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ABSTRACT 
This paper presents analytical and numerical methods for developing 

optical-acoustic transducers of minimal dimensions. One can find acoustic 

sensors used as microphones in various electronic devices such as 

smartphones or smartwatches. Therefore, it is highly desirable to minimize 

their size while ensuring high-quality sound reception.  

The optical-acoustic sensor relies on laser detection of membrane 

vibrations and consists of a membrane that vibrates in the presence of an 

acoustic field and reflects the radiation emitted by the laser back to the laser. 

We focus on methods to optimize the membrane's design and the cavity 

(back volume) that separates the laser from the membrane. The back 

volume compliance significantly affects the sensitivity of the membrane. In 

addition, it is a noise source due to acoustic and viscous damping. Using 

calculations and simulations, we show the possibilities of reducing the 

membrane size and the air-filled back volume size while achieving the 

desired acoustic properties. We employ analytical calculations for the 

mechanical vibration of the diaphragm, back-volume compliance and 

resistance, and precise FEM simulations of the interaction between 

membrane vibration and the acoustic field. We build on similar techniques 

used for micromachined capacitive microphones, but we apply these 

methods newly to a specific setup of backplate-less optical-acoustic 

sensors. Based on the theoretical results, we can conclude that optical-

acoustic devices achieve the same maximum noise level with smaller 

dimensions than the current industry standard. 

 
 

1. INTRODUCTION  
In recent years, the field of smart device technology has seen significant growth in the 
development of devices such as headsets, smartwatches, and smart speakers, all of which 
require high-quality audio reception capabilities. Given the small dimensions of these devices, 
there is an ongoing effort to create audio receivers of minimal size while maintaining a high 
level of sound quality. Our project aims to achieve this goal through the new design and 
implementation of an integrated optical microphone. This article will focus on the critical 
components of the optical microphone, specifically the diaphragm and the cavity defined  
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between the diaphragm and the substrate. The principle of operation for optical-acoustic 
sensors is based on sound sensation via the optical detection of diaphragm deflection. Acoustic 
pressure from sound waves causes vibrations in the diaphragm, and the deflection is detected 
by a laser beam that is reflected back into the laser and converted into a sensor output signal, 
see Figure 1. Therefore, the design of the diaphragm and cavity is crucial to the performance 
of this device. We consider a diaphragm with a circular shape. Besides its overall dimensions, 
residual stress influences its mechanical properties. The residual stress results from the 
fabrication. Therefore, we employ corrugations, which can reduce this stress to the desired 
value. For further details on the corrugated diaphragm, see patent [1], and on the optical-
acoustic sensor, patents [2] and [3]. The laser used for optical detection is a vertical cavity 
surface emitting laser (VCSEL). We focus on a detailed description of the analytical and 
computational methods used to design the geometry of the optical-acoustic sensor. 

In the next section, we introduce methods to optimize the design of the corrugated 
membrane itself. We follow the general theory for plates and shells by [4]. The mechanical 
behavior of micromachined flat and corrugated membranes for sensors is discussed further in 
articles [5-15]. We demonstrate that it is possible to substantially reduce intrinsic stress to 
levels that are difficult to attain for flat diaphragms. The following section deals with the air-
filled cavity (back volume) that separates the laser from the diaphragm. We describe its 
mechanical and thermoacoustic properties. Finally, we present the coupled problem of 
diaphragm vibrations and thermoacoustics. Thermoacoustic effects on the movement of the 
diaphragm are the subject of papers [16-22]. 

The entire system is characterized as a coupled problem involving the interaction of 
compressible fluid flow and pressure-induced vibrations. In the context of fluid-structure 
interaction (FSI), the finite element method is often the preferred method for solving the 
system with a staggered or monolithic approach [23-25]. Using the Comsol software package 
[26], we can solve this problem as an interaction of unsteady compressible flow and structural 
deformation, or as a coupling of linearized compressible Navier-Stokes equations and 
diaphragm vibrations in the frequency domain. 

Optical-acoustic transducers have been shown to possess advantages over traditional 
micromachined sensors. Conventional capacitive sensors detect variations in the capacitance 
of a capacitor composed of a front plate (diaphragm) and a backplate. A small gap between 
the diaphragm and the backplate is necessary to enhance sensitivity. As described by [19], 
thermal boundary limitations can affect the performance of micromachined microphones. In 
contrast, the optical-acoustic sensor does not require a backplate. 

Additionally, corrugations can be incorporated to modulate the residual stress, leading to 
improved sensitivity and reduced acoustic noise. With optical microphones, there is no 
limitation with the back plate. Therefore, we can use any dimension and number of 
corrugations. The results of our analysis indicate the potential and limitations of optical-
acoustic sensor size. 
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Figure 1: A sketch of the principle of an optical-acoustic sensor composed of three 
major components: diaphragm, laser, and cavity in the substrate between them. 

 
2. CORRUGATED DIAPHRAGM 
The initial step in the design process of the optical microphone is the design of the diaphragm. 
Sufficient sensitivity is required to detect membrane deflection oscillations. However, it is 
important to ensure that the deflection does not significantly exceed the thickness of the 
material, even under high loads, as nonlinear effects will occur at large displacements. In this 
section, we first present analytical formulae for determining both sensitivity and the rate of 
nonlinearity. We then describe a more accurate finite element analysis and present some 
results. 

A comprehensive diaphragm analysis also includes determining the eigenfrequency and 
conducting a stress analysis. The eigenfrequency should not affect the acoustic spectrum, 
meaning it should be higher than 20 kHz. For designed diaphragms, the eigenfrequency is 
typically significantly higher. However, it is important to remember to determine the 
eigenfrequency for the complete system, as it may drop due to the compliance of the back 
volume in combination with the cavity. Stress distribution analysis results in stress 
concentration in the corrugations or at the edge of the diaphragm. We performed simulations 
for extreme pressure levels higher than that of the acoustic signal, but for this paper, we 
mention these properties for completeness only and do not discuss them in further detail. 
 
2.1. Analytical Calculation of Characteristics 
We consider the diaphragm of the sensor as a circular plate with clamped edges. We start with 
the description of small deformations. Then, we extend the formulation to include the effect 
of residual tensile stress and its reduction by corrugations. Finally, we add the nonlinear 
behavior at large deflections. 
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The approximate formula for flat circular plates is described in [4, pp. 55]. We consider a 

rigidly clamped plate carrying a uniform load of intensity p the deflection w of the membrane 
has been described by 𝑤𝑤(𝑟𝑟) = 𝑝𝑝

64𝐷𝐷
(𝑎𝑎2– 𝑟𝑟2)2. 

The deflection could also be expressed as in [15] with the aid of the maximum deflection 
𝑤𝑤0 as 
 

𝑤𝑤(𝑟𝑟) = 𝑤𝑤0 �1 − 𝑟𝑟2

𝑎𝑎2
�
2
,                                              (1) 

 
where the maximum deflection is at the center of the plate 
 

𝑤𝑤0 = 𝑝𝑝𝑎𝑎4

64𝐷𝐷
.                                                        (2) 

 
Here, 
• 𝑎𝑎 radius, 𝑎𝑎 > 0, 
• 𝑟𝑟 radial coordinate, 𝑟𝑟 ∈ [0, a], 
• 𝑤𝑤 deflection, 𝑤𝑤: [0, a] → R, 
• ℎ thickness, ℎ >  0, 
• 𝑝𝑝 intensity of the distributed load, 𝑝𝑝 ∈ 𝑅𝑅, 
• 𝐷𝐷 bending rigidity, 
 

𝐷𝐷 = 𝐸𝐸ℎ3

12(1−𝜈𝜈2)
,                                                     (3) 

 
• 𝐸𝐸 modulus of elasticity, 𝐸𝐸 > 0, 
• 𝜈𝜈 Poisson's ratio, ν ∈ (0, 0.5). 
 
The slope 𝜑𝜑 of the deflection 𝑤𝑤 is 
 

𝜑𝜑(𝑟𝑟) = − 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑝𝑝𝑝𝑝
16𝐷𝐷

(𝑎𝑎2 − 𝑟𝑟2),                                        (4) 
 
the radial stress 𝜎𝜎𝑟𝑟reads 
 

𝜎𝜎𝑟𝑟(𝑟𝑟) = 3𝑝𝑝
8ℎ2

�𝑎𝑎2(1 + 𝜈𝜈) − 𝑟𝑟2(3 + 𝜈𝜈)�,                                 (5) 
 
and tangential stress 𝜎𝜎𝑡𝑡 
 

𝜎𝜎𝑡𝑡(𝑟𝑟) = 3𝑝𝑝
8ℎ2

�𝑎𝑎2(1 + 𝜈𝜈) − 𝑟𝑟2(1 + 3𝜈𝜈)�.                               (6) 
 

The stresses are equal in the center of the membrane 
 

𝜎𝜎𝑟𝑟(0) = 𝜎𝜎𝑡𝑡(0) = 3𝑝𝑝𝑎𝑎2

8ℎ2
(1 + 𝜈𝜈)                                    (7)  
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The value of the radial stress is faster decreasing. At the boundary of the plate 
 

𝜎𝜎𝑟𝑟(𝑎𝑎) = −3𝑝𝑝𝑎𝑎2

4ℎ2
,                                                       (8) 

 
and 
 

𝜎𝜎𝑡𝑡(𝑎𝑎) = −3𝑝𝑝𝑎𝑎2𝜈𝜈
4ℎ2

.                                                     (9) 

 
Consider a flat membrane as a circular plate as in [4, pp. 391] submitted to the 

simultaneous action of a symmetrical lateral load and a uniform tension in the middle of the 
plate. As shown in [4, pp. 392-393], we can express the maximum deflection in the middle of 
the membrane (𝑟𝑟 = 0) as 
 

𝑤𝑤 = 𝑝𝑝
𝐾𝐾𝑡𝑡𝑡𝑡𝑡𝑡

,                                                        (10) 

 

where 𝐾𝐾𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐾𝐾1(1 − 𝛼𝛼), 𝛼𝛼 = 𝜎𝜎𝑎𝑎2

14.68𝐷𝐷
. Then the bending stiffness is 

 
𝐾𝐾1 = 64𝜋𝜋

𝑎𝑎2
𝐷𝐷,                                                     (11) 

 
and the stiffness component 𝐾𝐾2 = 𝐾𝐾1𝛼𝛼 due to the residual stress is 
 

𝐾𝐾2 = 64𝜋𝜋
𝑎𝑎2
𝐷𝐷𝐷𝐷 = 64𝜋𝜋

𝑎𝑎2
𝐷𝐷 𝜎𝜎𝑎𝑎2

14.68𝐷𝐷
= 64𝜋𝜋𝜋𝜋

14.68
= 4.36𝜋𝜋𝜋𝜋.                           (12) 

 
Considering large deflections, the approximate formulae for uniformly loaded circular 

plates must be modified. The deflection is considered large if the membrane's middle plane's 
strain can not be neglected. In practice, we denote as large the deflections three times bigger 
than the thickness of the plate. The effect of stretching can be approximated according to [15] 
by the term 16

35
𝑤𝑤0
2

ℎ2
. Similar approximation 0.488 𝑤𝑤0

2

ℎ2
 is in [4, pp. 400-402]. Because of this 

effect, the relation between the deflection 𝑤𝑤0 and the pressure 𝑝𝑝 becomes nonlinear. 
Let us express the approximate formula for large deflection of the plate 

 

𝑤𝑤(𝑟𝑟) = 𝑤𝑤0 �1 − 𝑟𝑟2

𝑎𝑎2
�
2
,                                              (13) 

 
where it holds 
 

𝑤𝑤0 = 𝑝𝑝
4.36ℎ
𝑎𝑎2

σ0+
64
𝑎𝑎4
𝐷𝐷�1+1635

𝑤𝑤0
2

ℎ2
�
.                                            (14) 
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Equivalently, we can express the pressure as a function of the deflection 

 

𝑝𝑝 = �4.36ℎ
𝑎𝑎2

σ0 + 64
𝑎𝑎4
𝐷𝐷�𝑤𝑤0 + 16

35
64
𝑎𝑎4
𝐷𝐷 𝑤𝑤0

3

ℎ2
.                                 (15) 

 
The stiffness of the plate increases with the deflection. We may define the linear and 

nonlinear stiffness 
 

Klin = 4.36h
a2

σ0 + 64
a4

D,                           Knon = 16
35

64
a4h2

D                       (16) 
 

The difference in percentage between the deflection calculated with the stretching of the 
middle surface taken into account and the deflection obtained by neglecting this stretching is 
known as the total harmonic distortion (THD). We are interested in cases where the stretching 
is significant, meaning when the distortion is greater than 1%, 3%, or 10%. When the 
distortion reaches 10%, the microphone is considered to have reached an overload point at 
which it can no longer function effectively as a sound sensor. The calculation of the deflection 
for a given THD is straightforward: 
 

𝑤𝑤0 = THD
1−THD

𝐾𝐾𝑙𝑙𝑙𝑙𝑙𝑙
𝐾𝐾𝑛𝑛𝑛𝑛𝑛𝑛

.                                                    (17) 

 
In most cases, the diaphragm is characterized by sensitivity, the slope of the linear 

relationship between deflection 𝑤𝑤0 and pressure intensity 𝑝𝑝. The sensitivity is compared with 
the sound level at which the distortion reaches 10%. The goal of the design is to achieve a 
high sensitivity while keeping the overload point above 135 dB. The material of the diaphragm 
is usually given, so the task is to find the optimal relationship between the diameter, thickness, 
and tension stress of the diaphragm. A crucial aspect of this is the design of the corrugations. 
 
2.2. Corrugations 
In order to reduce internal stress, the use of corrugations is employed. This section will 
summarize the analytical methods used to determine stress reduction. Various techniques exist 
for obtaining approximate equations for circular plates with corrugations. In [5] and [6] is 
examined the use of a formula for a corrugated membrane that is initially assumed to be stress-
free. The authors discuss the large deformation and stress reduction in the membrane. A 
similar assumption of a stress-free membrane is also presented in [4]. Another formula for 
stress reduction resulting from corrugations can be found in [9]. The approach taken by [10] 
and [11] is similar to the studies mentioned above. They introduce an additional calculation 
for stress reduction, and they summarize this in a formula that includes the bending stiffness, 
residual stress stiffness, and nonlinear stretching. Additionally, the deflection of a corrugated 
membrane is also discussed in [13], including a formula for the modifying factor of stiffness 
increase by a center boss. According to [6], following [5] 
 

𝑝𝑝 = 𝑎𝑎𝑝𝑝
𝐸𝐸ℎ3

𝑎𝑎4
𝑤𝑤0 + 𝑏𝑏𝑝𝑝

𝐸𝐸ℎ
(1−𝜈𝜈2)𝑎𝑎4

𝑤𝑤03,                                          (18) 
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where 
 

𝑎𝑎𝑝𝑝 = 2(𝑞𝑞+1)(𝑞𝑞+3)

3�1−𝜈𝜈
2
𝑞𝑞2
�

,             𝑏𝑏𝑝𝑝 = 32 1−𝜈𝜈2

𝑞𝑞2−9
�1
6
− 3−𝜈𝜈

(𝑞𝑞−𝜈𝜈)(𝑞𝑞+3)
�                        (19) 

 
and for a sinusoidal corrugation profile 
 

𝑞𝑞2 = 𝑠𝑠
𝑙𝑙
�1 + 3

2
𝐻𝐻2

ℎ2
�,                                                  (20) 

 
where 𝑞𝑞 is a corrugation profile factor, 𝐻𝐻 is the height of corrugations, 𝑠𝑠 is the corrugation arc 
length, and 𝑙𝑙 is the corrugation's spatial period. 

For shallow corrugations (𝐻𝐻 <<  𝑙𝑙), the shape of corrugations has only a minor influence 
on the profile factor 𝑞𝑞. For a rectangular corrugation profiles. 
 

𝑠𝑠
𝑙𝑙

= 𝑎𝑎+2𝑁𝑁𝑁𝑁
𝑎𝑎

,                                                       (21) 
 
where 𝑁𝑁 is the number of corrugations. Stress is reduced as 
 

𝜎𝜎 = 𝜎𝜎0𝑏𝑏𝑝𝑝
2.83

.                                                        (22) 

 
According to [9], stress is reduced as 

 
𝜎𝜎 = 𝜎𝜎0

1+sin(𝛽𝛽)𝐻𝐻
2

ℎ2
𝑁𝑁𝑁𝑁

𝑎𝑎−𝑁𝑁(𝑤𝑤+𝑏𝑏)

.                                                (23) 

 
According to [4, pp. 404], if the corrugation follows a sinusoidal law and the number of 

waves along a diameter is sufficiently large (𝑁𝑁 > 5), the following expression may be used: 
 

𝑝𝑝 = �8 𝐸𝐸ℎ3

𝑎𝑎4
𝐻𝐻2

ℎ2
+ 64

𝑎𝑎4
𝐷𝐷�𝑤𝑤0 + 9

56
64
𝑎𝑎4
𝐷𝐷 𝑤𝑤0

3

ℎ2
.                                     (24) 

 
According to [10] and [11], the formula for the pressure deflection relationship is 

 

𝑝𝑝 = �𝑎𝑎𝑝𝑝
𝐸𝐸ℎ3

𝑎𝑎4
+ 4 ℎ𝜎𝜎

𝑎𝑎2
�𝑤𝑤0 + 𝑏𝑏𝑝𝑝

𝐸𝐸ℎ
(1−𝜈𝜈)2𝑎𝑎4

𝑤𝑤03,                                  (25) 

 
where 𝑎𝑎𝑝𝑝 and 𝑏𝑏𝑝𝑝 are the same as above in the paragraph. The equilibrium stress 𝜎𝜎 in a 
corrugated diaphragm is given by 
 

𝜎𝜎 = 𝑎𝑎ℎ2

𝑎𝑎ℎ2+6𝑁𝑁𝐻𝐻2𝑤𝑤 sin(𝛽𝛽)+8𝑁𝑁𝐻𝐻3𝑤𝑤 sin2(𝛽𝛽)
𝜎𝜎0.                                   (26) 
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The analytical relations discussed in this and the previous section are valuable for the initial 
design of diaphragms. We have developed a straightforward algorithm to calculate the 
sensitivity and the distortion for a given geometrical and material parameters. However, finite 
element simulations are recommended for more accurate results, especially for corrugated 
diaphragms. 
 
2.3. Finite-Element Analysis 
We used Comsol software [23] based on the finite element method to analyze the mechanical 
behavior of the diaphragm. We applied the solid mechanics' module to solve the standard 
elasticity equations, considering the material's tensile prestress and geometric nonlinearity. 
We analyzed both the static behavior and the eigenfrequencies of the diaphragm. Moreover, 
we were able to use an axisymmetric model due to the rotational symmetry of the model. 

We have defined axial symmetry at the center of the model. A uniformly distributed 
pressure force of intensity p is applied in the normal direction on the upper surface. At the 
perimeter diaphragm is fixed to the substrate, resulting in zero displacements. The lower 
boundary is not subject to any constraints or loads. Figure 2 is an example of a deformed 
diaphragm with a diameter of 300 µm attached to the substrate for the static load of 112 Pa, 
which is approximately 135 dB SPL. 
 

 
Figure 2: Visualization of the static deformation (scaled 20x) of a corrugated 
diaphragm with a diameter of 300 µm attached to the substrate for the static load 
of 112 Pa. 
 
2.4. Results 
We conducted a computational study of the mechanical behavior of silicon nitride diaphragms 
of diameters 1 mm, 500 µm, and 300 µm, respectively. The objective of the study was to 
achieve a sensitivity of 20 nm/Pa and linear progression under a load in the dynamic range. 
The nonlinear effects of stretching were also taken into consideration. The linear deflection 
of the diaphragms was extrapolated and compared to the deflection calculated through 
simulation. The aim was to maintain a distortion of less than 10% between the extrapolated 
and simulated deflection values in the dynamic range, i.e., up to 135 dB. 
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The material characteristics of silicon nitride are summarized in Table 1. The silicon 
substrate was assumed to be a rigid body in the simulations, and the small aluminum mirror 
placed in the center of the diaphragm was neglected as its effect on the mechanical behavior 
of the diaphragm was not relevant to the methodology presented in this paper. 
 
Table 1: Material Characteristics 
Material  Silicon Nitride 
𝐸𝐸 - Young elasticity modulus 166 [GPa] 
𝜈𝜈 - Poisson's ratio 0.23 
ϱ – Density 3170 [kg.m−3] 
 

First, we compared the distortion of flat and corrugated diaphragms of different sizes but 
with similar sensitivity. To achieve similar sensitivity, the residual stress of the flat 
diaphragms and the dimensions of the corrugated diaphragms were systematically varied. The 
thicknesses of the smaller membranes were also reduced to achieve the desired sensitivity of 
about 20 nm/Pa. A summarized comparison can be found in Table 2. Corrugated diaphragms 
provide the desired sensitivity with better linearity at high deflection. While smaller 
diaphragms were not the target size for the intended application, they show the potential but 
also the limits of further minimizing the size of the diaphragms. The diaphragm of 500 µm 
diameter can almost reach the limit of 10% THD for 135 dB. 
 
Table 2: Comparison of THD for flat and corrugated diaphragms of different 
diameters d and thickness h with similar sensitivity. 
d 
[µm] 

h 
[nm] 

Res. stress 
[MPa] 

Corrugations 
# / [µm] 

Sensitivity 
[nm/Pa] 

THD 135 dB 
[%] 

1000 250 12 flat 20.04 13.53 
500 50 15 flat 20.57 27.72 
300 50 5.1 flat 20.80 54.83 
1000 250 200 5 / 10x1.1 20.13 4.22 
500 50 200 1 / 10x0.65 20.50 12.23 
300 50 200 1 / 10x0.65 20.37 32.72 
 

Additionally, a sensitivity analysis of the corrugation parameters was performed for a 1 
mm diameter diaphragm with a thickness of 250 nm. The default settings assumed a uniform 
intrinsic stress of 200 MPa, which was reduced by using five corrugations with a width of 10 
micrometers and a depth of 1.1 micrometers. The corrugations were assumed to have an 
idealized rectangular shape and were evenly distributed. The distance of the corrugations from 
the perimeter was 35 micrometers. 

Table 3 compares sensitivity and distortion under variations of intrinsic stress. The aim of 
the fabrication process should be to achieve the most uniform distribution of tensile stress to 
optimize the diaphragm's performance. 

In Table 4, we see the results for the variations in the corrugation depth. This comparison's 
results show that changes in the corrugation depth significantly affect the diaphragm's 
sensitivity and distortion. Therefore, we can conclude that the corrugation depth is the most 
influential parameter on the mechanical behavior of the diaphragm. 
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Table 5 presents a comparison of sensitivity and distortion for corrugated diaphragms with 
varying corrugation widths. We may expect that any inaccuracies in the width of the 
corrugations during fabrication will not significantly impact the mechanical behavior of the 
diaphragm. 

Similarly, it is not easy to achieve perfectly square corrugations in manufacturing. Table 6 
compares corrugations with 90 and 45 degrees of inclination and rounded corners. The 
rounded corners have a radius of half the depth of the corrugations. We can conclude that the 
influence of the shape of the corrugations is not significant, but a slight reduction in the 
sensitivity of the diaphragm must be considered. 
 
Table 3: Comparison of sensitivity and distortion under variations of residual 
stress for the diaphragm of diameter 𝑑𝑑 = 1 𝑚𝑚𝑚𝑚 and thickness ℎ = 250 𝑛𝑛𝑛𝑛. 
d 
[µm] 

h 
[nm] 

Res. stress 
[MPa] 

Corrugations 
# / [µm] 

Sensitivity 
[nm/Pa] 

THD 135 dB 
[%] 

1000 250 150 5 / 10x1.1 28.98 10.02 
1000 250 200 5 / 10x1.1 20.13 4.22 
1000 250 250 5 / 10x1.1 14.97 1.91 
 
Table 4: Comparison of sensitivity and distortion under variations of 
corrugations' depth for the diaphragm of diameter 𝑑𝑑 = 1 𝑚𝑚𝑚𝑚 and thickness 
ℎ = 250 𝑛𝑛𝑛𝑛. 
d 
[µm] 

h 
[nm] 

Res. stress 
[MPa] 

Corrugations 
# / [µm] 

Sensitivity 
[nm/Pa] 

THD 135 dB 
[%] 

1000 250 200 5 / 10x1.0 15.13 1.99 
1000 250 200 5 / 10x1.1 20.13 4.22 
1000 250 200 5 / 10x1.2 26.37 8.17 
 
Table 5: Comparison of sensitivity and distortion under variations of 
corrugations' width for the diaphragm of diameter 𝑑𝑑 = 1 𝑚𝑚𝑚𝑚 and thickness 
ℎ = 250 𝑛𝑛𝑛𝑛. 
d 
[µm] 

h 
[nm] 

Res. stress 
[MPa] 

Corrugations 
# / [µm] 

Sensitivity 
[nm/Pa] 

THD 135 dB 
[%] 

1000 250 200 5 / 8x1.1 16.16 2.28 
1000 250 200 5 / 10x1.1 20.13 4.22 
1000 250 200 5 / 12x1.1 24.44 7.12 
 
Table 6: Comparison of sensitivity and distortion under variations of 
corrugations' shape for the diaphragm of diameter 𝑑𝑑 = 1 𝑚𝑚𝑚𝑚 and thickness  
ℎ = 250 𝑛𝑛𝑛𝑛. 
d 
[µm] 

h 
[nm] 

Res. stress 
[MPa] 

Corrugations 
# / [µm] 

Sensitivity 
[nm/Pa] 

THD 135 dB 
[%] 

1000 250 200 5 / 10x1.1 A 20.13 4.22 
1000 250 200 5 / 10x1.1 B 17.95 3.10 
1000 250 200 5 / 10x1.1 C 17.61 2.94 
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Figure 3: Three corrugation shapes with different inclination angles and corner 
rounding. 

 
3. ACOUSTIC SENSOR CAVITY 
When considering the dimensions of the optical-acoustic sensor, it is necessary not to neglect 
the influence of air in the cavity volume enclosed between the substrate and the diaphragm. 
There is an effect of the compliance of the back volume on the sensitivity of the diaphragm 
and the mechanical-thermal noise, which is expected to be the dominant noise component in 
the whole acoustic spectrum. Therefore, we must consider the air's compressibility and 
calculate the compliance of the back chamber and the mechanical-thermal noise as described 
in [17] and calculate the noise. Mechanical-thermal noise is caused by fluctuating forces, 
which are directly related to all the dissipative mechanisms. We can describe the membrane 
as a mechanical oscillator in which damping is given by mechanical resistance, see [17]. In 
general, we shall consider any dissipative mechanism that allows energy to escape, e.g., 
acoustic and viscous dissipations, support dissipations, and internal and material-related 
dissipations. Nevertheless, the acoustic and viscous dissipations caused by the surrounding air 
are dominant, and the noise caused by the other dissipations is very low, see [18]. We want to 
investigate the case when the diaphragm and cavity become smaller. 

An advantage to the standard condenser sensors is that we do not need to consider the 
proximity of a few micrometers of the membrane to the backplate, see [20]. In our 
construction, the closest wall will be more than the distance of 50 µm, which is necessary for 
the laser beam. 

Furthermore, the analysis of individual noise contributions is also analyzed in [19] or, 
more generally, in [21]. Based on these findings, we conclude that thermoacoustic noise will 
be the primary noise source for the proposed optical-acoustic sensor. 
 
3.1 Back volume and total compliance 
In order to obtain the sensitivity of the diaphragm with the back volume, we need to calculate 
the compliance of the diaphragm, the back volume, and finally, total compliance. The 
compliance of a diaphragm 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 is given by 
 

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜋𝜋𝑎𝑎2

3
𝑆𝑆0,                                                      (27) 

 
where 𝑎𝑎 is the radius of the diaphragm and 𝑆𝑆0 is the static sensitivity of the diaphragm, or we 
can also describe it as a sensitivity in a vacuum.  
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The closed back chamber or back volume occupied by air also behaves like a spring. The 
compliance of the back chamber depends on its volume and compression modulus of the air: 
 

𝐶𝐶𝑏𝑏𝑏𝑏 = 𝑉𝑉𝑏𝑏𝑏𝑏
𝐾𝐾𝑎𝑎𝑎𝑎𝑎𝑎

= 𝜋𝜋𝑟𝑟𝑏𝑏𝑏𝑏
2 ℎ𝑏𝑏𝑏𝑏
𝐾𝐾𝑎𝑎𝑎𝑎𝑎𝑎

,                                                  (28) 

 
where 𝑉𝑉𝑏𝑏𝑏𝑏 is the volume of the back chamber, 𝑟𝑟𝑏𝑏𝑏𝑏 and ℎ𝑏𝑏𝑏𝑏 its radius and height, respectively. 
𝐾𝐾𝑎𝑎𝑎𝑎𝑎𝑎  is the compression modulus of the air. In the calculations below, we set 𝐾𝐾𝑎𝑎𝑎𝑎𝑎𝑎 = 101 𝑘𝑘𝑘𝑘𝑘𝑘, 
the isothermal bulk modulus. 

Total compliance is equal to the reciprocal of the sum of the reciprocal compliances. For 
the case of two compliances, the total compliance is equal to 
 

𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝑏𝑏𝑏𝑏
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚+𝐶𝐶𝑏𝑏𝑏𝑏

.                                                     (29) 

 
In Table 7, we compare the compliance of the diaphragm and of the back volume. The 

compliance of the membrane corresponds to a sensitivity of 20 nm/Pa for a static deflection. 
We see that for all the sizes of the membranes and chosen back volume height, the 
compliances are in the same order. Therefore, the size of the back volume influences the total 
compliance and the sensitivity of the back volume. The last column shows how the effect of 
back volume will reduce the total sensitivity of the membrane 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡. Furthermore, we show in 
Figure 4 how the sensitivity and compliance of the whole system change depending on the 
varying size of the back volume for the 1 mm diameter membrane. 
 
 
Table 1: Comparison of the total compliance 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡, membrane compliance 
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, back volume compliance 𝐶𝐶𝑏𝑏𝑏𝑏, sensitivity 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡 for varying back volume 
𝑉𝑉𝑏𝑏𝑏𝑏 of height ℎ𝑏𝑏𝑏𝑏 and diameter 𝑑𝑑. 
𝒅𝒅  
[µm] 

𝒉𝒉𝒃𝒃𝒃𝒃  
 [µm] 

𝑽𝑽𝒃𝒃𝒃𝒃  
[mm3] 

𝑪𝑪𝒎𝒎𝒎𝒎𝒎𝒎  
[m3/Pa] 

𝑪𝑪𝒃𝒃𝒃𝒃  
[m3/Pa] 

𝑪𝑪𝒕𝒕𝒕𝒕𝒕𝒕  
[m3/Pa] 

𝑺𝑺𝒕𝒕𝒕𝒕𝒕𝒕 (rms/peak) 
 [nm/Pa] 

1000 300 0.236 5.24E-15 2.33E-15 1.61E-15 6.16 / 8.72 
1000 500 0.393 5.24E-15 3.88E-15 2.23E-15 8.52 / 12.05 
1000 1000 0.785 5.24E-15 7.78E-15 3.13E-15 11.95 / 16.90 
500 500 0.098 1.31E-15 9.72E-16 5.86E-16 8.52 / 12.05 
300 500 0.035 4.71É-16 3.50E-16 2.01E-16 8.52 / 12.05 
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Figure 4: Compliance and sensitivity for varying sizes of the back volume. 
 
3.2 Thermo-acoustic noise 
Figure 5 demonstrates the temperature changes in the cavity on a comparison of temperature 
variations for frequencies of 100 Hz, 1 kHz, and 20 kHz. Assuming the isothermal boundaries, 
we can observe that the thermal boundary layer size depends on the frequency of the 
movement. The thickness of the thermal boundary layers can be approximated by the formula 
[19] 
 

ℎ𝑇𝑇𝑇𝑇𝑇𝑇 = �
κ

ϱ0𝐶𝐶𝑝𝑝π𝑓𝑓
,                                                    (30) 

 
where ϱ0 is the density, κ is the thermal conductivity and 𝐶𝐶𝑝𝑝 is the specific heat at constant 
pressure of the air. For lower frequencies, the thermal boundary layers fill the whole cavity.  

We will use the formulae presented in [16, 17] to describe the noise produced by the 
agitation of air molecules. The Johnson-Nyquist noise pressure spectral density is expressed 
as 
 

𝑝𝑝𝐴𝐴(𝑓𝑓) = �4𝑘𝑘𝐵𝐵𝑇𝑇0𝑅𝑅𝐴𝐴(𝑓𝑓),                                              (31) 
 
where 𝑘𝑘𝑏𝑏 = 1.38 ⋅ 10−23[𝐽𝐽/𝐾𝐾] is Boltzmann's constant, 𝑇𝑇0 is the absolute temperature and 𝑅𝑅𝐴𝐴 
is the acoustic resistance. In practice, the overall noise level for the entire acoustic spectrum 
is obtained by integrating the spectral density and evaluated in dB. Also,  

the different perception of the human ear shall be taken into account. Hence, we apply the 
A-filtering. We calculate the A-weighted sound pressure level using the frequency-dependent 
weighting amplitude function 𝑤𝑤: 
 

𝑤𝑤(𝑓𝑓) = 121942 𝑓𝑓4

(𝑓𝑓2+20.62) �𝑓𝑓2+107.72 �𝑓𝑓2+737.92 (𝑓𝑓2+121942)
                           (32) 
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The A-weighted sound pressure level results from the integration formula 

 

𝐿𝐿𝑝𝑝𝐴𝐴𝐴𝐴 = 20 log� 1
𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟

�∫ 𝑝𝑝𝐴𝐴2(𝑓𝑓)𝑤𝑤2(𝑓𝑓) 𝑑𝑑𝑑𝑑20000
20 �.                         (33) 

 
For the precise estimation of the acoustic resistance 𝑅𝑅𝐴𝐴 we employ the Thermoviscous 

Acoustic module in Comsol [26]. The resistance can be computed as the resistive part of the 
acoustic impedance 𝑍𝑍𝑎𝑎𝑎𝑎 = 𝑝𝑝/𝑄𝑄𝐷𝐷, where 𝑝𝑝 is the pressure load and 𝑄𝑄𝐷𝐷 is the diaphragm 
volume velocity. The alternative way described in the Comsol manual [26] is a determination 
of the resistance through the dissipated and viscous heat in the cavity. 
 

 
Figure 5:Total temperature variation for frequencies of 100 Hz, 1 kHz, and 
20 kHz for a diaphragm of diameter 1 mm and cavity of height 500 µm. 
 
4. ACOUSTIC-STRUCTURE INTERACTION 
Let us describe the FEM simulation of the complete system of the interaction of 
thermoacoustic flow and diaphragm vibrations. The settings of the solid mechanics part of the 
problem are similar to the one described in Section 2. However, it differs in the boundary 
conditions on the upper and lower boundary of the diaphragm. On the upper boundary, we 
still prescribe uniform pressure load, but as a harmonic wave of a prescribed frequency in the 
acoustic frequency range from 20 Hz to 20 kHz. On the lower boundary, we define the 
coupling condition. The air pressure load acting on the boundary coming from the 
thermoacoustic flow and the velocity of the diaphragm vibrations is a boundary condition for 
the fluid flow. 

The thermoacoustic air flow in the cavity is described with the linearized compressible 
Navier-Stokes equations. On the walls of the cavity is prescribed no-slip condition and a zero 
velocity except for the common boundary of the cavity and diaphragm, where the velocity 
equals the deformation velocity as described above. We consider the surrounding temperature 
of 293.15 K and the isothermal wall boundary condition. In [19], the authors compared the 
adiabatic and isothermal boundary conditions. For the noise calculation, the isothermal 
boundary conditions lead to higher noise. Therefore, we do not expect our model to be 
underestimating the noise. 

As in Section 2, the computational domain is rotationally symmetric. Therefore, we can 
simplify the model to an axisymmetric setting. The governing system is formulated in the 
frequency domain. We choose a set of frequencies with a logarithmic distribution. The 
simulation results are interpolated with a piecewise linear function, which is used for the 
integration formulae. 
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We obtained using Comsol FE analysis noise and sensitivity approximations for different 
settings. In Table 8, we can compare the results for the corrugated and flat diaphragm of 
diameter 1 mm with a cylindrical back volume of the same diameter and height of 500 µm. 
The system with a corrugated diaphragm can reach higher sensitivity. However, the 
sensitivities are significantly lower than the static deflection without the effect of back volume. 
The computed noise is almost the same. Simulations with smaller diameter membranes show 
similarly lower sensitivity but higher noise values. This results from the fact that although we 
consider the same cavity height, the size of the back volume is naturally smaller due to the 
smaller diameter. 

Increased sensitivity can be achieved, for example, by increasing the depth of the 
corrugations, as shown in Figure 6, or by adding more corrugations, Figure 7. The noise values 
do not change significantly. The sensitivity will also be affected by the residual stress value 
due to the manufacturing process. However, as can be seen in Figure 8, variations of an order 
of magnitude of a few MPa result in a change in sensitivity of less than one nm/Pa. In order 
to achieve a decrease in the noise, we need to increase the size of the back volume. Figure 9 
shows that with a volume of about 1 mm3 we get to a noise level of about 20 dBA SPL. This 
noise level corresponds to a very quiet environment. These are promising results for the 
packaging, but on the other hand, they demonstrate the limits of the performance of the optical-
acoustic sensors. 
 
Table 2: Sensitivity 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡 and noise values obtained using Comsol for 
different diaphragm diameters 𝑑𝑑, thickness ℎ, intrinsic stress 𝜎𝜎0 and back 
volume height ℎ𝑏𝑏𝑏𝑏. 
𝒅𝒅  
[µm] 

𝒉𝒉  
[nm] 

𝒉𝒉𝒃𝒃𝒃𝒃  
 [µm] 

𝛔𝛔𝟎𝟎  
[MPa] 

Corrugations 
#: WxH [µm] 

𝑺𝑺𝒕𝒕𝒕𝒕𝒕𝒕 (rms/peak) 
 [nm/Pa] 

Noise 
SPL [dBA] 

1000 250 500 12 Flat 5.87 / 8.30 25.41 
1000 250 500 200 5: 10 x 1.1 7.23 / 10.23 25.37 
500 50 500 200 1: 10 x 0.65 6.28 / 8.89 32.07 
300 50 500 200 1: 10 x 0.65 7.49 / 10.59 36.77 
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Figure 6: Noise and sensitivity obtained using Comsol for different depths 
of 5 corrugations of width 10 µm for a diaphragm of diameter 1 mm, 
thickness 250 nm, intrinsic stress 200 MPa, and back volume height of 
diameter 1 mm and height 500 µm. 
 

 
Figure 7: Noise and sensitivity obtained using Comsol for different 
numbers of corrugations of height 1.1 µm and width 10 µm for a diaphragm 
of diameter 1 mm, thickness 250 nm, intrinsic stress 200 MPa and back 
volume height of diameter 1 mm and height 500 µm 
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Figure 8: Noise and sensitivity obtained using Comsol for different values 
of residual stress for a diaphragm of diameter 1 mm, thickness 250 nm, 
and intrinsic stress 200 MPa with 5 corrugations of height 1.1 µm, and width 
10 µm and back volume height of diameter 1 mm and height 500 µm. 
 

 
Figure 9: Noise and sensitivity obtained using Comsol for different sizes of 
the back volume of diameter 1 mm for a diaphragm of diameter 1 mm and 
thickness 250 nm with 5 corrugations of height 1.1 µm and width 10 µm. 
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5. CONCLUSION 
We have presented an overview of analytical and simulation methods used for the design of 
novel optical-acoustic sensors of minimal dimension. 

The main results are outcomes of the finite-element simulations. For rapid development, 
we can use algorithms based on formulae, which are analytical solutions of the differential 
equations of the base problem. However, as a main advantage of the theoretical approach, we 
find that one can understand the crucial principles of the system. For the diaphragm 
mechanical characteristics, we can understand that the trade-off between sensitivity and 
linearity consists primarily in reducing residual stress by the corrugations to values still high 
enough to avoid the nonlinear stretching for higher load. Furthermore, it allows us to 
understand that the back volume design is important for the sensitivity of the membrane itself. 
Back volume is also the primary source of thermo-viscous noise. It is supposed to be dominant 
in the whole acoustic spectrum.  

We can summarize that the necessary minimal size of the back volume limits the reduction 
of the size of the optical-acoustic sensor. The compliance of the back volume is also an 
essential factor for the sensitivity of diaphragms, which we can influence by designing 
corrugations under sufficiently low total harmonic distortion. The presented results are for the 
axisymmetric model of these main components. In practice, we must take into account the 
packaging requirements. This article also focuses only on the methodology and theoretical 
results. In the next phase of the project, prototype sensor measurements will follow. In the 
future, we can also present results for other essential topics, namely protective screen design 
and robustness. 
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