
International Journal of Multiphysics 

Volume 18, No. 4, 2024 

ISSN: 1750-9548 
 

761 
 

On Preserver Mappings of Spectrum and Spectral Radius 

of Linear Operators in Banach Spaces 
 

Iman Bahreyni1, Rahmat Soltani2, Fariba Ershad3 

*1Mathematics Major,Department of Mathematics, Payame Noor University, Tehran, Iran. 
2Assistant Professor, Department of Mathematics, Payame Noor University, Tehran, Iran. 

3Assistant Professor, Department of Mathematics, Payame Noor University, Tehran, Iran. 

*Corresponding author 

Abstract 

The purpose of this paper is to present some results related to the theory of pseudospectra .Given a 

complex Banach space X, we denote by ℒ(𝑋) the algebra of all linear bounded operators 

on it. For 𝜀 > 0, let 𝑟𝜀(𝑇) denote the ε-pseudospectral radius of 𝑇 ∈ ℒ(𝑋) and denote by I the 

identity operator on X. For 𝑇 ∈ ℒ(𝑋), by 𝜎(𝑇) we shall denote its spectrum and by 𝑟(𝑇) its spectral 

radius. For an infinite-dimensional space X, we characterize surjective maps 𝜑: ℒ(𝑋) →

ℒ(𝑋) such that 𝑟𝜀(𝜑(𝑇1)𝜑(𝑇2)) = 𝑟𝜀(𝑇1𝑇2) for all 𝑇1, 𝑇2 ∈ ℒ(𝑋). An analogous result is 

obtained in the finite-dimensional case, with no surjectivity assumption on the map 𝜑. 

Keywords: Nonlinear Preserver Mapping, Spectrum, Pseudo Spectrum, Spectral Radius, 
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1. Introduction 

Over the past few years, there has been a considerable interest in linear mappings on algebras of operators that 

preserve certain properties of operators. In particular, a problem how to characterize linear maps that preserve the 

spectrum of each operator has attracted the attention of many mathematicians. In [16], Jafarian and Sourour proved 

that a surjective linear spectrum-preserving map of 𝔅(𝑋) onto 𝔅(𝑌), where X and Y are Banach spaces, is either 

an algebra-isomorphism or an antiisomorphism. A similar result for finite-dimensional spaces was obtained much 

earlier by Marcus and Moyls [17]. Recently, Aupetit and Mouton [18] extended the result of Jafarian and Sourour 

to primitive Banach algebras with minimal ideals. 

The purpose of this paper is to present some results related to the theory of pseudospectra (see, for example, [3], 

[11] and the book [15]), and then to use them for the study of a nonlinear preserver problem which is stated in 

terms of the pseudospectral radius. Let ℒ(𝑋) be the algebra of all bounded linear operators on a complex Banach 

space X, and denote by I the identity operator on X. For 𝑇 ∈ ℒ(𝑋), by 𝜎(𝑇) we shall denote its spectrum and by 

𝑟(𝑇) its spectral radius. For 𝜀 > 0, the ε-pseudospectrum of a linear and continuous operator T defined on X is 

usually defined as either  

𝜎𝜀(𝑇) = {𝜆 ∈ ℂ: ‖(𝜆𝐼 − 𝑇)−1‖ ≥ 1 𝜀⁄ } (1) 

or 

𝓌𝜀(𝑇) = {𝜆 ∈ ℂ: ‖(𝜆𝐼 − 𝑇)−1‖ > 1 𝜀⁄ } (2) 

with the convention that ‖(𝜆𝐼 − 𝑇)−1‖ = +∞ if 𝜆𝐼 − 𝑇 ∈ ℒ(𝑋) is not invertible. (The norm used on ℒ(𝑋) is just 

the standard operatorial one, that is ‖𝑇‖ = sup{‖𝑇𝑥‖: ‖𝑥‖ ≤ 1}.) Therefore, the inclusions  

𝜎(𝑇) ⊆ 𝓌𝜀(𝑇) ⊆ 𝜎𝜀(𝑇) 

always hold, with 𝓌𝜀(𝑇) ⊆ ℂ being open and 𝜎𝜀(𝑇) ⊆ ℂ being compact. The inclusion 𝓌𝜀(𝑇) ⊆ 𝜎𝜀(𝑇) is always 

strict, the closure of 𝓌𝜀(𝑇) is a subset of 𝜎𝜀(𝑇), but the last inclusion may be strict (see, for example, [12, Theorem 
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3.1]): this happens because the norm of the resolvent of a linear bounded operator may be constant on an open 

set. Still,  

sup{|𝜆|: 𝜆 ∈ 𝓌𝜀(𝑇)} = sup{|𝜆|: 𝜆 ∈ 𝜎𝜀(𝑇)}. (3) 

To see this, we shall use the following result of Globevnik [10, Prop. 1]: if Ω is an open subset in the unbounded 

component of ℂ ∖ 𝜎(𝑇) and 𝑀 >  0 is such that ‖(𝜆𝐼 − 𝑇)−1‖ ≤ 𝑀 for each 𝜆 ∈ Ω, then ‖(𝜆𝐼 − 𝑇)−1‖ < 𝑀 for 

each 𝜆 ∈ Ω. In order to obtain (3), denote 𝑅 = sup{|𝜆|: 𝜆 ∈ 𝜎𝜀(𝑇)}. There exists then 𝜆0 ∈ 𝜎𝜀(𝑇) such that 𝑅 =

|𝜆0|, and since 𝑅 > 𝑟(𝑇), then 𝜆0 is in the unbounded component of ℂ ∖ 𝜎(𝑇). If 𝜆0 ∈ 𝓌𝜀(𝑇), the two suprema 

are equal. If not, then ‖(𝜆0𝐼 − 𝑇)−1‖ = 1 𝜀⁄ . If there is no sequence (𝜆𝑛)𝑛≥1 ⊆ 𝓌𝜀(𝑇) such that 𝜆𝑛 → 𝜆0, there 

exists 𝛿 > 0 such that |𝜆 − 𝜆0| < 𝛿 implies |𝜆| > 𝑟(𝑇) and 𝜆 ∉ 𝓌𝜀(𝑇), that is ‖(𝜆𝐼 − 𝑇)−1‖ ≤ 1 𝜀⁄ . The above 

stated result gives then ‖(𝜆𝐼 − 𝑇)−1‖ < 1 𝜀⁄  for |𝜆 − 𝜆0| < 𝛿, arriving to a contradiction. Thus |𝜆𝑛| → |𝜆| = 𝑅, 

for some sequence (𝜆𝑛)𝑛 ⊆ 𝓌𝜀(𝑇), which implies again that the two suprema in (3) are equal.  

Motivated by its classical counterpart, the common value of the two suprema in (3) will be called the ε-

pseudospectral radius of T, and shall be denoted by 𝑟𝜀(𝑇). For 𝑇 ∈ ℒ(𝑋), the following equality always holds  

𝓌𝜀(𝑇) = ⋃ 𝜎(𝑇 + 𝐸)

‖𝐸‖<𝜀

. (4) 

(See, for example, [3].) We also have that  

clos(𝓌𝜀(𝑇)) ⊆ clos( ⋃ 𝜎(𝑇 + 𝐸)

‖𝐸‖<𝜀

) ⊆ 𝜎𝜀(𝑇), (5) 

where ‘clos’ denotes the closure (see, for example, [13]). Then (3), (4) and (5) give  

𝑟𝜀(𝑇) = sup{𝑟(𝑇 + 𝐸): ‖𝐸‖ < 𝜀} 

            = sup{𝑟(𝑇 + 𝐸): ‖𝐸‖ ≤ 𝜀}. 

In particular,  

𝑟(𝑇) + 𝜀 ≤ 𝑟𝜀(𝑇) ≤ ‖𝑇‖ + 𝜀     (𝑇 ∈ ℒ(𝑋)) (6) 

and  

𝑟𝜀(𝑈𝑇𝑈−1) = 𝑟𝜀(𝑇)     (𝑇 ∈ ℒ(𝑋)), 

if 𝑈 ∈ ℒ(𝑋) is a bijective isometry.  

Let us also observe that, directly from the definition, 

𝑟𝜀(𝜆𝑇) = |𝜆|𝑟𝜀 |𝜆|⁄ (𝑇)     (𝑇 ∈ ℒ(𝑋), 𝜆 ∈ ℂ ∖ {0}). 

In particular, 

𝑟𝜀(𝜉𝑇) = 𝑟(𝑇)     (𝑇 ∈ ℒ(𝑋), |𝜉| = 1). 

2. Statement of the main results   

The following result is proved in [2]. It extends to the case of ε-pseudospectral radius the corresponding result for 

the case of the ε-pseudospectrum which was obtained in [6, Theorem 4.1]. 

Theorem 1. ([2, Theorem 1.1]) Let H be an infinite-dimensional complex Hilbert space and let ɛ > 0. A surjective 

map 𝜑: ℒ(𝐻) → ℒ(𝐻) satisfies  

𝑟𝜀(𝜑(𝑇1)𝜑(𝑇2)) = 𝑟𝜀(𝑇1𝑇2)     (𝑇1, 𝑇2 ∈ ℒ(𝐻)) 

if and only if there exist a functional 𝜉: ℒ(𝐻) → ℂ with |𝜉(𝑇)| = 1 for every 𝑇 ∈ ℒ(𝐻) and a unitary or conjugate 

unitary operator 𝑈: 𝐻 → 𝐻 such that  

𝜑(𝑇) = 𝜉(𝑇)𝑈𝑇𝑈∗     (𝑇 ∈ ℒ(𝐻)). 
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A similar result also holds in the finite dimensional case. It extends the corresponding result for the case of the ε-

pseudospectrum which was obtained in [4, Theorem 3.3]. Throughout this paper, by ℳ𝑛 we shall denote the 

algebra of all 𝑛 × 𝑛 matrices over the complex field. 

Theorem 2. ([2, Theorem 1.2]) Let 𝑛 ≥ 3 and let 𝜀 > 0. A map 𝜑: ℳ𝑛 → ℳ𝑛 satisfies 

𝑟𝜀(𝜑(𝑇1)𝜑(𝑇2)) = 𝑟𝜀(𝑇1𝑇2)     (𝑇1, 𝑇2 ∈ ℳ𝑛) 

if and only if there exist a functional 𝜉: ℳ𝑛 → ℂ with |𝜉(𝑇)| = 1 for every 𝑇 ∈ ℳ𝑛 and a unitary matrix 𝑈 ∈ ℳ𝑛 

such that either 

𝜑(𝑇) = 𝜉(𝑇)𝑈𝑇𝑈∗     (𝑇 ∈ ℳ𝑛), 

or 

𝜑(𝑇) = 𝜉(𝑇)𝑈𝑇̅𝑈∗     (𝑇 ∈ ℳ𝑛). 

(By 𝑇̅ ∈ ℳ𝑛 we denote the matrix obtained from 𝑇 ∈ ℳ𝑛 by entrywise complex conjugation, and by 𝑇∗ ∈ ℳ𝑛 

the conjugate of its transpose.) 

It was left as an open question in [2] under which conditions the assertions of Theorem 1 and Theorem 2 remain 

true in some Banach spaces. The aim of this paper is to prove that the statements remain true for every Banach 

space. In the infinite-dimensional case, the following result holds. 

Theorem 3. Let X be an infinite-dimensional complex Banach space and let 𝜀 > 0. A surjective map 𝜑: ℒ(𝑋) →

ℒ(𝑋) satisfies 

𝑟𝜀(𝜑(𝑇1)𝜑(𝑇2)) = 𝑟𝜀(𝑇1𝑇2)     (𝑇1, 𝑇2 ∈ ℒ(𝑋)) (7) 

if and only if there exist a functional 𝜉: ℒ(𝑋) → ℂ with |𝜉(𝑇)| = 1 for every 𝑇 ∈ ℒ(𝑋) and a bijective linear or 

conjugate linear operator 𝑈: 𝑋 → 𝑋 such that ‖𝑈(𝑥)‖ = ‖𝑥‖ for each 𝑥 ∈ 𝑋 and   

𝜑(𝑇) = 𝜉(𝑇)𝑈𝑇𝑈−1     (𝑇 ∈ ℒ(𝑋)). (8) 

The corresponding result for the finite-dimensional case is given by the next theorem. In the statement of Theorem 

2, the norm on ℂ𝑛 is the Euclidian one (which turns ℂ𝑛 into a Hilbert space), while in the next   

statement the norm on ℂ𝑛 is an arbitrary one. 

Theorem 4. Let 𝑛 ≥ 3 and let ɛ > 0. A map 𝜑: ℳ𝑛 → ℳ𝑛 satisfies   

𝑟𝜀(𝜑(𝑇1)𝜑(𝑇2)) = 𝑟𝜀(𝑇1𝑇2)     (𝑇1, 𝑇2 ∈ ℳ𝑛). (9) 

if and only if there exist a functional 𝜉: ℳ𝑛 → ℂ with |𝜉(𝑇)| = 1 for every 𝑇 ∈ ℳ𝑛 and an invertible matrix 𝑈 ∈

ℳ𝑛 such that either ‖𝑈(𝑥)‖ = ‖𝑥‖ for each 𝑥 ∈ ℂ𝑛 and 

𝜑(𝑇) = 𝜉(𝑇)𝑈𝑇𝑈−1     (𝑇 ∈ ℳ𝑛), (10) 

or ‖𝑈(𝑥)‖ = ‖𝑥̅‖ for each 𝑥 ∈ ℂ𝑛 and 

𝜑(𝑇) = 𝜉(𝑇)𝑈𝑇̅𝑈−1     (𝑇 ∈ ℳ𝑛). (11) 

3. Proofs  

A basic tool for the proof of both [2, Theorem 1.1] and [2, Theorem 1.2] is [2, Lemma 2.6], stating that for a linear 

continuous operator T on a Hilbert space and ɛ > 0, we have that 𝑟𝜀(𝑇) = 𝜀 if and only if 𝑇 = 0. The next result 

says that this also holds for operators defined on a general complex Banach space X. The main idea of its proof is 

contained in [14]. (See also [9, Corollary 4.5].)   

Theorem 5. Let 𝑇 ∈ ℒ(𝑋) such that 

𝑟𝜀(𝑇) = 𝜀. 

Then 𝑇 = 0. 
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Proof. Since 𝑟(𝑇) + 𝜀 ≤  𝑟𝜀(𝑇) = 𝜀, then 𝑟(𝑇) = 0. Thus 𝜆𝐼 − 𝑇 ∈ ℒ(𝑋)  is invertible for every non-zero  𝜆 ∈ ℂ, 

and therefore 𝐼 − 𝜇𝑇 ∈ ℒ(𝑋)  is invertible for every 𝜇 ∈ ℂ. 

Observe now that if |𝜆| > 𝜀 then 𝜆 ∉ 𝓌𝜀(𝑇), and therefore ‖(𝜆𝐼 − 𝑇)−1‖ ≤ 1 𝜀⁄ . Passing with |𝜆| → 𝜀 we see 

that ‖(𝜆𝐼 − 𝑇)−1‖ ≤ 1 𝜀⁄  for every |𝜆| = 𝜀. This gives ‖(𝐼 − 𝜇𝑇)−1‖ ≤ 1 for every |𝜇| = 1 𝜀⁄ . The analytic 

function 𝜇 → (𝐼 − 𝜇𝑇)−1 is well-defined on ℂ, and since the norm of its value at 0 ∈ ℂ is 1, the maximum principle 

implies that 

‖(𝐼 − 𝜇𝑇)−1‖ = 1     (|𝜇| ≤ 1 𝜀⁄ ). (12) 

Consider now an arbitrary 𝑟 ∈ (0, 1 𝜀⁄ ). From (12) we infer that 

‖(𝜉𝐼 − 𝑟𝑇)−1‖ = 1     (|𝜉| = 1). (13) 

For every natural number 𝑛 ≥ 1, let 𝑇𝑛 = 𝐼 + (𝑟𝑇) + ⋯ + (𝑟𝑇)𝑛. Denoting 𝜉𝑘 = 𝑒2𝜋𝑘𝑖 (𝑛+1)⁄  for 𝑘 = 1, … , 𝑛, 

then 

𝑇𝑛 = ∏(𝑟𝑇 − 𝜉𝑘𝐼)

𝑛

𝑘=1

. 

Using (13), we obtain that for every 𝑛 ≥ 1, 

‖𝑇𝑛
−1‖ = ‖∏(𝑟𝑇 − 𝜉𝑘𝐼)−1

𝑛

𝑘=1

‖ ≤ ∏‖(𝑟𝑇 − 𝜉𝑘𝐼)−1‖

𝑛

𝑘=1

= 1. 

Observe now that 

𝑇𝑛
−1 = ((𝑟𝑇)𝑛+1 − 𝐼)−1(𝑟𝑇 − 1)     (𝑛 ≥ 1). 

Since T is quasinilpotent, then 𝑇𝑛
−1 → 𝐼 − 𝑟𝑇. This gives ‖𝐼 − 𝑟𝑇‖ ≤ 1. Analogously one can prove that 

‖𝐼 + 𝑟𝑇‖ ≤ 1. A classical fact due to Kakutani says that the identity is an extreme point of the closed unit ball of 

ℒ(𝑋), and therefore T must be the zero operator.  

We shall also need the following observations regarding the ɛ-pseudospectral radius of rank-one operators. In the 

case of operators acting on a Hilbert space, the ɛ-pseudospectral radius of rank-one operators can be computed 

explicitly [6, Lemma 2.5]. 

For a nonzero 𝑥 ∈ 𝑋 and a nonzero linear functional f in the dual 𝑋∗ of X, by 𝑥⨂𝑓 ∈ ℒ(𝑋)  we denote the rank-

one operator sending 𝑦 ∈ 𝑋 to 𝑓(𝑦)𝑥 ∈ 𝑋. 

Lemma 6. Let 𝑥 ∈ 𝑋 and 𝑓 ∈ 𝑋∗, (𝜀𝑛)𝑛 ⊆ (0, +∞), such that 𝜀𝑛 → 0 and (𝛼𝑛)𝑛 ⊆ ℂ. 

i) If 𝑓(𝑥) ≠ 0 and |𝛼𝑛| → +∞, then 

𝑟𝜀𝑛
(𝛼𝑛𝑥⨂𝑓) → +∞ 

ii) If |𝛼𝑛| → 𝑡 ∈ [0, +∞), then 

𝑟𝜀𝑛
(𝛼𝑛𝑥⨂𝑓) → 𝑡|𝑓(𝑥)|. 

Proof. i) We have 𝑟(𝑥⨂𝑓) = |𝑓(𝑥)|, and then for each n using the first inequality in (6) we have 

𝑟𝜀𝑛
(𝛼𝑛𝑥⨂𝑓) ≥ 𝑟(𝛼𝑛𝑥⨂𝑓) + 𝜀𝑛 = |𝛼𝑛||𝑓(𝑥)| + 𝜀𝑛. 

Since |𝛼𝑛||𝑓(𝑥)| + 𝜀𝑛 → +∞, then 𝑟𝜀𝑛
(𝛼𝑛𝑥⨂𝑓) → +∞. 

ii) From 

𝑟𝜀𝑛
(𝛼𝑛𝑥⨂𝑓) ≥ |𝛼𝑛||𝑓(𝑥)| + 𝜀𝑛     (𝑛 ∈ ℕ), 

since |𝛼𝑛||𝑓(𝑥)| + 𝜀𝑛 → 𝑡|𝑓(𝑥)|, then lim inf 𝑟𝜀𝑛
(𝛼𝑛𝑥⨂𝑓) ≥ 𝑡|𝑓(𝑥)|. 
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Write now 𝛼𝑛 = |𝛼𝑛|𝜉𝑛 for each n, where |𝜉𝑛| = 1. Let 𝜀 > 0. For 𝐷 = {𝑧 ∈ ℂ: |𝑧| < 𝑡|𝑓(𝑥)| + 𝜀}, using the 

upper semi-continuity of the spectrum [1, Theorem 3.4.2] we find 𝛿 > 0 such that ‖𝑇‖ < 𝛿 implies 

𝜎(𝑡𝑥⨂𝑓 + 𝑇) ⊆ 𝐷. Let 𝑁 ∈ ℕ such that 𝑛 ≥ 𝑁 implies 𝜀𝑛 < 𝛿 2⁄  and ||𝛼𝑛| − 𝑡|‖𝑥⨂𝑓‖ < 𝛿 2⁄ . Then 𝑛 ≥ 𝑁 and 

‖𝑇‖ ≤ 𝜀𝑛 implies ‖|𝛼𝑛|𝑥⨂𝑓 + 𝜉𝑛̅𝑇 − 𝑡𝑥⨂𝑓‖ < 𝛿, which gives 

𝜎(|𝛼𝑛|𝑥⨂𝑓 + 𝜉𝑛̅𝑇) ⊆ 𝐷. 

We have 

𝑟(𝛼𝑛𝑥⨂𝑓 + 𝑇) = 𝑟(𝜉𝑛(|𝛼𝑛|𝑥⨂𝑓 + 𝜉𝑛̅𝑇)) = 𝑟(|𝛼𝑛|𝑥⨂𝑓 + 𝜉𝑛̅𝑇), 

and therefore 

𝑟(𝛼𝑛𝑥⨂𝑓 + 𝑇) ≤ 𝑡|𝑓(𝑥)| + 𝜀        (𝑛 ≥ 𝑁, ‖𝑇‖ ≤ 𝜀𝑛) 

Taking the supremum over T, then 

𝑟𝜀𝑛
(𝛼𝑛𝑥 ⊗  𝑓) ≤  𝑡|𝑓(𝑥)| +  𝜀        (𝑛 ≥  𝑁). 

This gives lim sup 𝑟𝜀𝑛
(𝛼𝑛𝑥 ⊗ 𝑓) ≤ 𝑡|𝑓(𝑥)| + 𝜀 for every 𝜀 > 0, and therefore lim sup 𝑟𝜀𝑛

(𝛼𝑛𝑥 ⊗  𝑓) ≤

 𝑡|𝑓(𝑥)|.  

The next theorem gives estimations for the e-pseudospectral radius of square-zero operators. In the case of a 

Hilbert space, the ε-pseudospectral radius of those operators can be computed explicitly [6, Prop. 2.4]: if 𝑇 ∈

ℒ(𝐻) for a Hilbert space H and 𝑇2 = 0, then 𝑟𝜀(𝑇) = √𝜀2 + 𝜀‖𝑇‖. 

Theorem 7. Let 𝑇 ∈ ℒ(𝐻) such that 𝑇2 = 0. Then 

√𝜀‖𝑇‖ ≤ 𝑟𝜀(𝑇) ≤
𝜀 + √𝜀2 + 4𝜀‖𝑇‖

2
. 

Proof. The inequalities clearly hold for 𝑇 = 0, so suppose for the remaining of the proof that 𝑇 ≠ 0. Since  𝑇2 =

0, then one can easily check that 

(𝜆𝐼 − 𝑇)−1 = 𝐼 𝜆⁄ + 𝑇 𝜆2⁄        (𝜆 ∈ ℂ\{0}). 

Let (𝑓𝑛)𝑛 ⊆ 𝑋∗ and (𝑥𝑛)𝑛 ⊆ 𝑋 such that |𝑓𝑛(𝑇𝑥𝑛)| → ‖𝑇‖ with 𝑓𝑛(𝑇𝑥𝑛) ≠ 0 and ‖𝑓𝑛‖ = ‖𝑥𝑛‖ = 1 for every n. 

For each n, let 𝜉𝑛 ∈ ℂ be of modulus one such that 

|
𝑓𝑛(𝑥𝑛)

𝜉𝑛√𝜀|𝑓𝑛(𝑇𝑥𝑛)|
+

𝑓𝑛(𝑇𝑥𝑛)

𝜉𝑛
2𝜀|𝑓𝑛(𝑇𝑥𝑛)|

| =
|𝑓𝑛(𝑥𝑛)|

√𝜀|𝑓𝑛(𝑇𝑥𝑛)|
+

|𝑓𝑛(𝑇𝑥𝑛)|

𝜀|𝑓𝑛(𝑇𝑥𝑛)|
 

                                             =
|𝑓𝑛(𝑇𝑥𝑛)|

√𝜀|𝑓𝑛(𝑇𝑥𝑛)|
+

1

𝜀
 

                 ≥
1

𝜀
. 

For 𝜆𝑛 ≔ 𝜉𝑛√𝜀|𝑓𝑛(𝑇𝑥𝑛)| ∈ ℂ , 𝑛 = 1,2, …, we have that |𝑓𝑛((𝐼 𝜆𝑛⁄ + 𝑇 𝜆𝑛
2⁄ )(𝑥𝑛))| ≥ 1/𝜀, which gives 

‖𝐼 𝜆𝑛⁄ + 𝑇 𝜆𝑛
2⁄ ‖ ≥ 1 𝜀⁄ . Thus 𝜆𝑛 ∈ 𝜎𝜀(𝑇) for each n, which gives |𝜆𝑛| ≤ 𝑟𝜀(𝑇) for every n. Letting 𝑛 → ∞, this 

gives the left hand side inequality from the statement. 

Consider now a non-zero 𝜆 ∈ 𝓌𝜀(𝑇). Since ‖(𝜆𝐼 − 𝑇)−1‖ > 1 𝜀⁄ , there exist 𝑓 ∈ 𝑋∗ and 𝑥 ∈ 𝑋, each of norm 

one, such that |𝑓(𝑥) 𝜆⁄ + 𝑓(𝑇𝑥) 𝜆2⁄ | > 1 𝜀⁄ . Then |𝑓(𝑥)| |𝜆|⁄ + |𝑓(𝑇𝑥)| |𝜆|2⁄ > 1 𝜀⁄ , so let us write 

|𝑓(𝑥)| |𝜆|⁄ + |𝑓(𝑇𝑥)| |𝜆|2⁄ = 1 𝛾⁄  for some 0 < 𝛾 < 𝜀. Then |𝜆|2 − 𝛾|𝑓(𝑥)||𝜆| − 𝛾|𝑓(𝑇𝑥)| = 0, which gives 

|𝜆| =
𝛾|𝑓(𝑥)| + √𝛾2|𝑓(𝑥)|2 + 4𝛾|𝑓(𝑇𝑥)|

2
. 
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Now |𝑓(𝑥)| ≤ 1 , |𝑓(𝑇𝑥)| ≤ ‖𝑇‖ and 𝛾 < 𝜀, and therefore |𝜆| ≤ (𝜀 + √𝜀2 + 4𝜀‖𝑇‖) 2⁄ . Taking the sup over |𝜆|, 

we obtain the right hand side inequality from the statement.  

As a corollary, we obtain the following asymptotic behavior for the pseudospectral radius of square-zero 

operators. 

Corollary 8. If 𝑇2 = 0 in ℒ(𝑋), then 

lim
𝛿→0

𝑟𝛿(𝑇)

√𝛿
= √‖𝑇‖. (14) 

3.1 .The infinite-dimensional case: proof of Theorem 3 

One can easily check that maps of the form (8) satisfy (7). For the converse, the starting point is Theorem 5 and 

the following result which determines the structure on the set of rank-one operators of mappings preserving zero-

product of operators in both directions. 

Lemma 9. (See [5, Lemma 2.2].) Suppose X is an infinite-dimensional complex Banach space and let 𝜑: ℒ(𝑋) →

ℒ(𝑋) be a surjective map such that 

𝜑(𝑇1)𝜑(𝑇2) = 0 ⟺ 𝑇1𝑇2 = 0        (𝑇1, 𝑇2 ∈ ℒ(𝑋)). (15) 

There exist then a functional 𝛼: ℒ(𝑋) → ℂ\{0} and an invertible linear or conjugate linear bounded operator U on 

X such that 

𝜑(𝑇) = 𝛼(𝑇)𝑈𝑇𝑈−1     (𝑇 ∈ ℒ(𝑋), 𝑟𝑎𝑛𝑘(𝑇) = 1). (16) 

So suppose now that X is an infinite-dimensional Banach space, and let 𝜑: ℒ(𝑋) → ℒ(𝑋) be a surjective map such 

that (7) holds. Then Theorem 5 and Lemma 9 imply the existence of α and U as in the statement of the lemma 

such that (16) holds. Thus given any 𝑥 ∈ 𝑋 and 𝑓 ∈ 𝑋∗, in the case when U is linear we have that 

𝜑(𝑥⨂𝑓) = 𝛼(𝑥⨂𝑓)𝑈(𝑥⨂𝑓)𝑈−1 

                           = 𝛼(𝑥⨂𝑓)(𝑈𝑥)⨂((𝑈−1)∗𝑓). 

While in the case when 𝑈: 𝑋 → 𝑋 is conjugate linear we have that 

𝜑(𝑥⨂𝑓) = 𝛼(𝑥⨂𝑓)(𝑈𝑥)⨂𝑓, 

where 𝑓 ∈ 𝑋∗ is given by 𝑦 → 𝑓(𝑈−1𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. Let us also observe that in the first case we have ((𝑈−1)∗𝑓)(𝑈𝑥) =

𝑓(𝑥), while in the second one we have 𝑓(𝑈𝑥) = 𝑓(𝑥)̅̅ ̅̅ ̅̅ . If we take the modulus, we obtain the same values. 

Suppose now that 𝑈: 𝑋 → 𝑋 is linear: the remaining case, when U is conjugate linear, follows exactly in the same 

way. Since 𝜑 is surjective, there exists 𝑄 ∈ ℒ(𝑋) such that 𝜑(𝑄) = 𝐼. Then (7) gives 

𝑟𝜀(𝜑(𝑇)) = 𝑟𝜀(𝑄𝑇)        (𝑇 ∈ ℒ(𝑋)). (17) 

For 𝑇 = 𝑛𝑥⨂𝑓 f in (17), where 𝑛 ≥ 1 is a natural number and 𝑥 ∈ 𝑋, 𝑓 ∈ 𝑋∗, we get 

𝑟𝜀 𝑛⁄ (𝛼(𝑛𝑥⨂𝑓)(𝑈𝑥)⨂(𝑈−1)∗𝑓) = 𝑟𝜀 𝑛⁄ ((𝑄𝑥)⨂𝑓). (18) 

Suppose now that 𝑓(𝑥) ≠ 0. Then ((𝑈−1)∗𝑓)(𝑈𝑥) ≠ 0, and let us prove that 

𝑙𝑖𝑚
𝑛→+∞

|𝛼(𝑛𝑥⨂𝑓)| =
|𝑓(𝑄𝑥)|

|𝑓(𝑥)|
. (19) 

If this is not the case, then either one can find a subsequence (𝑛𝑘)𝑘 of ℕ such that |𝛼(𝑛𝑘𝑥⨂𝑓)| → +∞, or one 

can find a subsequence (𝑛𝑘)𝑘 of ℕ such that a |𝛼(𝑛𝑘𝑥⨂𝑓)| → 𝑡 ≠ |𝑓(𝑄𝑥)| |𝑓(𝑥)|⁄ . By Lemma 6, in the first case 

we have 𝑟𝜀 𝑛𝑘⁄ (𝛼(𝑛𝑘𝑥⨂𝑓)(𝑈𝑥)⨂(𝑈−1)∗𝑓) → +∞ and in the second one we have 

𝑟𝜀 𝑛𝑘⁄ (𝛼(𝑛𝑘𝑥⨂𝑓)(𝑈𝑥)⨂(𝑈−1)∗𝑓) → 𝑡|𝑓(𝑥)|. Now observe that again by Lemma 6 in both cases we have 
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𝑟𝜀 𝑛𝑘⁄ ((𝑄𝑥)⨂𝑓) → |𝑓(𝑄𝑥)|. Writing (18) for 𝑛 = 𝑛𝑘, 𝑘 = 1,2, …, and passing with k to infinity we arrive to a 

contradiction. 

Thus, (19) holds for each x and f with 𝑓(𝑥) ≠ 0. Consider now an arbitrary 𝑇 ∈ ℒ(𝑥). Then given any natural 

number 𝑛 ≥ 1 and 𝑥 ∈ 𝑋, 𝑓 ∈ 𝑋∗ with 𝑓(𝑥) ≠ 0, by (7) we have that 

𝑟𝜀(𝜑(𝑇)𝛼(𝑛𝑥⨂𝑓)𝑈(𝑛𝑥⨂𝑓)𝑈−1) = 𝑟𝜀(𝑇(𝑛𝑥⨂𝑓)), 

and therefore 

𝑟𝜀 𝑛⁄ (𝛼(𝑛𝑥⨂𝑓)(𝜑(𝑇)𝑈𝑥)⨂(𝑈−1)∗𝑓) = 𝑟𝜀 𝑛⁄ ((𝑇𝑥)⨂𝑓)       (𝑛 ≥ 1). 

Letting 𝑛 → +∞, then Lemma 6 (ii) and (19) imply that 

|𝑓(𝑄𝑥)|

|𝑓(𝑥)|
|((𝑈−1)∗𝑓)((𝜑(𝑇)𝑈𝑥))| = |𝑓(𝑇𝑥)|, 

and therefore 

|𝑓(𝑄𝑥)| ∙ |𝑓(𝑈−1𝜑(𝑇)𝑈𝑥)| = |𝑓(𝑇𝑥)| ∙ |𝑓(𝑥)|. (20) 

The equality (20) holds for 𝑓(𝑥) ≠ 0 and arbitrary 𝑇 ∈ ℒ(𝑋), and then by continuity it holds for every 𝑥 ∈ 𝑋, 𝑓 ∈

𝑋∗ and 𝑇 ∈ ℒ(𝑋). 

Suppose there exists 𝑥 ∈ 𝑋 such that {𝑥, 𝑄𝑥} is linearly independent. There exists then 𝑓 ∈ 𝑋∗ such that 𝑓(𝑥) = 1 

and 𝑓(𝑄𝑥) = 0. Using (20), this gives 𝑓(𝑇𝑥) = 0 for every 𝑇 ∈ ℒ(𝑋) arriving to a contradiction. Thus 𝑄 = 𝛼𝐼 

for some scalar α. By (7) we have 𝑟𝜀(𝜑(𝛼𝐼)𝜑(𝛼𝐼)) = 𝑟𝜀(𝛼𝐼 ∙ 𝛼𝐼), and therefore 𝑟𝜀(𝐼) = 𝑟𝜀(𝛼2𝐼). Thus 1 + 𝜀 =

|𝛼|2 + 𝜀, which gives |𝛼| = 1. Then (20) gives |𝑓(𝑈−1𝜑(𝑇)𝑈𝑥)| = |𝑓(𝑇𝑥)| for each f and x with 𝑓(𝑥) ≠ 0, and 

then by continuity 

|𝑓(𝑈−1𝜑(𝑇)𝑈𝑥)| = |𝑓(𝑇𝑥)|        (𝑇 ∈ ℒ(𝑥), 𝑥 ∈ 𝑋, 𝑓 ∈ 𝑋∗). 

This implies that for each 𝑥 ∈ 𝑋, there exists 𝛼𝑥 ∈ ℂ of modulus one such that (𝑈−1𝜑(𝑇)𝑈)(𝑥) = 𝛼𝑥𝑇(𝑥). 

Indeed, we have 𝑈−1𝜑(𝑇)𝑈𝑥 = 0 if and only if 𝑇𝑥 = 0, while in the case when they are both nonzero we have 

that they are linearly dependent: if not, one may choose 𝑓 ∈ 𝑋∗ such that 𝑓(𝑈−1𝜑(𝑇)𝑈𝑥) is 0 while 𝑓(𝑇𝑥) is not. 

Thus in the second case we have 𝑎𝑈−1𝜑(𝑇)𝑈𝑥 + 𝑏𝑇𝑥 = 0 for some nonzero complex constants a and b, and by 

considering 𝑓 ∈ 𝑋∗ such that 𝑓(𝑇𝑥) ≠ 0 we get |𝑎| = |𝑏|. 

Lemma 10 proved at the end of this section implies the existence of a map 𝜉: ℒ(𝑥) →  ℂ such that |𝜉(𝑇)| = 1 for 

each T and 

𝜑(𝑇) = 𝜉(𝑇)𝑈𝑇𝑈−1         (𝑇 ∈ ℒ(𝑥)). (21) 

Let us prove now that we may normalize U in order to have ‖𝑈(𝑥)‖ = ‖𝑥‖ for every 𝑥 ∈ 𝑋. To see this, let us 

observe that by (21), we have 𝑇2 = 0 if and only if 𝜑(𝑇)2 = 0. Thus given any 𝑇 ∈ ℒ(𝑥) such that 𝑇2 = 0, by 

(14) we have lim
𝛿→0

(𝑟𝛿(𝑇) √𝛿⁄ ) = √‖𝑇‖ and lim
𝛿→0

(𝑟𝛿(𝜑(𝑇)) √𝛿⁄ ) = √‖𝜑(𝑇)‖. Thus lim
𝛿→0

(𝑟𝛿(𝑈𝑇𝑈−1) √𝛿⁄ ) =

√‖𝑈𝑇𝑈−1‖. That 𝜑(𝛼𝐼) = 𝐼 for some unimodular constant α and (7) give 𝑟𝜀(𝜑(𝑅)) = 𝑟𝜀(𝑅) for each 𝑅 ∈ ℒ(𝑥). 

Then 

𝑟𝜀
𝑡
(𝑈𝑅𝑈−1) = 𝑟𝜀(𝜉(𝑡𝑅)𝑈(𝑡𝑅)𝑈−1) 𝑡⁄ = 𝑟𝜀(𝜑(𝑡𝑅)) 𝑡⁄ = 𝑟𝜀(𝑡𝑅) 𝑡⁄  

                          = 𝑟𝜀/𝑡(𝑅) 

for each 𝑡 > 0, and therefore 𝑟𝛿(𝑈𝑅𝑈−1) = 𝑟𝛿(𝑅) for each 𝑅 ∈ ℒ(𝑥) and each 𝛿 > 0. We then conclude that 

‖𝑈𝑇𝑈−1‖ = ‖𝑇‖       (𝑇 ∈ ℒ(𝑥) , 𝑇2 = 0). (22) 

For 𝑥 ∈ 𝑋 and 𝑓 ∈ 𝑋∗ such that 𝑓(𝑥) = 0, putting 𝑇 = 𝑥 ⊗ 𝑓 in (22) we obtain that ‖(𝑈−1)∗(𝑓)‖ ‖𝑈(𝑥)‖ =

‖𝑓‖ ‖𝑥‖. Since dim 𝑋 ≥ 3, then for two arbitrary nonzero vectors 𝑥, 𝑦 ∈ 𝑋 by considering 𝑓 ∈ 𝑋∗ nonzero  such 

that 𝑓(𝑥) = 𝑓(𝑦) = 0, we obtain that 
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‖𝑈(𝑥)‖

‖𝑥‖
=

‖𝑈(𝑦)‖

‖𝑦‖
(=

‖𝑓‖

‖(𝑈−1)∗(𝑓)‖
). 

This implies the existence of 𝑡 > 0 such that ‖𝑈(𝑥)‖ = 𝑡‖𝑥‖ for each x in X, and then just replace U by 𝑈 𝑡⁄ . 

Thus Theorem 3 will be proved, once we obtain the following somehow folklore result. 

Lemma 10. Let 𝐴, 𝐵 ∈ ℒ(𝑥) such that for each 𝑥 ∈ 𝑋, there exists 𝛼𝑥 ∈ ℂ of modulus one such that 

𝐴(𝑥) = 𝛼𝑥𝐵(𝑥). (23) 

There exists then 𝛼 ∈ ℂ of modulus one such that 𝐴 = 𝛼𝐵 in ℒ(𝑥). 

Proof. We have ‖𝐴(𝑥)‖ = ‖𝐵(𝑥)‖ for each x, and therefore ker A and ker B coincide. If ker 𝐴 = ker 𝐵 = 𝑋, 

there is nothing to be proved. If not, denote 𝑀 = ker(𝐴) and for the quotient 𝑋̂ ≔ 𝑋 𝑀⁄ , consider the linear 

bounded operators 𝐴1, 𝐵1: 𝑋̂ → 𝑋 given by 𝐴1(𝑥̂) = 𝐴(𝑥) and 𝐵1(𝑥̂) = 𝐵(𝑥) for each 𝑥 ∈ 𝑋. Observe that, once 

again, for each 𝑥 ∈ 𝑋 there exists 𝛼𝑥 ∈ ℂ of modulus one such that 𝐴1(𝑥̂) = 𝛼𝑥𝐵1(𝑥̂). But now 𝐴1 and 𝐵1 are 

both injective operators. 

Fix 𝑥0̂ ∈ 𝑋̂\{0̂}, and let 𝛼 ∈ ℂ of modulus one such that 𝐴1(𝑥0̂) = 𝛼𝐵1(𝑥0̂). Let now 𝑥̂ ∈ 𝑋̂ such that 𝑥̂ and 𝑥0̂ 

are linearly independent in 𝑋̂. Let 𝛼1, 𝛼2 ∈ ℂ of modulus one such that 𝐴1(𝑥̂) = 𝛼1𝐵1(𝑥̂) and 𝐴1(𝑥̂ + 𝑥0̂) =

𝛼2𝐵1(𝑥̂ + 𝑥0̂). Then 

𝐵1((𝛼 − 𝛼2)𝑥0̂ + (𝛼1 − 𝛼2)𝑥̂) = 0. 

The injectivity of 𝐵1 gives (𝛼 − 𝛼2)𝑥0̂ + (𝛼 − 𝛼2)𝑥̂ = 0̂, and therefore 𝛼 = 𝛼1 = 𝛼2. Thus 𝐴1(𝑥̂) = 𝛼𝐵1(𝑥̂) for 

each 𝑥̂ such that 𝑥̂ and 𝑥0̂ are linearly independent, and since 𝐴1(𝑥0̂) = 𝛼𝐵1(𝑥0̂) this gives 𝐴1 = 𝛼𝐵1. Thus, 𝐴 =

𝛼𝐵 in ℒ(𝑥).  □ 

If instead of (23) we merely suppose that {𝐴𝑥, 𝐵𝑥} is linearly dependent for each 𝑥 ∈ 𝑋, the conclusion of Lemma 

10 no longer holds: one can only conclude the existence of 𝛼, 𝛽 ∈ ℂ and 𝑥0 ∈ 𝑋, 𝑓0 ∈ 𝑋∗ such that 𝛼𝐴 + 𝛽𝐵 =

𝑥0⨂𝑓0. (See, for example, [1, Theorem 4.2.9 and Remark 3 at page 88].) If {𝐴𝑥, 𝐵𝑥} is always linearly dependent 

and B is supposed injective, as in the proof of Lemma 10 we obtain the existence of 𝛼 ∈ ℂ such that 𝐴 = 𝛼𝐵. This 

holds for example when B is the identity operator on X. 

3.2 .The finite-dimensional case: proof of Theorem 4   

Again, one can easily check that maps of the form (10) and (11) satisfy (9). For the converse, most of the proof 

for this case has also been carried out in the infinite-dimensional case. Instead of Lemma 10, we shall use the 

following result. 

Lemma 11. (See [8, Theorem 2.1].) Let 𝑛 ≥ 3 and suppose 𝜑: ℳ𝑛 → ℳ𝑛 is a map such that 

𝜑(𝑇1)𝜑(𝑇2) = 0 ⟺ 𝑇1𝑇2 = 0     (𝑇1, 𝑇2 ∈ ℳ𝑛). 

There exist then a functional 𝛼: ℳ𝑛 → ℂ\{0}, an invertible matrix 𝑈 ∈ ℳ𝑛 and a field monomorphism 𝜂 of ℂ 

such that 

𝜑(𝑇) = 𝛼(𝑇)𝑈𝑇𝜂𝑈−1    (𝑇 ∈ ℳ𝑛,   𝑟𝑎𝑛𝑘(𝑇) = 1).                      (24) 

(𝐵𝑦 𝑇𝜂 ∈ ℳ𝑛 we denote the matrix obtained from 𝑇 ∈ ℳ𝑛 by applying 𝜂 to every entry of it.) 

Theorem 5 and  lemma 11 imply the existence of 𝛼 and U such that (24) holds. We shall write in the following 

the elements of ℂ𝑛 as column vectors. Let us observe that for 𝑓 = [𝑓1, … 𝑓𝑛]𝑡 ∈ ℂ𝑛 andx = [𝑥1, … , 𝑥𝑛]𝑡 ∈ ℂ𝑛 , 

then 𝑥𝑓𝑡 ∈ ℳ𝑛 is a rank one matrix, which corresponds to the rank one operator 𝑥 ⊗ 𝑓: ℂ𝑛 → ℂ𝑛 given by 𝑦 →

𝑓(𝑦)𝑥 = (𝑓𝑡𝑦)𝑥 = (∑ 𝑓𝑗𝑦𝑗)𝑥𝑛
𝑗=1  , for 

 𝑦 = [𝑦1, … , 𝑦𝑛]𝑡 ∈ ℂ𝑛. Let us also observe that for each 𝑓 and 𝑥, we have  

(𝑥𝑓𝑡)𝜂 = 𝑥𝜂(𝑓𝑡)𝜂 ∈ ℳ𝑛, and then (24) gives 

𝜑(𝑥𝑓𝑡) = 𝛼(𝑥𝑓𝑡)𝑈𝑥𝜂(𝑓𝑡)𝜂𝑈−1    (𝑓, 𝑥 ∈ ℂ𝑛) 
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Let us first prove that 𝑇 ⟶ |𝛼(𝑇)| is constant on the set of matrices 𝑇 ∈ ℳ𝑛 of rank exactly one. Indeed, if 𝑇1 =

𝑥𝑓1
𝑡 and 𝑇2 = 𝑥𝑓2

𝑡 for 𝑥, 𝑓1, 𝑓2 ∈ ℂ𝑛 with 𝑥 nonzero and {𝑓1, 𝑓2} linearly independent, then for 𝑇 = 𝑥0𝑓0
𝑡 with 

𝑥0, 𝑓0 ∈ ℂ𝑛 nonzero such that 𝑓1
𝑡𝑥0 = 𝑓2

𝑡𝑥0 and the common value is nonzero, we have 𝑇1𝑇 = (𝑓1
𝑡𝑥0)𝑥𝑓0

𝑡 =

(𝑓2
𝑡𝑥0)𝑥𝑓0

𝑡 = 𝑇2𝑇. Then (9) and (24) give 

𝑟𝜀(𝛼(𝑇1)𝛼(𝑇)𝑈(𝑇1𝑇)𝜂𝑈−1) = 𝑟𝜀(𝑇1𝑇) = 𝑟𝜀(𝑇2𝑇) 

                                                             = 𝑟𝜀(𝛼(𝑇2)𝛼(𝑇)𝑈(𝑇2𝑇)𝜂𝑈−1) 

                                                                      = 𝑟𝜀(𝛼(𝑇2)𝛼(𝑇)𝑈(𝑇1𝑇)𝜂𝑈−1) 

Since 𝑇1𝑇 ≠ 0 and 𝜂 is a monomorphism, then (𝑇1𝑇)𝜂 ≠ 0. Thus 𝑈(𝑇1𝑇)𝜂𝑈−1 ≠ 0, and then part (ii) of lemma 

12 below gives |𝛼(𝑇1)||𝛼(𝑇)| = |𝛼(𝑇2)||𝛼(𝑇)|. That |𝛼(𝑇)| ≠ 0 gives then |𝛼(𝑇1)| = |𝛼(𝑇2)|. Analogously, if 

𝑇1 = 𝑥1𝑓𝑡 and 𝑇2 = 𝑥2𝑓𝑡for 𝑓, 𝑥1, 𝑥2 ∈ ℂ𝑛 with 𝑓 nonzero and {𝑥1, 𝑥2} linearly independent, then |𝛼(𝑇1)| =

|𝛼(𝑇2)|. Thus if 𝑥1, 𝑥2 in ℂ𝑛 are linearly independent and 𝑓1, 𝑓2 in ℂ𝑛 are also linearly independent, we have 

|𝛼(𝑥1𝑓1
𝑡)| = |𝛼(𝑥1𝑓2

𝑡)| = |𝛼(𝑥2𝑓2
𝑡)|. 

Now let 𝑥1, 𝑥2 be nonzero in ℂ𝑛, and 𝑓1, 𝑓2 also nonzero in ℂ𝑛. Choose 𝑥 ∈ ℂ𝑛 and 𝑓 ∈ ℂ𝑛 such that 

{𝑥, 𝑥1}, {𝑥, 𝑥2}, {𝑓, 𝑓1} and {𝑓, 𝑓2} are respectively linearly independent. By what we just proved, we have 

|𝛼(𝑥1𝑓1
𝑡)| = |𝛼(𝑥𝑓𝑡)| 

                     = |𝛼(𝑥2𝑓2
𝑡)|. 

Thus, there exists 𝛿 > 0 such that |𝛼(𝑥𝑓𝑡)| = 𝛿 for every 𝑥, 𝑓 ∈ ℂ𝑛\{0}.  For 𝑥 = 𝑓 = 𝑒1 = [1,0, … ,0]𝑡 ∈ ℂ𝑛, 

and 𝑧 ∈ ℂ\{0} for 𝑇 = 𝑥𝑓𝑡 we have 𝑇2 = 𝑇 and then by (9), 

𝑟𝜀(𝛼(𝑧𝑇)𝛼(𝑇)𝑈(𝑧𝑇)𝜂𝑈−1) = 𝑟𝜀(𝑧𝑇). 

Then (6) gives 

𝜀 + 𝑟(𝛼(𝑧𝑇)𝛼(𝑇)𝑈(𝑧𝑇)𝜂𝑈−1) ≤ 𝜀 + ‖𝑧𝑇‖, 

and therefore 

𝛿2|𝜂(𝑧)| ≤ |𝑧| ‖𝑥𝑓𝑡‖      (𝑧 ∈ ℂ) 

Thus the monomorphism 𝜂 of ℂ is continuous, and this implies that either 𝜂(𝑧) = 𝑧 for  every  𝑧 ∈ ℂ, or 𝜂(𝑧) = 𝑧 ̅

for every 𝑧 ∈ ℂ. 

For 𝑓, 𝑥 ∈ ℂ𝑛, an integer 𝑘 ≥ 1 and 𝑇 ∈ ℳ𝑛 arbitrary, that 𝑟𝜀(𝜑(𝑇)𝜑(𝑘𝑥𝑓𝑡)) = 𝑟𝜀(𝑘𝑇𝑥𝑓𝑡) gives  

𝑟𝜀/𝑘(𝛼(𝑘𝑥𝑓𝑡)𝜑(𝑇)𝑈𝑥𝜂 . (𝑓𝑡)𝜂𝑈−1) = 𝑟𝜀/𝑘(𝑇𝑥𝑓𝑡). 

Letting 𝑘 → ∞, by Lemma 6 we obtain that 

𝛿|𝑓𝑡((𝑈𝜂)−1(𝜑(𝑇))𝜂𝑈𝑛𝑥| = |𝑓𝑡𝑇𝑥|       (𝑓, 𝑥 ∈ ℂ𝑛 , 𝑇 ∈ ℳ𝑛)          (25) 

Where 𝜂 is either the identity, or the conjugation. 

For 𝑇 = 𝐼𝑛 in (25), we have that 𝑓𝑡𝑥 = 0 implies 𝑓𝑡((𝑈𝜂)−1(𝜑(𝐼𝑛))𝜂𝑈𝜂𝑥) = 0 . This implies that 𝑥 and 

(𝑈𝜂)−1(𝜑(𝐼𝑛))𝜂𝑈𝜂𝑥 are linearly dependent for every 𝑥, and therefore (𝑈𝜂)−1(𝜑(𝐼𝑛))𝜂𝑈𝜂 = 𝛼𝐼𝑛 for some 

complex constant 𝛼, which, by (25),is not zero. Thus 𝜑(𝐼𝑛) = 𝜂(𝛼)𝐼𝑛. That 𝑟𝜀(𝜑(𝐼𝑛)2) = 𝑟𝜖(𝐼𝑛) gives |𝜂(𝛼) | =

1, and therefore |𝛼| = 1 . Putting 𝑇 = 𝐼𝑛 in (25), we obtain that 𝛿 = 1 . Therefore, if 𝜂 is the identity then 

|𝑓𝑡(𝑈−1𝜑(𝑇)𝑈𝑥| = |𝑓𝑡𝑇𝑥|               (𝑓, 𝑥𝜖ℂ𝑛 , 𝑇𝜖𝑀𝑛), 

While if 𝜂 is the conjugation we obtain that 

|𝑓𝑡(𝑈−1𝜑(𝑇)̅̅ ̅̅ ̅̅ ̅𝑈̅𝑥| = |𝑓𝑡|𝑇𝑥               (𝑓, 𝑥𝜖ℂ𝑛 , 𝑇𝜖𝑀𝑛). 

Now exactly as in the final part of the proof of Theorem 3 we obtain in the first case that 𝜑(𝑇) = 𝜉(𝑇)𝑈𝑇𝑈−1 for 

every 𝜖ℳ𝑛 , where 𝜉: ℳ𝑛 → ℂ is a functional satisfying |𝜉(𝑇)| = 1 for every 𝑇 and 𝑈 can be normalized such 

that ‖𝑈𝑥‖ = ‖𝑥‖ for each 𝑥𝜖ℂ𝑛,while in the second case we have that 𝜑(𝑇) = 𝜉(𝑇)𝑈𝑇̅𝑈−1 for every 𝑇𝜖ℳ𝑛 
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where 𝜉: ℳ𝑛 → ℂ is a functional satisfying |𝜉(𝑇)| = 1 for every 𝑇 and 𝑈 can be normalized such that ‖𝑈𝑥‖ =

‖𝑥̅‖ for each 𝑥𝜖ℂ𝑛. 

Thus, all that remains to be proved is the following lemma, which is of interest in its own. (see also [7] .) 

Lemma12. 𝑖)𝐼𝑓 𝑇0𝜖ℳ𝑛 𝑎𝑛𝑑𝜆0 ∈ ℂ 𝑠𝑎𝑡𝑖𝑠𝑓𝑦 |𝜆0| < 1 𝑎𝑛𝑑 𝑟𝜖(𝜆0𝑇0) = 𝑟𝜖(𝑇0), 𝑡ℎ𝑒𝑛 𝑇0 = 0. 

𝑖𝑖) 𝐼𝑓 𝑇 ∈ ℳ𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑧𝑒𝑟𝑜 𝑎𝑛𝑑 𝜆1, 𝜆2 ≠ 0 𝑖𝑛 ℂ 𝑠𝑎𝑡𝑖𝑠𝑓𝑦 𝑟𝜀(𝜆1𝑇) = 𝑟𝜀(𝜆2𝑇), 𝑡ℎ𝑒𝑛 |𝜆1| = |𝜆2|.   

Proof. i) Since the spectral radius is continuos on ℳ𝑛 (see, for example, [1, Corollary 3.4.5] and  ℳ𝑛 is of finite 

dimension, by compactness there exists 𝐸0 ∈ ℳ𝑛 with ‖𝐸0‖ ≤ 𝜀 such that  𝑟𝜖(𝜆0𝑇0) = 𝑟(𝜆0𝑇0 + 𝐸0). Consider 

then the subharmonic function 𝜆 → (𝜆𝑇0 + 𝐸0) on ℂ (see, for example,[1. Theorem 3.4.7]). For |𝜆| = 1, its value 

at 𝜆 is 𝑟 (𝑇0 + 𝜆̅𝐸0) ≤ 𝑟𝜀(𝑇0), and its value at 𝜆0 is 𝑟𝜖(𝜆0𝑇0) = 𝑟𝜖(𝑇0). Using the maximum principle for 

subharmonic functions, we obtain that 𝑟(𝜆𝑇0 + 𝐸0) = 𝑟𝜖(𝑇0) for |𝜆| ≤ 1. .In particular, 𝑟(𝐸0) = 𝑟𝜖(𝑇0). That 

‖𝐸0‖ ≤ 𝜀 gives 𝑟(𝐸0) ≤ 𝜀 and therefore 𝑟𝜖(𝑇0) ≤ 𝜀. By (6) we get 𝑟𝜖(𝑇0) = 𝜀. Then Theorem1 implies that 𝑇0 =

0. 

ii)If, for example, |𝜆1| < |𝜆2| , then for 𝜆0 = 𝜆1/𝜆2 and 𝑇0 = 𝜆2𝑇 we have |𝜆0| < 1 and 𝑟𝜀(𝜆0𝑇0) = 𝑟𝜀(𝑇0). Then 

part (i) gives  𝑇0 = 0. Thus = 0 , arriving to a contradiction. 
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