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Abstract

The purpose of this paper is to present some results related to the theory of pseudospectra .Given a
complex Banach space X, we denote by £(X) the algebra of all linear bounded operators
onit. For € > 0, let r.(T) denote the e-pseudospectral radius of T € L(X) and denote by | the
identity operator on X. For T € L(X), by a(T) we shall denote its spectrum and by r(T') its spectral
radius. For an infinite-dimensional space X, we characterize surjective maps ¢: L(X) -
L(X) such that 7.(¢(T)¢(T,)) = r.(TyT,) for all T;,T, € L(X). An analogous result is
obtained in the finite-dimensional case, with no surjectivity assumption on the map ¢.
Keywords: Nonlinear Preserver Mapping, Spectrum, Pseudo Spectrum, Spectral Radius,
Pseudo Spectral Radius, Banach Space

1. Introduction

Over the past few years, there has been a considerable interest in linear mappings on algebras of operators that
preserve certain properties of operators. In particular, a problem how to characterize linear maps that preserve the
spectrum of each operator has attracted the attention of many mathematicians. In [16], Jafarian and Sourour proved
that a surjective linear spectrum-preserving map of B(X) onto B(Y), where X and Y are Banach spaces, is either
an algebra-isomorphism or an antiisomorphism. A similar result for finite-dimensional spaces was obtained much
earlier by Marcus and Moyls [17]. Recently, Aupetit and Mouton [18] extended the result of Jafarian and Sourour
to primitive Banach algebras with minimal ideals.

The purpose of this paper is to present some results related to the theory of pseudospectra (see, for example, [3],
[11] and the book [15]), and then to use them for the study of a nonlinear preserver problem which is stated in
terms of the pseudospectral radius. Let £L(X) be the algebra of all bounded linear operators on a complex Banach
space X, and denote by | the identity operator on X. For T € L(X), by o(T) we shall denote its spectrum and by
r(T) its spectral radius. For € > 0, the ¢-pseudospectrum of a linear and continuous operator T defined on X is
usually defined as either

0. (T) ={A€C:|[(U =T)7!|| = 1/} M
or
we(T) = A€ G =)' > 1/¢} &)

with the convention that ||(AI — T)™!|| = +oo if Al — T € L£(X) is not invertible. (The norm used on £(X) is just
the standard operatorial one, that is || T|| = sup{[|Tx]|: ||x|| < 1}.) Therefore, the inclusions

a(T) € w.(T) € 0.(T)

always hold, with 4, (T) < C being open and g, (T) < C being compact. The inclusion w,(T) < ¢.(T) is always
strict, the closure of 1, (T) is a subset of o, (T), but the last inclusion may be strict (see, for example, [12, Theorem
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3.1]): this happens because the norm of the resolvent of a linear bounded operator may be constant on an open
set. Still,

sup{|A|: 1 € w.(T)} = sup{|A]: 1 € g.(T)}. ®)

To see this, we shall use the following result of Globevnik [10, Prop. 1]: if Q is an open subset in the unbounded
component of C\ o(T) and M > 0 issuch that ||(AI — T)™!|| < M for each A € Q, then ||(AI — T)™ || < M for
each A1 € Q. In order to obtain (3), denote R = sup{|A|: 1 € 0.(T)}. There exists then A, € g.(T) such that R =
[40], and since R > r(T), then 4, is in the unbounded component of C \ o(T). If A, € w(T), the two suprema
are equal. If not, then ||(A,] — T)™Y|| = 1/«. If there is no sequence (1,,),»; S w.(T) such that A,, = A,, there
exists & > 0 such that |2 — A,| < & implies |A| > r(T) and 1 & w,(T), that is ||(AI — T)~!|| < 1/e. The above
stated result gives then ||(AI — T)™1|| < 1/¢ for |A — A,| < &8, arriving to a contradiction. Thus |1,| = |1| = R,
for some sequence (4,,),, € w,(T), which implies again that the two suprema in (3) are equal.

Motivated by its classical counterpart, the common value of the two suprema in (3) will be called the e-
pseudospectral radius of T, and shall be denoted by . (T). For T € L(X), the following equality always holds

w ) = | J o +8). @
IElI<e
(See, for example, [3].) We also have that
clos(we()) € clos( | | o1 + E)) € 0.(1), )
IElI<e

where ‘clos’ denotes the closure (see, for example, [13]). Then (3), (4) and (5) give

1:(T) = sup{r(T + E): ||E|| < &}

= sup{r(T + E): ||[E|| < €}.
In particular,
r(M+e<r(T)<|TI+e (TeLX)) (6)

and

r(UTU™) =71(T) (T € L(X)),
if U € L(X) is a bijective isometry.
Let us also observe that, directly from the definition,

(T) = Alry (T (T € £(X),1 € C\ {0}).
In particular,
@T) =r(T) (T € LX), ¢l = 1.

2. Statement of the main results

The following result is proved in [2]. It extends to the case of e-pseudospectral radius the corresponding result for
the case of the e-pseudospectrum which was obtained in [6, Theorem 4.1].

Theorem 1. ([2, Theorem 1.1]) Let H be an infinite-dimensional complex Hilbert space and let € > 0. A surjective
map ¢: L(H) - L(H) satisfies

Tg((P(T1)(P(T2)) =1r(TyT,) (T,,T, € L(H))

if and only if there exist a functional &: L(H) — C with |£(T)| = 1 forevery T € L(H) and a unitary or conjugate
unitary operator U: H — H such that

@(T) =&(MUTU" (T € L(H)).
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A similar result also holds in the finite dimensional case. It extends the corresponding result for the case of the ¢-
pseudospectrum which was obtained in [4, Theorem 3.3]. Throughout this paper, by M, we shall denote the
algebra of all n x n matrices over the complex field.

Theorem 2. ([2, Theorem 1.2]) Let n = 3 and let € > 0. A map ¢: M, - M, satisfies

Ts(‘P(T1)<P(T2)) =1r(T\T) (T, T, € My,)

if and only if there exist a functional &: M,, — C with |£(T)| = 1 for every T € M, and a unitary matrix U € M,
such that either

@(T) =&(MUTU" (T € M),
or
@(T) =§(MUTU" (T € My).

(By T € M, we denote the matrix obtained from T € M, by entrywise complex conjugation, and by T* € M,
the conjugate of its transpose.)

It was left as an open question in [2] under which conditions the assertions of Theorem 1 and Theorem 2 remain
true in some Banach spaces. The aim of this paper is to prove that the statements remain true for every Banach
space. In the infinite-dimensional case, the following result holds.

Theorem 3. Let X be an infinite-dimensional complex Banach space and let € > 0. A surjective map ¢: L(X) —
L(X) satisfies

r(e(M)e(Ty)) = .(TT;)  (T1,T, € L(X)) (7
if and only if there exist a functional &: L(X) — C with |E(T)| = 1 for every T € L(X) and a bijective linear or
conjugate linear operator U: X — X such that ||U(x)|| = ||x]| for each x € X and

@(T) = &(TUTU™ (T € L(X)). ©)

The corresponding result for the finite-dimensional case is given by the next theorem. In the statement of Theorem
2, the norm on C" is the Euclidian one (which turns C™ into a Hilbert space), while in the next

statement the norm on C™ is an arbitrary one.

Theorem 4. Letn = 3 and let € > 0. A map ¢: M,, » M, satisfies

(M) =1(T;) (T, T, € My). ©)
if and only if there exist a functional &: M;,, = C with |£(T)| = 1 for every T € M, and an invertible matrix U €
M, such that either ||U(x)|| = ||x|| for each x € C™ and

@(T) =S(MUTU™ (T € My), (10)
or ||U(x)|| = ||x]| for each x € C™ and

o(T) =&(MUTU™ (T € M). (11)

3. Proofs

A basic tool for the proof of both [2, Theorem 1.1] and [2, Theorem 1.2] is [2, Lemma 2.6], stating that for a linear
continuous operator T on a Hilbert space and € > 0, we have that 7, (T) = ¢ if and only if T = 0. The next result
says that this also holds for operators defined on a general complex Banach space X. The main idea of its proof is
contained in [14]. (See also [9, Corollary 4.5].)

Theorem 5. Let T € L(X) such that
1. (T) =«

ThenT = 0.
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Proof. Since r(T) + ¢ < 1.(T) = ¢, thenr(T) = 0. Thus Al — T € L(X) is invertible for every non-zero 4 € C,
and therefore I — uT € L(X) is invertible for every u € C.

Observe now that if |A] > & then A & w,(T), and therefore ||[(AI — T)™ || < 1/e. Passing with |1] — & we see
that ||(AI — T)71|| < 1/¢ for every |A| = &. This gives ||(I — uT)~1|| < 1 for every |u| = 1/£. The analytic
function u —» (I — uT)~1 is well-defined on C, and since the norm of its value at 0 € C is 1, the maximum principle
implies that

IT—=uD)M=1 (ul<1/e). (12)
Consider now an arbitrary r € (0,1/¢). From (12) we infer that
NGr=rD)7M=1 (1§l =D. (13)

For every natural number n > 1, let T, = I + (¢T) + ---+ (rT)™. Denoting &, = e?™¥/®+D for k = 1, ...,n,
then

T, = B(ﬁ — &),

Using (13), we obtain that for every n > 1,

imn =] Jer s <] [ner-an-i=1
k=1 k=1

Observe now that
Tt =)™ -D1GT-1) (m=1).

Since T is quasinilpotent, then T,;* —» I —rT. This gives ||l —rT|| < 1. Analogously one can prove that
[II +7T| < 1. Aclassical fact due to Kakutani says that the identity is an extreme point of the closed unit ball of
L(X), and therefore T must be the zero operator. [

We shall also need the following observations regarding the e-pseudospectral radius of rank-one operators. In the
case of operators acting on a Hilbert space, the e-pseudospectral radius of rank-one operators can be computed
explicitly [6, Lemma 2.5].

For a nonzero x € X and a nonzero linear functional f in the dual X* of X, by x®f € L(X) we denote the rank-
one operator sendingy € X to f(y)x € X.

Lemma6. Letx € X and f € X*, (&,,),, € (0, +0), such that &, - 0 and (a,,),, € C.
i) If f(x) # 0and |a,| - +oo, then
T, (@ x®f) > 4
i) If |a,| = t € [0,+), then
Ten (@ X®f) = tIf ().
Proof. i) We have r(x®f) = |f(x)|, and then for each n using the first inequality in (6) we have
Ten (@nx®f) 2 1(ayx®f) + &n = |an|lf ()] + &n.
Since |a,||f (x)]| + &, = +oo, thenr, (a,x®f) — +oo.
ii) From
Ten (@nX®f) 2 |an|lf ()| + &, (n€EN),

since |a, |If ()| + &, = tIf ()], then lim inf 7, (@, x®f) = tIf (x)].
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Write now a,, = |a,|&, for each n, where [§,,| = 1. Let € > 0. For D = {z € C: |z| < t|f(x)| + €}, using the
upper semi-continuity of the spectrum [1, Theorem 3.4.2] we find & > 0 such that ||T|| <& implies
o(tx®f +T) € D.LetN € Nsuchthatn = N impliese, < §/2 and ||a,| — t]|||x®f|| < §/2. Thenn = N and
ITIl < &, implies |||a, |x®f + &,T — tx®f|| < &, which gives
o(lay|x®f +&,T) € D.
We have
(@ x®f +T) = (& (lan|x®f + &,T)) = r(lay lx®f + &,T),
and therefore
(@ x®f +T) <tlf()l+e @=N,ITI <¢&,)
Taking the supremum over T, then
., (ax ® )< tIf()|+e (mn=N).
This gives limsup 7, (a,x ® f) < t|f(x)| +¢& for every £>0, and therefore limsupr, (a,x ® f) <
tlf )l O

The next theorem gives estimations for the e-pseudospectral radius of square-zero operators. In the case of a
Hilbert space, the g-pseudospectral radius of those operators can be computed explicitly [6, Prop. 2.4]: if T €

L(H) for a Hilbert space H and T? = 0, then 7,(T) = /€2 + €||T]|.
Theorem 7. Let T € L(H) such that T2 = 0. Then

s+ 42+ 4¢||T||

VeIl < (1) < 5

Proof. The inequalities clearly hold for T = 0, so suppose for the remaining of the proof that T # 0. Since T? =
0, then one can easily check that

A =T)"t=1/A+T/2% (A€ C\{0}D.

Let (fu)n € X* and (x,), S X such that |f,(Tx,)| = IT|| with £,(Tx,) # 0 and ||f,.|| = l|x,]| = 1 for every n.
For each n, let &, € C be of modulus one such that

fn(xn) n fn(Txn) _ |fn(xn)| n |fn(Txn)|
Enelfa(Tax)|  Shelfa(Txy)l elfu(Txy)|  Elfa(Txy)]
_ _1Aax) L1
elfu(Txp)| €
1
=>—.
&

For A, =& elfu(Tx,)| €C,n=12,.. we have that |f,((I/A,+T/23)(x))| = 1/, which gives
1I/A, + T/A2|| = 1/e. Thus A,, € a.(T) for each n, which gives |1,,| < r.(T) for every n. Letting n — oo, this
gives the left hand side inequality from the statement.

Consider now a non-zero A € w,(T). Since ||(AI — T)™Y|| > 1/«, there exist f € X* and x € X, each of norm
one, such that |f(x)/A+ f(Tx)/2%| >1/s. Then |f)|/IA] + 1f(Tx)|/1A]1*> > 1/s, so let us write
[fCOI/IAL + If (Tx)1/121* = 1/y for some 0 <y < e. Then |A]> — y|f C)||A| — yIf (Tx)| = 0, which gives

YIfF G| +Y2If Q)12 + 4yIf (Tx)
> :

4] =
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Now |f(x)| < 1,|f(Tx)| < |IT||and ¥ < &, and therefore |A| < (e + /€2 + 4¢]||T||)/2. Taking the sup over ||,
we obtain the right hand side inequality from the statement. [

As a corollary, we obtain the following asymptotic behavior for the pseudospectral radius of square-zero
operators.

Corollary 8. If T2 = 0 in L(X), then

. 15(T)
lim 7 = JIITII. (14

3.1.The infinite-dimensional case: proof of Theorem 3

One can easily check that maps of the form (8) satisfy (7). For the converse, the starting point is Theorem 5 and
the following result which determines the structure on the set of rank-one operators of mappings preserving zero-
product of operators in both directions.

Lemma 9. (See [5, Lemma 2.2].) Suppose X is an infinite-dimensional complex Banach space and let ¢: L(X) —
L(X) be a surjective map such that

p(T)e(T) =0=TT, =0 (T, T, € L(X)). (15)

There exist then a functional a: £(X) — C\{0} and an invertible linear or conjugate linear bounded operator U on
X such that

o(T) = a(TYUTU™Y (T € L(X),rank(T) = 1). (16)

So suppose now that X is an infinite-dimensional Banach space, and let ¢: L(X) — L(X) be a surjective map such
that (7) holds. Then Theorem 5 and Lemma 9 imply the existence of o and U as in the statement of the lemma
such that (16) holds. Thus given any x € X and f € X, in the case when U is linear we have that

P(xQf) = a(x@fHU(xQf U™
= a(x®f)(Ux)®((UH)f).
While in the case when U: X — X is conjugate linear we have that
p(x®f) = a(x®f)(Ux)®f,

where f € X* is given by y — f(U~1y). Let us also observe that in the first case we have ((U™1)*f)(Ux) =
f(x), while in the second one we have f(Ux) = f(x). If we take the modulus, we obtain the same values.

Suppose now that U: X — X is linear: the remaining case, when U is conjugate linear, follows exactly in the same
way. Since ¢ is surjective, there exists Q € L(X) such that ¢(Q) = 1. Then (7) gives

n(M) =r@") (T €LX)). an
For T = nx®f fin (17), where n > 1 is a natural number and x € X, f € X*, we get
Te/m(@(x®@F)UN)®WU™)f) = rem ((QX)BF). (18)
Suppose now that f(x) # 0. Then ((U~1)*f)(Ux) # 0, and let us prove that
If (@)l

lim Ja(nx®f)| = (19)

If el

If this is not the case, then either one can find a subsequence (n;); of N such that |a(n,x®f)| = 4o, or one
can find a subsequence (n;), of N such thata |a(n,x®f)| = t # |f(Qx)|/|f (x)|. By Lemma 6, in the first case
we have 1., (@(x®f)(Ux)®W ™)' f) >+ and in the second one we have
Te/ny (@(ex @YU)W ™) f) = t|f (x)|. Now observe that again by Lemma 6 in both cases we have
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Te/m, (@X)®f) = |f(@x)|. Writing (18) for n = ny, k = 1,2, ..., and passing with k to infinity we arrive to a
contradiction.

Thus, (19) holds for each x and f with f(x) # 0. Consider now an arbitrary T € L(x). Then given any natural
numbern > 1landx € X, f € X™ with f(x) # 0, by (7) we have that

(@M a(nx@fHUx@HU™) = 1.(T (nx®f)),

and therefore

Te/m (@@ (@MUNSU ) f) = 1./n(T)®F) (2 1).
Letting n — +oo, then Lemma 6 (ii) and (19) imply that

Fool (U A (@MU = If(Tx)],

and therefore

If (@O If U oMU = If(Tx)] - If (). (20)
The equality (20) holds for f(x) # 0 and arbitrary T € L(X), and then by continuity it holds forevery x € X, f €
X*and T € L(X).

Suppose there exists x € X such that {x, Qx} is linearly independent. There exists then f € X* such that f(x) =1
and f(Qx) = 0. Using (20), this gives f(Tx) = 0 for every T € L(X) arriving to a contradiction. Thus Q = al
for some scalar a. By (7) we have 7. (@ (al)@(al)) = r.(al - al), and therefore r.(I) = r.(a?I). Thus 1 + ¢ =
|a|? + &, which gives |a| = 1. Then (20) gives |f (U @(T)Ux)| = |f(Tx)| for each f and x with f(x) # 0, and
then by continuity

If (U (MU = If(Tx)] (T € L(x),x €X,f €X).

This implies that for each x € X, there exists a, € C of modulus one such that (U 1 (T)U)(x) = a, T(x).
Indeed, we have U™t (T)Ux = 0 if and only if Tx = 0, while in the case when they are both nonzero we have
that they are linearly dependent: if not, one may choose f € X* such that f (U~ (T)Ux) is 0 while f(Tx) is not.
Thus in the second case we have alU~*@(T)Ux + bTx = 0 for some nonzero complex constants a and b, and by
considering f € X* such that f(Tx) # 0 we get |a| = |b].

Lemma 10 proved at the end of this section implies the existence of a map &: L(x) — Csuch that |£(T)| = 1 for
each T and

(M) =&(MUTU™ (T € L(x)). (21)

Let us prove now that we may normalize U in order to have ||U(x)|| = ||x|| for every x € X. To see this, let us
observe that by (21), we have T2 = 0 if and only if ¢(T)? = 0. Thus given any T € L(x) such that T2 = 0, by

(14) we have }Sig%(ra(T)/\/g) =TIl and }sigré(raﬁp(T))/\/g) = Jlle(MIl. Thus }Sigg)(ra(UTU‘l)/\/g) =

JIUTU-|. That ¢ (al) = I for some unimodular constant o and (7) give 7.(@(R)) = r.(R) for each R € L(x).
Then

re(URU™) = ,(EtRURIUM)/t = r.(p(tR))/t = r.(tR) /¢

= rs/t(R)
for each t > 0, and therefore rs(URU ™) = 15(R) for each R € L(x) and each § > 0. We then conclude that
loTu=t =TIl (T € L(x),T* = 0). (22)

For x € X and f € X* such that f(x) = 0, putting T = x ® f in (22) we obtain that ||(U~)*(OI ITU)|| =
Il lx|l. Since dim X = 3, then for two arbitrary nonzero vectors x, y € X by considering f € X* nonzero such
that f(x) = f(y) = 0, we obtain that
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el IIU(y)II< 1l )

Il Iyl Iy ol

This implies the existence of t > 0 such that ||U(x)|| = t||x|| for each x in X, and then just replace U by U/t.
Thus Theorem 3 will be proved, once we obtain the following somehow folklore result.
Lemma 10. Let A, B € L(x) such that for each x € X, there exists a, € C of modulus one such that

A(x) = a,B(x). (23)
There exists then a € C of modulus one such that A = aB in L(x).

Proof. We have ||A(x)|| = ||B(x)|| for each x, and therefore ker A and ker B coincide. If ker A = ker B = X,
there is nothing to be proved. If not, denote M = ker(A) and for the quotient X := X /M, consider the linear
bounded operators A, B;: X — X given by 4, (%) = A(x) and B, (%) = B(x) for each x € X. Observe that, once
again, for each x € X there exists a,, € C of modulus one such that 4, (%) = a,B,(%). But now A, and B, are
both injective operators.

Fix x; € )?\{ﬁ}, and let a € C of modulus one such that 4, (%) = aB; (X;). Let now £ € X such that £ and %
are linearly independent in X. Let a;, @, € C of modulus one such that 4, (%) = a;B;(%) and 4,(X + %) =
a,B, (% +%;,). Then

Bi((a — ax)xy + (@ — a3)X) = 0.

The injectivity of B; gives (o — a,)%, + (a — a,)% = 0, and therefore @ = a; = a,. Thus 4, (%) = aB, (%) for
each x such that £ and x; are linearly independent, and since 4, (Xy) = aB, (%,) this gives A; = aB;. Thus, A =
aB in L(x). o

If instead of (23) we merely suppose that {Ax, Bx} is linearly dependent for each x € X, the conclusion of Lemma
10 no longer holds: one can only conclude the existence of «, 8 € C and x, € X, f; € X™ such that A + B =
Xo®f,. (See, for example, [1, Theorem 4.2.9 and Remark 3 at page 88].) If {Ax, Bx} is always linearly dependent
and B is supposed injective, as in the proof of Lemma 10 we obtain the existence of a € C such that A = aB. This
holds for example when B is the identity operator on X.

3.2 .The finite-dimensional case: proof of Theorem 4

Again, one can easily check that maps of the form (10) and (11) satisfy (9). For the converse, most of the proof
for this case has also been carried out in the infinite-dimensional case. Instead of Lemma 10, we shall use the
following result.

Lemma 11. (See [8, Theorem 2.1].) Let n > 3 and suppose ¢: M,, = M, is a map such that
p(T)e(T) =0=TT, =0 (T,T, € My).

There exist then a functional a: M;,, — C\{0}, an invertible matrix U € M,, and a field monomorphism #n of C
such that

o(T) = a(MUT"U™Y (T € M, rank(T) = 1). (24)
(By T" € M, we denote the matrix obtained from T € M, by applying n to every entry of it.)

Theorem 5 and lemma 11 imply the existence of a and U such that (24) holds. We shall write in the following
the elements of C™ as column vectors. Let us observe that for f = [fi, ... f,]¢ € C" andx = [xy, ..., x,]t € C"*,
then xft € M, is a rank one matrix, which corresponds to the rank one operator x ® f: C* — C" given by y —
FOx = (Fiy)x = (X, fiy)x : for
y=1[y, ..,y €C*. Let us also observe that for each f and =x, we have
(cfOHT = x"(fHH" € M, and then (24) gives

pCef*) = alxfOUXT(fOTUTT (f,x €C™)
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Let us first prove that T — |a(T)| is constant on the set of matrices T € M, of rank exactly one. Indeed, if T; =
xff and T, = xff for x, f1, f, € C* with x nonzero and {f;, f>} linearly independent, then for T = x,f{ with
Xo, fo € C" nonzero such that fifx, = ffx, and the common value is nonzero, we have T,T = (ffxo)xf{ =
(ffxo)xfs = T,T. Then (9) and (24) give

r(a(TDa(MU(TTYU™) = 1(ThT) = 1.(1,T)
= 1.(a(Ta(T)U(T,T)"U™)
= 1.(a(T)a(MU (T, T)"U™Y)

Since T, T # 0 and 5 is a monomorphism, then (T, T)" # 0. Thus U(T,T)"U~* # 0, and then part (ii) of lemma
12 below gives |a(T)||la(T)| = |la(T)||a(T)|. That |a(T)| # 0 gives then |a(T;)| = |a(T,)|. Analogously, if
T, =x.ft and T, = x,f*for f,x;,x, € C* with f nonzero and {x;,x,} linearly independent, then |a(T;)| =
|a(T,)|. Thus if x;, x, in C™ are linearly independent and f;, f5 in C™ are also linearly independent, we have

|a’(x1f1t)| = |a(x1f2t)| = |a(x2f2t)|-

Now let x,,x, be nonzero in C", and f;,f, also nonzero in C". Choose x € C" and f € C" such that
{x, x.}, {x, %}, {f, fi} and {f, f>} are respectively linearly independent. By what we just proved, we have

lae Gy fO] = la(xfO)]
= |a(x2f2t)|-

Thus, there exists § > 0 such that |a(xf*)| = § for every x, f € C*\{0}. For x = f = ¢; = [1,0, ...,0]* € C",
and z € C\{0} for T = xf* we have T? = T and then by (9),

1.(a(zT)a(T)U(zT)"U™Y) = 1,(2T).
Then (6) gives
e+ 1r(azT)a(TU(T)'U™Y) < e+ ||2T|l,
and therefore
82n@)| < Izl lIxf*ll  (z€©)

Thus the monomorphism 7 of C is continuous, and this implies that either n(z) = z for every z € C,orn(z) =z
for every z € C.

For f,x € C", an integer k > 1 and T € M, arbitrary, that 7, (¢ (T) @ (kxf*)) = 1. (kTxf*) gives
Tep(@kxfOQ(MUXT. (FOYNU™Y) = 1 (TxfF).

Letting k — oo, by Lemma 6 we obtain that

SIFECUM (@(M)"U™| = IfTx|  (f,x €C"T € My) (25)

Where 7 is either the identity, or the conjugation.

ForT =1, in (25), we have that ftx = 0 implies fE((UM (@ (1,))"U"x) =0 . This implies that x and
UM Y eI))"U"x are linearly dependent for every x, and therefore (U")"1(@(I,))"U" = al, for some
complex constant a, which, by (25),is not zero. Thus ¢(I,,) = n(a)1,. That .(p(I,)?) = r.(I,) gives |n(a) | =
1, and therefore || = 1. Putting T = I,, in (25), we obtain that § = 1 . Therefore, if 7 is the identity then

If* (U™ p(T)Ux| = |f*Tx| (f, xeC™, TeM,,),
While if n is the conjugation we obtain that
|fE (T (M Ux| = |f*ITx (f, xeC*, TeM,,).

Now exactly as in the final part of the proof of Theorem 3 we obtain in the first case that ¢(T) = &(T)UTU? for
every eM,, , where &: M, — C is a functional satisfying |é(T)| = 1 for every T and U can be normalized such
that ||Ux|| = ||x|| for each xeC™ while in the second case we have that ¢ (T) = E(T)UTU ! for every TeM,
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where &: M, — C is a functional satisfying |é(T)| = 1 for every T and U can be normalized such that ||Ux]|| =
[|x|| for each xeC™.

Thus, all that remains to be proved is the following lemma, which is of interest in its own. (see also [7] .)
Lemmal2. i)If ToeM,, andA, € C satisfy |1y| < 1 and r.(A,T,) = 1.(Ty), then Ty = 0.
ii) If T € M, is not zero and A, 4, # 0 in C satisfy r,(A,T) = r.(A,T), then |1,| = |A,].

Proof. i) Since the spectral radius is continuos on M, (see, for example, [1, Corollary 3.4.5] and M, is of finite
dimension, by compactness there exists E, € M, with ||E,|| < € such that 7.(4,T;) = r(4,T, + E,). Consider
then the subharmonic function A - (AT, + E,) on C (see, for example,[1. Theorem 3.4.7]). For |A| = 1, its value
at Aisr (T0 +ZE0) < 1.(Ty), and its value at Ay is 1.(14Ty) = 7.(Ty). Using the maximum principle for
subharmonic functions, we obtain that r(AT, + E,) = 7.(T,) for |A| < 1. .In particular, r(E,) = r.(Ty). That
[|Eo|l < € gives r(E,) < € and therefore 1.(T,) < €. By (6) we get 1.(T,) = €. Then Theorem1 implies that T, =
0.

ii)If, for example, |1,]| < |1,], then for 4, = A, /A, and T, = A,T we have |1,| < 1 and 1,(1,Ty) = 7.(Ty). Then
part (i) gives T, = 0. Thus = 0, arriving to a contradiction.
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