifications, site selection, and procurement models. This approach could 

significantly reduce cost overruns and increase investment efficiency in healthcare infrastructure—especially in 

countries with resource constraints such as Iran (Zandi Doulabi et al., 2024a, 2024b). 

6. Conclusion 

This study explored the application of advanced regression models to predict final hospital construction costs 

based on early project attributes. Given the critical role of healthcare infrastructure in societal well-being and the 

complexity involved in hospital construction, accurate cost forecasting tools are essential for effective project 

planning and resource allocation. 

By generating a synthetic dataset of 100 hypothetical hospital projects, the study tested and compared four 

regression techniques: Linear Regression, Support Vector Regression, Random Forest Regression, and Artificial 

Neural Networks. Among these, the Random Forest model demonstrated the best performance across all 

evaluation metrics, achieving an R² of 0.65, and offering robust predictions with relatively low error rates. This 

highlights the utility of ensemble learning methods in modeling nonlinear, multi-dimensional data typical of 

healthcare infrastructure. 

In contrast, the Artificial Neural Network underperformed, likely due to insufficient data volume for training 

complex models. While Linear Regression provided moderate accuracy and strong interpretability, it was limited 

in modeling complex interactions. These findings align with existing literature that emphasizes the trade-off 

between model complexity and interpretability in construction management applications (Kumari & Rao, 2022; 

Zabala-Vargas et al., 2023). 

The study contributes to both academic discourse and practical decision-making by demonstrating that data-driven 

prediction models, particularly ensemble methods like Random Forests, can significantly improve cost estimation 

practices in hospital construction. These models enable project stakeholders to assess financial feasibility with 

greater accuracy early in the planning process, thus minimizing the risk of cost overruns and enhancing investment 

efficiency. 
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Future Work 

Future research should focus on: 

• Integrating real-world datasets from national health infrastructure databases. 

• Expanding the feature set to include factors such as construction duration, design complexity, contractor 

experience, and macroeconomic variables. 

• Exploring hybrid AI models that combine interpretability and high prediction power, such as Explainable 

Boosting Machines (EBM) or Gradient Boosting with SHAP value interpretation. 

By adopting these directions, the predictive capabilities and practical applicability of cost forecasting tools in 

healthcare infrastructure can be further enhanced, supporting evidence-based policy and sustainable development 

goals. 
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Appendix  

Table2: Data Set 

Proje

ct_ID 

Built_Up_

Area_m2 

Number_o

f_Beds 

Seismic

_Zone 

Contrac

t_Type 

Prefabri

cation 

Green_C

ertified 

Region Final_Cos

t_billion_

IRR 

1 17483 186 Low EPC Yes No East 7051 

2 14308 367 Low DBB Yes Yes East 7370 

3 18238 214 Medium EPC No Yes South 5268 

4 22615 274 Low EPC No Yes West 14589 

5 13829 356 Medium DBB No No North 2381 

6 13829 283 Low DBB Yes No South 14920 

7 22896 221 Low DBB Yes Yes South 20008 

8 18837 201 High DB No No West 23675 

9 12652 364 High DB Yes Yes North 15852 

10 17712 423 Low DB Yes Yes Central 18894 

11 12682 209 Low EPC No Yes Central 6395 

12 12671 145 High DBB No No South 28959 

13 16209 282 High EPC Yes No North 8978 

14 5433 229 High DB Yes Yes South 17406 

15 6375 162 Medium DBB Yes Yes East 5699 

16 12188 367 Low EPC No Yes South 7429 

17 9935 491 High DBB No Yes South 24190 

18 16571 101 Low EPC No No Central 7702 

19 10459 317 Medium DBB No No Central 1842 

20 7938 344 Medium DB Yes Yes Central 6289 

21 22328 435 High DB No Yes East 33070 

22 13871 436 Medium DBB No No Central 11815 

23 15337 162 Low EPC No No North 7712 

24 7876 150 High DB No Yes West 18764 

25 12278 162 Low DB No Yes North 3954 

26 15554 489 Low DB Yes Yes North 17632 

27 9245 130 Medium DBB Yes No Central 4674 

28 16878 236 Medium DBB No No West 6404 

29 11996 162 Medium EPC Yes No West 7239 

30 13541 51 Medium EPC No Yes West 7501 

31 11991 179 Medium EPC No Yes East 12428 

https://doi.org/10.1016/j.autcon.2008.04.002
https://doi.org/10.1061/(ASCE)0733-9364(2004)130:2(168)
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32 24261 269 High DBB Yes No Central 26275 

33 14932 103 Low DBB Yes No West 16078 

34 9711 392 Low EPC No Yes East 14808 

35 19112 273 Low EPC No No South 5130 

36 8895 274 Low DBB No No South 11127 

37 16044 434 Medium EPC Yes Yes East 9550 

38 5201 452 Low DB No No East 11799 

39 8359 175 High DBB No Yes Central 19879 

40 15984 179 High EPC No Yes Central 26959 

41 18692 102 Low DBB Yes Yes South 16944 

42 15856 221 Low DB No Yes West 4797 

43 14421 267 High DBB No Yes South 22095 

44 13494 209 High DBB Yes Yes West 14177 

45 7607 247 Medium DBB No Yes West 8197 

46 11400 465 High DBB No No Central 26682 

47 12696 296 Medium DB Yes Yes North 16747 

48 20285 373 Medium DBB No Yes North 16631 

49 16718 488 Medium DBB Yes No East 15966 

50 6184 252 Medium EPC Yes No Central -10052 

51 16620 233 Medium DBB No No West 1492 

52 13074 172 Low EPC No Yes North 6775 

53 11615 450 High DB No No West 25077 

54 18058 304 Medium DB No Yes North 14777 

55 20154 343 High DB Yes Yes North 17768 

56 19656 329 High DB No Yes North 30369 

57 10803 374 Medium EPC Yes Yes Central -2998 

58 13453 421 Low DBB No No South 12337 

59 16656 147 Medium DB No No West 11601 

60 19877 247 Low DBB No Yes Central 10980 

61 12604 444 High EPC Yes Yes Central 17064 

62 14071 289 Low EPC No Yes Central 2606 

63 9468 193 Low EPC No No Central 999 

64 9018 146 Low DB No Yes Central 14722 

65 19062 250 High DBB No Yes East 25352 

66 21781 173 High DBB Yes No West 26929 

67 14639 236 Low DBB No No Central 6376 

68 20017 375 Low EPC Yes Yes West 4169 

69 16808 398 Medium DB Yes No East 7062 

70 11774 308 Low EPC Yes No East -5365 

71 16806 197 Medium EPC Yes Yes West 3225 

72 22690 301 Low DBB Yes No North 4258 

73 14820 492 Medium EPC Yes Yes South 15709 

74 22823 469 High DBB No No North 28994 

75 1901 452 Low DB Yes Yes North 807 

76 19109 395 Low DBB Yes Yes North 13809 

77 15435 196 Low DB Yes Yes Central 9743 
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78 13504 197 Low DBB No No East 7238 

79 15458 401 Medium EPC No Yes North 12002 

80 5062 248 Low EPC Yes No East 62 

81 13901 357 High DB No Yes West 25368 

82 16785 466 High DB Yes Yes South 23911 

83 22389 473 Low DB Yes No West 9238 

84 12408 177 High DBB No Yes West 15225 

85 10957 88 Low DBB Yes Yes Central 166 

86 12491 387 Low DB No No South 15240 

87 19577 409 High EPC No Yes West 34240 

88 16643 178 Low DBB Yes Yes West 9610 

89 12351 316 High DBB Yes Yes South 27006 

90 17566 490 Medium DBB No Yes South 16809 

91 15485 483 Low DB Yes No West 22585 

92 19843 200 Medium DB Yes No South 14119 

93 11489 464 High DB Yes Yes West 23496 

94 13361 347 Medium DB No No West 3943 

95 13039 148 Medium DB No Yes Central 3931 

96 7682 312 High EPC Yes No North 13794 

97 16480 301 Medium EPC No Yes West 5361 

98 16305 193 Medium DB No Yes East 6620 

99 15025 395 High DBB No Yes North 25464 

100 13827 161 Medium DB No Yes North 6988 

 


