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Abstract 

Solving problems in different fields is often aimed at optimizing results, which sometimes 

means minimization and sometimes maximization of answers, and sometimes a 

combination of both, that is, minimization of some factors such as cost and maximization 

of others such as quality. The art of obtaining the best result from the model is built based 

on the conditions and limitations of the problem. Since most of the design optimization 

problems in construction projects are non-linear and solving them with traditional methods 

is very difficult and time-consuming, we must necessarily approach the optimal answers 

through methods such as using existing algorithms. In recent years, many optimization 

algorithms have been able to pioneer in solving many design problems in various fields of 

civil engineering and, of course, other scientific branches, and especially in theoretical 

fields, they have brought many problems closer to the optimal answer. In this article, the 

use of optimization algorithms and especially meta-heuristic algorithms in solving various 

problems in various fields of civil engineering, including engineering and construction 

management, soil and foundation mechanics, structures, water engineering, hydrology 

and hydraulics, road and transportation engineering, We have discussed transportation 

and traffic. In some cases, we have briefly described the path to optimize a specific 

problem and have briefly expressed its results. 

Keywords: Optimization algorithms, meta-heuristic algorithms, optimization, civil 

engineering problems.

1. Introduction 

One of the most fundamental challenges facing civil engineers in design and implementation is solving complex 

problems with multiple answers and determining the answer among the answers. You will see a series of answers 

before the design engineers consider the field disciplines and apply the viewpoints of the executive engineers to 

optimize, for example, the depth, diameter, geometric shape, and other components. Sees from different aspects 

for the desired structural design. This will require a lot of time and money. Optimization algorithms have been 

able to solve such problems to some extent. Optimization algorithms try to find an acceptable solution according 

to the constraints and needs of an optimization problem. Optimization algorithms, including heuristic or meta-

heuristic algorithms, or sometimes a combination, can provide adequate solutions to the above issues. 

Optimization algorithms are powerful tools for solving many different problems. These algorithms use a 

systematic and iterative process to search for the optimal space. Also, for a specific problem, special mathematical 

techniques can be utilized to ensure that we reach the optimal solution. Because optimization algorithms are 
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prevalent and are used in many issues, they have challenges such as computational complexity, high cost, and the 

sensitivity of managing constraints. In scientific texts, four steps are usually proposed to solve the problem with 

optimization algorithms: 

 A) Formulating the problem: We must first define its general structure to start solving it. This way, all the essential 

parameters are specified in order, the objectives of the problem are determined, and the input and output 

parameters are specified. The process's continuation depends on this stage. Therefore, precise and detailed 

formulation is very effective in solving optimization problems. 

 B) Modeling the problem: After formulating the problem, it is time to create a mathematical model. Many 

problems exist, for some of which many formulas have been made. Therefore, we can use predefined models or 

modify similar models with minor changes to our desired model. 

C) Optimization of the problem: In this step, we try to find an optimal or almost optimal solution by applying 

algorithms to the built model. It is necessary to say that the solution found at this stage is made for the model, and 

using it in the real world on real problems may lead to finding a different solution. 

 D) Establishing the problem: In this step, the obtained answer is checked, and the final decision is made regarding 

the correctness of the created model and the selection of the algorithm. If the obtained answer is acceptable, the 

optimization work ends here. Otherwise, we must return to the previous steps and repeat the processes. 

Choosing an appropriate optimization algorithm can be challenging because different algorithms may find other 

answers, and their parameter selection requires particular expertise. Therefore, choosing which of the presented 

algorithms to solve a specific problem has almost no definite answer. Among the things discussed in this article 

is the use of optimization algorithms in various fields of civil engineering, including structures, in optimizing the 

dimensions and types of foundations, beam and column sections, retaining walls, trusses, and other structural 

components. The subject of soil mechanics and geotechnics, investigation of the problem of slope stability, mutual 

effects of soil layers, influential elements in the design of deep and semi-deep foundations, etc. Pumping and other 

related issues in this area, in the topic of construction management and project control, which is one of the most 

challenging areas in civil engineering, especially in terms of cost and time optimization, as well as the design of 

the most optimal workshop equipment site, Issues related to road and rail transportation include Optimizing urban 

traffic flow, controlling traffic lights, rationally distributing rail transportation, determining the optimal points for 

constructing intersections, and other issues related to civil engineers. 

2- Application of optimization in civil engineering 

2-1- Engineering and construction management 

1-1-2- Project control 

Time, cost, and quality are the main influential factors in managing and controlling construction projects. All the 

efforts of the engineers in this field are to manage and coordinate these three parameters, especially the two 

parameters of time and cost. Appropriate management of funding and allocation of budget and required resources, 

including workforce, materials, equipment, plans, implementation methods, and other necessary cost items in 

projects during the duration of the project, permitted and unauthorized delays of the project, extension, and other 

related issues Project time is the determining factor in successful project management. The quality factor, which 

depends on time and cost, should not be neglected. Studying the history of many projects shows that excessive 

and abnormal attention to each of these three vertices has caused deficiencies in the other two factors. In this 

regard, various researchers have examined the effects of these factors, especially time and cost. Since finding the 

optimal relationship between these two primary factors could not be obtained from the usual mathematical 

relationships, they have obtained acceptable results using optimization algorithms. Achieve Using a model based 

on the Ant Colony Algorithm (ACO)1, Zhang and Thomas minimized the duration and cost of the project 

simultaneously [1]. Zhuang and Kuang used ACO to solve time and cost trade-off problems [2]. Geem and his 

colleagues used HSO to minimize project cost and time [3]. Zheng et al. used a GA-based multi-objective 

 
1 Ant Colony Algorithm (ACO) 
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approach to optimize total time and cost simultaneously [4]. Yang used PSO to solve bi-criteria time and cost 

analysis [5]. Taheri Amiri and his colleagues have optimized the use of resources by using the weed optimization 

algorithm (IWO)2 and with intelligent changes in the time of activities, and they claim that by overlapping some 

activities, they reduce the time and cost of the project and improve the quality of the project. have given [6]. In 

order to balance time and cost, Hamtian and his colleagues solved a series of sample problems accurately in 

different dimensions using GAMS3 software. They compared the results with those obtained from the proposed 

genetic algorithm (GA)4. From the analysis of the obtained results, it appears that the output of the two methods 

is the same in small dimensions, confirming the proposed algorithm's correctness. Also, the exact solution of some 

example problems in medium dimensions and all problems of considerable dimensions has not been possible due 

to the increased complexity. At the same time, the proposed meta-heuristic algorithm has solved these problems, 

showing the proposed algorithm's power in solving such problems. In addition, the problem of different budget 

levels has been solved, and the same results have been obtained from two methods for different budget levels. [7] 

2-1-2- Project Site design 

One of the most essential concerns of implementing construction projects is the optimal location of the facilities 

and buildings of the project workshop, which is in engineering and construction management issues. Reasonable 

study efforts have been made in the direction of proper placement and optimization of the construction site, and 

we will briefly review some of them. Prayugo et al. presented a hybrid algorithm based on symbiotic search (SOS) 

5  for solving discrete construction site layout planning problems[8].  Qadiri and his colleagues, during a study in 

order to increase the safety level of the site, used two firefly meta-heuristic algorithms (FA) and ant colony 

optimization (ACO) for the Construction Site Layout Problems (CSLP) and compared these two algorithms, the 

performance (FA) was better. (ACO) has diagnosed [9]. Kaveh and colleagues were able to define an optimal plan 

for construction site placement (CSLP)6 by introducing the algorithm (WOA-CBO) from the combination of the 

Wall Optimization Algorithm (WOA)7 and the Collision Optimization Algorithm (CBO)8 [10]. Table 1. shows 

Temporary and fixed facilities and the associated data and Table 2. Shows the cost of travel between facilities per 

unit. 

Table 1. Temporary and fixed facilities and the associated data.  

Index Temporary and fixed facilities Length (m) Width (m) X  coor. Y  coor. 
F1 Parking lot 20 20 - - 
F2 Office 1 20 5 - - 
F3 Office 2 20 5 - - 
F4 Office 3 20 5 - - 
F5 Office 4 20 55 - - 
F6 Workshop 5 4 - - 
F7 Storage 1 6 5 - - 
F8 Storage 2 4 5 - - 
F9 Electric generator 2 2 - - 
F10 Toilets 5 6 - - 
F11 Fire station 3 3 - - 
F12 Inflammable materials storage 3 3 - - 
C1 Building 120 95 75 67.5 
K1 Tower crane 15 15 75 10 
G1 Entrance gate - - 155 10 

 
2 invasive weed optimization algorithm (IWO) 

3 General algebraic modeling system (GAMS) 
4 genetic algorithm (GA) 
5 Symbiotic Organisms Search (SOS) 

6 Construction Site Layout Planning (CSLP) 

7 Wall Optimization Algorithm (WOA) 
8 Collision Optimization Algorithm (CBO) 
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Table 2. Travel cost per unit between facilities  

Cij facility j 
facility 

i 
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 C1 K1 G1 

F1 0 - - - - - - - - - - - - - - 
F2 4 0 - - - - - - - - - - - - - 
F3 4 7.5 0 - - - - - - - - - - - - 
F4 4 7.5 7.5 0 - - - - - - - - - - - 
F5 4 5.5 5.5 2.5 0 - - - - - - - - - - 
F6 1.5 1 1 1 1 0 - - - - - - - - - 
F7 1.5 1 1 1 1 9.5 0 - - - - - - - - 
F8 1.5 1 1 1 1 9.5 6.5  - - - - - - - 
F9 1.5 2 1 3 3 3 3 3 0 - - - - - - 
F10 1.5 7.5 7.5 7.5 7.5 6.5 6.5 6.5 1 0 - - - - - 
F11 1.5 1 1 1 1 1 1 1 1 1 0 - - - - 
F12 1.5 1 1 1 1 3.5 1 1 3.5 1 1 0 - - - 
C1 1.5 3.5 3.5 3.5 3.5 6.5 4.5 4.5 3.5 3 1 4.5 0 - - 
K1 0 7.5 5.5 7.5 7.5 9.5 9.5 9.5 0 0 1 4.5 5 0 - 
G1 1.5 0 0 0 0 3 7* 7* 0 0 0 1 0 0 0 

 

 In this study, an attempt has been made to strengthen the original WOA formula to improve the solution's 

accuracy with collision body optimization (CBO) concepts. The new method, the WOA-CBO algorithm, is 

applied with reliability and convergence speed to solve the construction site layout planning problem. The 

appropriate performance of the new optimization algorithm has been demonstrated in three case examples. The 

first case is a problem of arranging discrete and equal facilities, each of which can be assigned to any place. The 

second case is the unequal version of the discrete area, with the problem of arranging facilities with more 

restrictions. Moreover, the last one is a continuous model of construction site plans. In the end, these cases are 

studied by WOA, CBO, and WOA-CBO, and the results are compared. Based on the results, the third example of 

this study, which is the most complicated case in choosing the optimal location of the construction site, can be a 

better criterion for evaluation. In all cases, and especially in the third example, the capabilities and performance 

of the algorithms have been shown by comparing the statistical results of WOA, CBO, and WOA-CBO after 30 

independent periods through 20,000 repetitions with a statistical population size of 200 units, as presented in Table 

3. These results show that WOA-CBO has found the lowest cost, and the proposed approach for optimal 

construction site location is feasible. Moreover, at the end of the study, it was concluded that these algorithms are 

competitive with other meta-heuristic algorithms and can be used to solve construction site layout problems. Also, 

Figure 1 shows the lowest cost design obtained, and Figure 2 shows the convergence curves of WOA, CBO, and 

WOA-CBO for the mentioned example. 

Table 3. Results of 30 independent runs for Case 3 

Algorithm Best Average Worst 
Difference 

best-average 
solution% 

Difference 
best-worst 
solution% 

Std. 
dev 

WOA 9049.2 12424 16830 37.29 85.98 2532 
CBO 10605 12123 13146 14.31 23.96 351 

WOA-CBO 8477.4 10066 12927 18.73 52.48 1380 
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FFigure 1. The lowest cost layout obtained. 

 

Figure 2. Convergence curves of WOA, CBO, and WOA-CBO for Case 3. 

 

2-2- Soil and foundation mechanics 

In soil and foundation mechanics, investigation of slope stability, foundation dimensions, and pile depth are the 

main activities. For this problem, Gandomi and Kashani have challenged the optimal slope by applying the Particle 

Swarm Optimization (PSO)9 algorithm [11]. Gauba, using the ant colony algorithm (ACO), has also investigated 

the optimal slope in the soil [12]. Moreover, Cheng, in one study using the simulated refrigeration algorithm    

[13]and once with colleagues, optimized the slope with the Harmony Search (HS) algorithm [14]. In a study on 

the optimization of pile length and piled foundations, Leung et al. showed that the overall behavior of the 

foundation can be enhanced by varying the pile length throughout the pile assembly or extended piles [15]. Basha 

and Bobo investigated a reliability method and a deterministic design method to determine the depth of 

penetration, anchor tension, and section modulus for the optimal design of the pile wall [16]. To optimize the 

slope coefficient, Lohar et al. measured the safety factor and other parameters related to stability analysis by 

optimizing the geotechnical parameters used in slope stability analysis with some meta-heuristic algorithms [17]. 

In another study, Boomzran reviewed and investigated recent trends in using optimization techniques in 

geotechnics [18]. Bagheri Sareshki brilliantly conducted research using the MVO10 multi-initiative algorithm and 

combining it with the US Federal Highway Administration (FHWA)11 design method to optimize the construction 

cost of an earthen wall reinforced with metal reinforcement [19]. Moreover, in the field of investigating the 

optimal structure based on the number of ground motions, Shaygan and Kardost have been able to compare the 

performance of several optimization algorithms to find the optimal solution for structure optimization problems 

and the scaling of ground motions, the mouth-feeding fish (MBF)12 algorithm from The collision of objects 

algorithm (CBO) is more efficient and provide an ideal plan to reduce construction costs [20]. 

2-3-structure 

 
9 Particle Swarm Optimization (PSO) 

10 Multi-verse optimization (MVO) 

11 Federal Highway Administration (FHWA) 
12 mouth-feeding fish (MBF) 
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2-3-1- Concrete structures 

2-3-1-1- The skeleton of concrete buildings 

Concrete skeletons have gained more fans today than other types of skeletons for building structures. Therefore, 

the construction of buildings by optimizing the sections and reinforcements of reinforced concrete (RC)13 

members can significantly help to reduce the construction costs and make the construction more economical; for 

this reason, researchers use different approaches, especially the approaches based on optimization algorithms have 

been used. Genetic algorithm (GA)14 has been widely used in the optimization of RC members such as beams [21] 

and columns [22]. The harmony search algorithm (HS)15 is also used in optimal design approaches for continuous 

beams [23], T-shaped reinforced concrete beams [24], and RC columns [25]. Shaygan et al. have minimized the 

cost of implementing waffle roofs by using the MBF-CBO optimization algorithm, which combines the MBF and 

CBO algorithmss [26].    Kaveh and Abadi used HS to design the RC retaining wall [27]. Yang used analytical 

solutions for passive seismic stresses under earthquake loads with a nonlinear failure criterion [28]. Also, the role 

of optimization algorithms for the optimal design of reinforced concrete frames to reduce the cost of construction 

[29-32] and minimize CO2 emissions [22, 33]  is noteworthy. In a study, Rozbahan and Jahani propose a new 

method to optimize the parameters of Tuned Mass Damper (TMD) using mouth-feeding fish (MBF) algorithm 

based on white noise stimuli. In this research, the effectiveness of optimized TMDs using the proposed method 

and other methods were compared in reducing the maximum displacement of a ten-story linear structure[34] 

2-3-1-2- Reinforced concrete retaining wall 

In the design of reinforced walls, optimization algorithms can play a good role in reducing construction costs by 

optimizing the dimensions of the wall and the amount of aerator used in it. Qadawi and Salavati used the Bacterial 

Fodder Optimization Algorithm (BFOA)16 for economic optimization and sensitivity analysis of RC retaining 

walls [35]. Kaveh et al. used multi-objective GA to optimize the geometry and grading of concrete [36]. Timur 

and Bektash used learning-based optimization to optimize the dimensions and reinforcement design of RC 

retaining walls [37]. Also, BB-BC [38] and Charge System Search (CSS)17 [39]algorithms have been used to 

optimize RC retaining walls. Yossel et al. have mentioned RC optimization using artificial neural network models 

[40]. Boshdari and friends used neural networks along with optimization algorithms, including PSO, Archimedes 

optimization algorithm (AOA)18, and sparrow search algorithm (SSA)19, to determine the shear strength of deep 

reinforced concrete [41]. The study of Shaygan et al. has a powerful and efficient approach to optimizing the 

construction cost of a reinforced concrete ribbed slab, and it is suggested that this algorithm be used to optimize 

construction costs. In a targeted study, Shaygan calculated the optimal slab thickness, amount, and spacing of 

reinforcements in a solid concrete slab by combining the optimization algorithm of mouth-feeding fishes and the 

optimization algorithm of object collision. In comparison, the results of the optimization of the method above with 

the results of optimization Through Dicker's optimization algorithms, including the mouth-feeding fish 

optimization algorithm, particle crowding optimization algorithm, and neural dynamics algorithm, achieved the 

optimal mouth-feeding fish-object collision algorithm with a powerful and efficient approach [42] 

 

2-3-1-3- Reinforced concrete bridges 

Bridgesare one of the most essential concrete structures, and due to the large size and volume of concrete materials 

and rebar used in them, the optimization of bridges is essential to control their quality and construction cost. An 

ACO-based method developed by Martínez et al. was compared with GA and a threshold acceptance algorithm 

for economically optimizing reinforced concrete bridge piers with hollow rectangular sections [43]. This method 

was also used to design and analyze long reinforced concrete foundations with a height of 90 meters with hollow 

 
13 Reinforced Concrete (RC) 

14 Genetic Algorithm (GA) 

15 Harmony Search Algorithm (HS) 

16 Bacterial Foraging Optimization Algorithm (BFOA) 

17 Charge System Search (CSS) 

18 Archimedes optimization algorithm (AOA) 
19 sparrow search algorithm (SSA) 
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rectangular sections [44]. Also, Martins et al. studied a method using SA and GA to design reinforced concrete 

bridge foundations [45]. This study aimed to minimize the cost, the number of reinforcing bars, and the emission 

of CO2. Dong et al. developed a probabilistic method for pre-earthquake optimization of bridge networks to 

reduce seismic damage to society, the economy, and the environment [46]. Saad et al. used the Reliability-Based 

Design Optimization (RBDO)20 method to improve the life cycle cost formula for better design of concrete bridge 

structures [47]. Kaveh and friends have conducted a parametric study to investigate the effect of the number of 

holes on the optimal cost of non-prismatic reinforced concrete box girder bridges, the variables of which were 

cross-sectional geometry, cone length, concrete strength, and reinforcement of box beams and slabs, which were 

developed with the advanced vibrating particle system algorithm. (ECBO)21 were optimized [48]. 

2-3-2- Steel structures 

2-3-2-1- Simple and spatial steel frames 

Another primary application of optimization algorithms in civil engineering is the optimal design of various steel 

structures. Pezeshk et al. used a genetic algorithm (GA) to design two-dimensional, geometric, and nonlinear 

structures for steel frames [49]. Liu and Yi investigated the life cycle cost for multi-objective design optimization 

of flexural steel frame structures [50]. Adeli et al. used the two-phase genetic algorithm to measure and optimize 

the simultaneous topology of steel space frame roof structures [51]. Talat Ahri et al. developed a method using 

the Eagle strategy (ES) with differential evolution, which was applied to the weight minimization problems of 

steel frames with discrete variables [52]. In research by Shaygan et al., to scale the acceleration maps from the 

wavelet transfer, a hybrid meta-heuristic optimization algorithm called (CBO-MBF) was used [53]. With this goal, 

the wavelet transfer and the algorithm improve the map acceleration, making the response spectrum close to the 

design spectrum. A gradient-based optimization method for adjusting the hardening-softening behavior of 

nonlinear mechanical systems was improved by Du and Jansen, and this method was applied to plate frames [54]. 

Qolizadeh and his colleagues presented a new meta-heuristic Newton algorithm to optimize the design based on 

the discrete function of steel frames [55]. Greco et al. reviewed ACO and its applications for the constraining 

analysis of frame-shaped structures; the proposed algorithm was applied to evaluate flat frames' plastic load and 

failure modes [56]. 

2-3-2-2- Truss steel structures 

Truss systems form the framework of structures such as bridges, towers, roof support structures, etc. Rajeev and 

Krishnamurthy used discrete variables and a genetic algorithm (GA) with a penalty parameter depending on the 

constraint violation [57]. Togan and Daluglu went to the modified genetic algorithm to optimize truss structures 

and used an initial population strategy and grouping of self-consistent members [58]. Perez and Behdinan used 

PSO to optimize truss structures [59]. Omid-Nesab and Guderzi-Mehr presented a new hybrid algorithm of PSO 

and GA to obtain the optimal design of truss structures with discrete design variables [60]. ACO is another meta-

heuristic algorithm used to optimize truss structures [61].  In research by Shaygan et al., to scale the acceleration 

maps from the wavelet transfer, a hybrid meta-heuristic optimization algorithm called (Colliding Bodies 

Optimization - Mouth Brooding Fish (CBO-MBF)) was used. With this goal, the wavelet transfer and the 

algorithm improve the map acceleration, making the response spectrum close to the design spectrum [53]. In 

addition, meta-heuristic algorithms such as the firefly algorithm (FA) [62], cuckoo search (CS)22 [63], Bat 

algorithm (BA)23 [64], and Big Bang Big algorithm (BB-BC)24 [65-67] were also used to design truss structures. 

Bektash et al. minimized the weight of 3D and 2D truss structures using the Flower Pollination Algorithm (FPA)25 

[68]. Toklu et al. proposed a method using HS to obtain the minimum potential energy of truss structural systems 

[69]. Geometric nonlinear analysis of trusses using PSO was investigated by Taimur et al. [70]. 

 
20 Reliability-Based Design Optimization (RBDO) 

21 Enhanced Vibrating Particles System (ECBO) 
22 cuckoo search (CS) 

23 Bat algorithm (BA) 

24 Big Bang Big algorithm (BB-BC) 
25 Flower Pollination Algorithm (FPA) 
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2-4- Water engineering, hydrology and hydraulics 

In water engineering and projects related to water, hydrology, and hydraulic structures, optimization algorithms 

have provided significant help to researchers in finding the optimal way to solve problems. Among these issues, 

we can mention the optimization of water transmission lines, oil and other fluids transmission lines, reducing the 

costs of hydraulic structure projects, and other cases. Mayer et al. solved water distribution system optimization 

problems using ACO [71]. Jim et al. used HS to optimally solve standard nonlinear pipe network test problems 

[72]. Lund and Ferreira used deterministic optimization to develop strategic operating rules for large-scale water 

resource systems [73]. PSO has also been applied to water distribution system problems [74]. Akbarpour and his 

colleagues used GA, FA, and PSO algorithms to determine the optimal location of pumping wells in the aquifer 

[75]. Mugisha identified effective infrastructure optimization through high-impact change management programs 

and incorporated water loss management strategies [76]. Middleton and Brandt presented an integrated framework 

that simultaneously considers economic and engineering decisions and optimizes a developed model of CO2 

management infrastructure with different carbon prices for the oil sands industry [77]. Haddad et al. used PSO 

and Pattern Search (PS)26 to calibrate the groundwater model [78].  Saberi et al. have investigated the performance 

of CBO meta-heuristic algorithm with FA and GA meta-heuristic algorithms and SOP method in optimizing the 

operation of Haraz dam reservoir. According to their calculations, CBO algorithm has better results than FA and 

GA algorithms. and provided the SOP method  [79] In another research, Akbarpour et al. used two opposing 

objective functions to solve the problem of optimizing the exploitation of the studied reservoirs. This research 

defined the first objective function of minimizing the sum of the second power of the agricultural demand 

difference from release and the second objective function of maximizing the reliability index. In this study, the 

parameters of algorithm execution time, the number of solutions located in the Pareto optimal front, and distance, 

dispersion, convergence, and generational distance criteria were used to compare the investigated algorithms. In 

this research, the multi-objective version of the particle swarm algorithm (MOPSO)27 was used along with some 

new algorithms, which include the multi-objective grasshopper algorithm (MOGA)28 and the multi-objective ant 

catcher algorithm (MOALO)29. Sistan and Baluchistan provinces were used. The optimization problem was 

defined with the two objectives of minimizing the sum of the square root of the agricultural demand difference 

from release and maximizing the reliability index, and the research results showed that all three algorithms can 

solve this optimization problem. In the meantime, all algorithms were compared according to criteria such as 

algorithm execution time, the number of solutions located in the optimal Pareto front, distance criteria, dispersion, 

convergence, and generational distance. This research showed that according to the criterion of algorithm 

execution time, the MOPSO algorithm showed higher efficiency than other algorithms, with 76.4 seconds. 

According to the criterion of the number of solutions located in the optimal Pareto front, the MOALO algorithm 

with 17 solutions in the first front showed the best performance. According to the distance criterion, the MOGOA 

algorithm with a value of 0.0131 has shown the best performance among the investigated algorithms. Also, 

according to the dispersion criterion, the MOALO algorithm outperformed the investigated algorithms with a 

value of 0.5472. Also, according to the convergence and generation distance criterion, the MOGOA algorithm has 

shown the best performance among the investigated algorithms with values of 0.0278 and 0.125, respectively. As 

can be seen, each of the MOALO and MOGOA algorithms has performed better than the others in some criteria. 

However, the MOALO algorithm has effectively covered the optimal front and, therefore, has created a rich set 

of optimal solutions. In general, each of the solutions located in the optimal Pareto front represents the parameters 

defining a command curve for the long-term exploitation of the reservoir. None of these points can be considered 

generally and absolutely preferable to other answers, but each can be regarded as optimal for the problem in that 

particular situation, according to specific priorities and limitations. For example, you can choose an option that 

minimizes the square root of the difference in agricultural demand from release, or in other words, satisfy 

agricultural demand as much as possible in the entire period, or choose an option that results in the highest 

reliability. Therefore, it is generally impossible to comment on which solution is the optimal front should be 

 
26 Pattern Search (PS) 

27 multi-objective version of the particle swarm algorithm (MOPSO) 

28 multi-objective grasshopper algorithm (MOGA) 
29 multi-objective ant catcher algorithm (MOALO) 
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selected. But what is important is that from the total solutions found by the two algorithms, MOALO and 

MOGOA, a set of solutions that can be a command curve for optimal exploitation of semi-well reservoirs has 

been obtained [80] 

2-5- Road and transportation engineering 

Road and transportation, both in the transportation of communication roads, urban and freeways, and rail 

transportation, have been able to reduce costs and increase quality using optimization algorithms. In this regard, 

Chakraborty et al. used a Genetic Algorithm (GA) with consideration of transit time to optimize transportation 

system programs [81]. Also, this algorithm has been employed for urban traffic flow optimization [82], traffic 

signal coordination problems [83], emergency logistics planning [84], and calibration of rail transport allocation 

models [85]. Wearing et al. [86] of adaptive reinforcement learning algorithms for learning to control lights. Kuan 

et al. used GA and ACO to solve the bus feeder network design problem with minimum operator and user costs 

[87]. ACO was also applied to transportation problems such as vehicle routing [88] and traffic engineering 

problems [89]. Furthermore, Costa et al. applied SA to the planning of high-speed rail systems [90]. Walraven et 

al. optimized the traffic flow using a learning-based method [91]. Yu et al. used a technique based on a fuzzy 

programming approach to optimize signal timing for isolated intersections [92]. Yang et al. optimized the total 

energy consumption and travel time using a mathematical model to find optimal train movements considering 

operational interactions [93]. Ebrahimi et al. presented a dual-objective vehicle routing model, including 

minimizing the imbalance in the travel distances of the used vehicles and the imbalance in the loads assigned to 

the used cars. Who presented an improved sparse search algorithm to solve the presented model. To investigate 

the capabilities of the algorithm, they solved various problems. They compared the results with the results obtained 

from the multi-objective evolutionary algorithm based on differential evolution (MODE)30 and the multi-objective 

particle swarm optimization algorithm (MOPSO), which, for example, in most of the indicators It was found that 

the proposed MOSS algorithm, which is a multi-objective sparse search algorithm, has a higher ability to solve 

problems than the MODE and MOPSO algorithms. However, in the time index, the proposed algorithm was not 

preferred. [94] 

3- Discussion and conclusion 

The most important result that can be obtained at the end of this article is the tremendous impact of optimization 

algorithms on the ease of optimization of study and executive projects in various fields of civil engineering, 

including engineering and construction management, soil and foundation mechanics, structures, water 

engineering, hydrology and hydraulics, road and transportation engineering. It is transportation and traffic.  Based 

on the searches conducted in Google Scholar, we investigated the use of meta-heuristic algorithms by researchers 

in solving civil engineering problems in the last two decades, the results of which are shown in Figure 3: 

 

Figure 3. The number of researches conducted on the topic of using optimization algorithms in civil 

engineering in different years, based on the search in Google Scholar. 

 
30 multi-objective evolutionary algorithm based on differential evolution (MODE) 
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Mr. Dr. Kaveh and his colleagues  [95] in the book "Methodical Optimization Algorithms in Civil Engineering" 

have analyzed in detail the optimization algorithms used in different branches of civil engineering, which can be 

the most practical algorithms mentioned by them. It includes the following things that we have checked the 

frequency of application of these algorithms in civil engineering using the Google Scholar search engine in the 

time period (2000-2024) and we have displayed their percentage in the diagram of Figure 4. 

Golden section search (GSS) 

Particle Swarm Optimization (PSO) 

Colliding Bodies Optimization (CBO) 

Enhanced Colliding Bodies Optimization (ECBO) 

Grey Wolf Optimizer (GWO) 

Salp Swarm Algorithm (SSA) 

Grasshopper optimization algorithm (GOA) 

Harmony Search (HS) 

Quantum-Inspired Evolutionary algorithm (QEA) 

Charged System Search (CSS) 

Ant Lion Optimizer (ALO) 

Multi-Objective Ant Lion Optimizer (MOALO) 

 

Figure 4. The percentage of algorithms used in civil engineering, based on what Dr. Kaveh and his 

colleagues have reviewed, between 2000 and 2024. 

 This article investigates the latest developments regarding optimization and design based on meta-heuristic 

algorithms in civil engineering. In short, different meta-heuristic algorithms' applications, including genetic 

algorithms, bat algorithms, harmony search, ant colony optimization, cuckoo search, firefly algorithm, particle 

swarm optimization, simulated refrigeration, etc., are presented in the optimization of various research and 

operational projects. All this can be considered a timely illustration of the vast and expanding literature on design 

optimization in civil engineering. The variety of optimization algorithms and their usage methods show the 

flexibility and efficiency of these algorithms. Determining the proposed algorithm in each problem of the set of 

civil engineering problems requires a detailed study of that problem and the need for an optimal path in each issue. 

Using a specific type of algorithm also requires a better understanding of optimization algorithms, considering 

the diversity and effectiveness of each algorithm.  At the end, the amount of use of different optimization 

algorithms based on the frequency of each algorithm and its field of application is given in Table No. 4 . As can 

be seen, civil engineers have used GA, ACO, PSO, and HS algorithms more frequently than other algorithms in 

optimizing civil engineering problems. 
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Table 3. The frequency of each algorithm in different applied fields of civil engineering 

Algorithm frequency The field of use References 

GA 30 

concrete bridge [43] 

concrete bridge [44] 

 CSLP [18] 

hydraulics, hydrology [79] 

Project Control [4] 

Project Control [7] 

 CSLP [17] 

Concrete buildings [21] 

Concrete buildings [22] 

Concrete buildings [28] 

Concrete buildings [30] 

Concrete buildings [32] 

Concrete wall [36] 

concrete bridge [45] 

Steel frames [49] 

Steel frames [50] 

Steel frames [51] 

Steel frames [54] 

Trussed steel [57] 

hydraulics, hydrology [76] 

hydraulics, hydrology [77] 

transportation [81] 

transportation [82] 

transportation [83] 

transportation [84] 

transportation [85] 

transportation [87] 

hydraulics, hydrology [75] 

Trussed steel [60] 

concrete bridge [46] 

ACO 14 

Project Control [1] 

Project Control [2] 

 CSLP [12] 

Steel frames [56] 

Trussed steel [61] 

hydraulics, hydrology [71] 

transportation [88] 

transportation [89] 

concrete bridge [43] 

concrete bridge [44] 

 CSLP [9] 

 CSLP [18] 

Concrete buildings [29] 

transportation [87] 



International Journal of Multiphysics 

Volume 18, No. 4, 2024 

ISSN: 1750-9548 
 

1111 

Algorithm frequency The field of use References 

PSO 13 

CSLP [18] 

Concrete buildings [29] 

CSLP [16] 

hydraulics, hydrology [75] 

Project Control [5] 

CSLP [11] 

Trussed steel [59] 

Trussed steel [70] 

hydraulics, hydrology [73] 

hydraulics, hydrology [74] 

hydraulics, hydrology [78] 

Concrete wall [41] 

Trussed steel [60] 

HS 10 

Concrete buildings [29] 

CSLP [15] 

Trussed steel [69] 

hydraulics, hydrology [72] 

Project Control [3] 

CSLP [14] 

Concrete buildings [23] 

Concrete buildings [24] 

Concrete buildings [25] 

Concrete buildings [27] 

BB-BC 5 

Concrete wall [38] 

Trussed steel [65] 

Trussed steel [66] 

Trussed steel [67] 

Concrete buildings [29] 

FA 4 

CSLP [9] 

hydraulics, hydrology [79] 

Trussed steel [62] 

hydraulics, hydrology [75] 

MBF 4 

Concrete buildings [34] 

Concrete wall [42] 

Concrete buildings [26] 

CSLP [20] 

SA 4 

transportation [90] 

CSLP [14] 

Concrete buildings [33] 

concrete bridge [46] 

CBO 3 

hydraulics, hydrology [79] 

CSLP [20] 

Concrete buildings [26] 

MODE 2 
transportation [94] 

transportation [94] 

TLBO 2 
Concrete wall [37] 

                   transportation            [91] 
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Algorithm frequency The field of use References 

ABC 1 CSLP [18] 

ANNA 1 Concrete wall [40] 

AOA 1 Concrete wall [41] 

BA 1 Trussed steel [64] 

BFOA 1 Concrete wall [35] 

BOA 1 CSLP [16] 

CBO-MBF 1 Steel frames [53] 

CSA 1 Trussed steel [63] 

CSS 1 Concrete wall [39] 

DE 1 CSLP [16] 

ECBO 1 concrete bridge [48] 

ES-DE 1 Steel frames [52] 

FMO 1 transportation [92] 

FPA 1 Trussed steel [68] 

IWO 1 Project Control [6] 

MGA 1 Trussed steel [58] 

MO 1 transportation [93] 

MOALO 1 hydraulics, hydrology [80] 

MOGOA 1 hydraulics, hydrology [80] 

MOPSO 1 hydraulics, hydrology [80] 

MOSA 1 Concrete buildings [31] 

MVO 1 CSLP [19] 

NMA 1 Steel frames [55] 

RBDO 1 concrete bridge [47] 

RLA 1 transportation [86] 

SCA 1 CSLP [16] 

SOS 1 CSLP [8] 

SSA 1 Concrete wall [41] 

WOA-CBO 1 CSLP [10] 

 

 

Figure 5. Percentage of use of optimization algorithms in civil engineering. 
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The frequency of using optimization algorithms in civil engineering for more than one case in the statistical 

collection mentioned in this article is shown in 3-D Pie diagram in figure 5. 

 

According to the results of the search for articles that deal with the above widely used optimization algorithms in 

the Google Scholar search engine, it provided reliable results that are briefly shown in the following diagram: 

 

 

Figure 6 . The amount of use of selected optimization algorithms in solving civil engineering problems 

based on the search in G. Gol Skolar between the years 2001 and 2023. The search date is February 26, 

2024. 

 

Now, by sorting the above diagram, you can reach the final diagram below, which is sorted based on the most 

references to the least references: 

 

Figure 7. The amount of use of selected optimization algorithms in solving civil engineering problems in a 

sorted form, based on the search in Google Scholar between the years 2001 and 2023. Search date 

February 26, 2024 

 

Since the year of presentation of the algorithms is different, direct comparison of their references does not seem 

reasonable, therefore, by weighting the above algorithms, we compare their use more precisely: 

Table No. 4 shows a list of reviewed algorithms by considering the year of presentation and the life period of each 

algorithm, after weighting the number of references made by considering the life weight of each algorithm, we 

reach Table 5, which is The table of references of each algorithm is arranged according to the weighting done and 

they are arranged in the order of the most to the least references. 
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Table 4. Weighting of the use of meta-heuristic algorithms in civil engineering 

Algorithm frequency Birth Year Age Weight 

frequency 

According to 

Weithing 

GA 30 1975 49 1/00 30 

ACO 14 2006 18 0/37 38 

PSO 13 1995 29 0/59 22 

HS 10 2001 23 0/47 21 

BB-BC 5 2006 18 0/37 14 

FA 4 2007 17 0/35 12 

MBF 4 2007 17 0/35 12 

SA 4 1983 41 0/84 5 

CBO 3 2009 15 0/31 10 

MODE 2 2010 14 0/29 7 

TLBO 2 2011 13 0/27 8 

ABC 1 2005 19 0/39 3 

ANNA 1 2016 8 0/16 6 

AOA 1 2021 3 0/06 16 

BA 1 2010 14 0/29 4 

BFOA 1 2008 16 0/33 3 

BOA 1 2018 6 0/12 8 

CBO-MBF 1 2021 3 0/06 16 

CSA 1 2016 8 0/16 6 

CSS 1 2017 7 0/14 7 

DE 1 1995 29 0/59 2 

ECBO 1 2020 4 0/08 12 

ES-DE 1 2014 10 0/20 5 

FMO 1 2012 12 0/24 4 

FPA 1 2008 16 0/33 3 

IWO 1 2006 18 0/37 3 

MGA 1 2005 19 0/39 3 

MO 1 2021 3 0/06 16 

MOALO 1 2016 8 0/16 6 

MOGOA 1 2015 9 0/18 5 

MOPSO 1 2011 13 0/27 4 

MOSA 1 2017 7 0/14 7 

MVO 1 2017 7 0/14 7 

NMA 1 2018 6 0/12 8 

RBDO 1 2021 3 0/06 16 

RLA 1 2016 8 0/16 6 

SCA 1 2016 8 0/16 6 

SOS 1 2016 8 0/16 6 

SSA 1 2019 5 0/10 10 

WOA-CBO 1 2018 6 0/12 8 
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Table 5. The rate of use of meta-heuristic algorithms in civil engineering based on their age weight 

Algorithm frequency According to Weithing 

ACO 38 

GA 30 

PSO 22 

HS 21 

AOA 16 

CBO-MBF 16 

MO 16 

RBDO 16 

BB-BC 14 

ECBO 12 

FA 12 

MBF 12 

CBO 10 

SSA 10 

BOA 8 

NMA 8 

WOA-CBO 8 

TLBO 8 

MODE 7 

CSS 7 

MOSA 7 

MVO 7 

ANNA 6 

CSA 6 

MOALO 6 

RLA 6 

SCA 6 

SOS 6 

MOGOA 5 

ES-DE 5 

SA 5 

FMO 4 

MOPSO 4 

BA 4 

BFOA 3 

FPA 3 

IWO 3 

ABC 3 

MGA 3 

DE 2 
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Figure 8 shows the amount of use of selected optimization algorithms in solving civil engineering problems 

according to the weight given in table 4, based on the search in Google Scholar between 2001 and 2023 until the 

search date of February 26, 2024. 

 

Figure 8. The amount of use of selected optimization algorithms in solving civil engineering problems 

based on the weight ratio of their ages 
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