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Abstract

Smart grids integrate renewable energy sources and enable dynamic demand responses
to transform energy management. The complexity of managing multiple agent systems
with different devices presents challenges in terms of scalability, computational efficiency
and real-time adaptability. This paper introduces the new framework MARL-SG (Multi-
Agent Reinforcement Learning for Smart Grids), which aims to optimize energy
consumption across devices while maintaining grid stability, reducing costs and satisfying
users. With MARL-SG, training is centralized, and execution is decentralized to ensure
scaling, and advanced technologies such as Heuristic masking ensure the allocation of
computational resources to critical tasks. According to the experimental results, the MARL-
SG reduces energy costs during peak and off-peak hours, achieves almost perfect grid
stability and provides reliable and cost-effective energy distribution. The framework will
enable modern smart grids to manage energy more intelligently.

Keywords: Smart grid, demand response, reinforcement learning, Q-learning, Heuristic
Masking.

I. INTRODUCTION

As renewable energy sources and intelligent technologies are increasingly integrated into the power grid, energy
management has revolutionized, enabling dynamic demand responses, improved efficiency and grid stability. In
multi-agent environments with diverse devices, energy management remains challenging due to the need for
dynamic user behaviour, variable renewable energy output and real-time optimization. Thus, advanced energy
management systems (EMSs) are needed to cope with these complexities. In the case of smart grids, the most
promising approach to solving these challenges is reinforcement learning (RL). Researchers have conducted
extensive research into RL techniques, such as optimizing energy consumption in smart buildings, managing
renewable energy sources in home energy systems, and facilitating peer-to-peer energy trade. Multi-agent deep
reinforcement learning (MADRL) enables the control of scalable and distributed residential energy systems and
further advances this field [4, 5]. The use of RL-based frameworks for demand response management [6, 7], and
intelligent scheduling of energy load [8, 9].

The MARL-SG (Multi-Agent Reinforcement Learning Architecture for Smart Grids) is a new framework for
improving energy management in smart grids. To ensure scale and adaptability of large-scale energy systems,
MARL-SG combines central training and decentralized execution. It focuses on high priority tasks, such as
devices approaching delays, while incorporating heuristic masks to improve computing efficiency. In addition to
reducing energy costs, MARL-SG improves grid stability and maintains user satisfaction by responding
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dynamically to price signals and grid restrictions. Tests have shown that the framework outperforms traditional
methods such as FIFO, which balance cost efficiency, task completion rates, and grid reliability. As a result of
prior research in smart grid energy management, this work builds on studies on data-driven optimizations [10],
renewable energy forecasts [11], HVAC control strategies [12], and home demand responses [13, 14]. MARL-SG
solves the critical challenges of modern energy systems and provides a scalable and effective solution for
intelligent energy management.

Despite significant advances in reinforcement learning (RL) and multi-agent systems, the approach to energy
management of the existing smart grid remains limited. The RL-based methodology usually involves centralized
training and implementation, which limits their scalability in large-scale energy systems involving multiple
households and devices. In complex multiagent environments, peer-to-peer energy trading frameworks [3] and
distributed control approaches [4, 8] are often difficult to coordinate effectively. Furthermore, computational
inefficiency is a major concern because the methods used to respond to demands [6, 7] and schedule loads [8] are
often based on comprehensive searches and high-dimensional state action spaces, resulting in significant
computational overhead and limiting their real-time applicability. Insufficient integration of dynamic pricing
mechanisms and user preferences is another failure. Although the RL framework promised to optimize energy
consumption [1, 10], many failed to properly incorporate these aspects, resulting in suboptimal task schedules and
a reduction in user satisfaction. In addition, HVAC control and renewable energy management [5, 2, 11] often
fail to address critical grid constraints, leading to frequent overloads and instability. Finally, the static task
prioritization strategies such as FIFO and energy-based priority [7, 9] lack the flexibility to consider constraints
of urgency or delay, resulting in high energy costs and unsatisfactory services. Consequently, new solutions must
address scalability, efficiency and adaptability, while maintaining user-centric and grid-oriented energy
management.

This paper presents the new framework MARL-SG, which aims to address key constraints in the existing energy
management approach. MARL-SG combines centralized training and decentralized execution, allowing efficient
scalability of large systems and multi-family devices, as well as ensuring adaptability to dynamic and complex
energy environments. This approach improves the applicability of real-time systems by filtering out irrelevant
actions or states and focusing on high-priority tasks such as devices close to delayed limitations. As part of its
reward function, the framework explicitly incorporates dynamic pricing signals and user satisfaction metrics to
ensure that user-centric energy management strategies minimize energy costs and ensure task completion time.
By actively monitoring grid capacity, MARL-SG prevents overloads and ensures reliable energy distribution
under different demand conditions. MARL-SG dynamically plans tasks based on real-time system conditions such
as price signals, device constraints, and grid loads, rather than static priority strategies such as FIFO. As a robust
and scalable solution for modern smart grid management, MARL-SG has superior performance in key metrics
such as energy savings, grid stability, and project completion rates, as well as traditional methods such as FIFO.

The paper is divided into the following sections: Section Il deals with problem formulation, including state, action
and reward definitions. Section Il describes the MARL-SG algorithm, which integrates reinforcement learning
and heuristic-based approaches. Section IV presents experimental results that validate the performance of the
framework. Section V summarizes the key findings and future directions.

Il. PROBLEM FORMULATION

Multi-Agent Reinforcement Learning (MARL) is used in the framework to optimize energy consumption in smart
grid environments. In this model, there is a balance between local decision-making at home and global grid
constraints. Centralized training and decentralized execution (CTDE) is a model used by MARL-SG to balance
scale and system efficiency. Centralized training phases use grid-level information such as energy consumption
and pricing signals to learn policies for all devices. Using reinforcement learning algorithms such as Q-learning,
common policies are trained to capture system dynamics. During the decentralized execution phase, each device
works independently and makes decisions only based on local conditions and observations. The execution phase
does not depend on centralized data, so the system is scalable and efficient in large-scale smart grids.

The Energy Management System (EMS) integrates smart meters and control devices in the household and

optimizes operations according to factors such as power costs, delays and user satisfaction. The following sections
define the state, actions and rewards.
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1. State Space in Smart Grid Systems

The State space S(t) captures information about the devices of each household, grid capacity and real-time
constraints.

1.1 Device State in MARL-SG

In MARL-SG, the state of the device is defined by a key parameter that describes its operational status and
constraints. There are two types of slots: requested slots (req(t)) and remaining slots (rem(t)). The required slot
(req(t)) represents the total number of time slots needed to complete the device's task, and the remaining slot
(rem(t)) represents the remaining slot. The Maximum Allowable Delay (MaxD) specifies the maximum tolerable
delay when completing the task, and the Current Delay (Delay(t)) records the time when a task is delayed. These
parameters provide an overview of the operation status and limitations of each device. When the device is not
requested, or a task is requested in the current slot, the device's state and action are set to zero.

Delays increase by one when a task has been delayed previously. If the device is active in the previous slot, the
delay value is not changed. The purpose of this parameter is to monitor and manage the progress of the task in
relation to permitted delays.

The devices studied are divided into three different groups according to their operational requirements and
constraints. Due to their essential functions, Must-Run devices must be activated immediately at request and
cannot be delayed under any circumstances. Uninterrupted devices may experience delays if current delays do not
exceed the maximum allowed delay (MaxD) but should continue to operate uninterruptedly until the task is
completed. There is greater flexibility with interruptible devices, as they can be delayed until the maximum
permitted delay (MaxD), deactivated, or stopped, and are not required to complete tasks immediately. This
classification makes smart grid device operations priority.

1.2 Grid State: Key Parameters for Grid Operation

The grid state is defined by a key parameter that defines the grid operation status and constraints. Cost Level
(Cost(t)) is a dynamic price signal derived from total grid consumption and serves as an incentive to optimize
energy use during peak and peak periods. Grid capacity (GridCap) is a measurement that determines the maximum
amount of electricity that the grid can handle at any given time and is a constraint on grid stability and overload
prevention. These parameters must be considered together to effectively balance energy demand and supply.

2. Action Space: Balancing Energy Efficiency and Task Requirements

The Action Space Act (t) of the device defines the possible state of operation that can be taken at any time. These
actions include turn on the device (Act(t) = 1) to activate the device to perform its tasks, turn off (Act(t) = 0) to
deactivate the device and the sleep mode (Act(t) = -1) to reduce energy consumption. The action space allows for
a balance between energy efficiency and task requirements. According to the local state of each device and
observations, each agent (household) selects an action. For each device, the following restrictions must be
followed to determine the current Act,q(t) action (e.g. on, off or sleep mode):

v" No Request: Devices that have not been requested remain OFF:
If Req, (1) =0 —Act ,(t)=0

v' Maximum Delay Reached: When a device has an incomplete task and its current delay equals the
maximum allowable delay, it must be activated:

If Req,,,(t)>0 &Delay, ,(t)=MaxD, , — Act, ,(t)=1

v" Non-Interruptible Devices: If the device is non-interruptible, has a non-zero requested range, and was
active in the previous time slot, it will remain ON until the task is completed:
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If Req, ,(1)>0 &Delay(t), =1 &Act, ,(t-1)=1—Act,,(t)=1
v" Must-Run Devices: For must-run devices, the action directly follows the request:
If Req, ,(t)>0 &Delay(t),,=0 — Act,,(t)=1

3. Reward Mechanism: Optimizing Cost, Satisfaction, and Stability

The reward function R(t) combines multiple objectives:

Rt = a_chost (t) + az Rsatisfaction (t) + 0[3 Rgrid (t)

MARL-SG’s reward function balances energy efficiency, user satisfaction and grid stability. Energy savings are
rewarded by combining equipment operations with low-cost time slots (Rcost(t)) and encouraging efficient energy
consumption during peak periods.

Satisfaction (Rsaistaction(t)) guarantees the satisfaction of users by minimizing tasks completed and assigning
priority to timely devices completed. Grid stability (Rgia(t)) prevents overloading by punishing scenarios where
the grid capacity is exceeded and maintaining grid reliability. These components together guide the system to
optimal energy management while maintaining operational limitations. Adjustment of weights «,, &, , &, can

flexibly give priority to user experience, cost and grid efficiency.
4. Objective: Maximizing Cumulative Rewards in MARL-SG

The MARL-SG aims to find the best policy n* to maximize the expected cumulative rewards over a limited time
window T while adhering to operational constraints:

7 =argmax_E [i 7'R(S(), Act(t))}

Where » €[0,1] is the discount factor that gives priority to immediate rewards over future benefits.

The operation of the devices in the MARL-SG is subject to specific restrictions to ensure the efficiency and
reliability of performance. Maximum delay limits stipulate that the device must be activated immediately when
the current delay (Delay(t)) reaches maximum delay (maxD).

According to capacity constraints, total energy consumption (Pywtai(t)) cannot exceed the grid capacity (GridCap),
adhering to Pywra(t) < GridCap. In addition, priority rules require devices that must run immediately, such as
essential medical equipment, to be activated immediately. As a result, these constraints give priority to task
completion, ensuring grid stability and ensuring the smooth operation of the devices.

111. Algorithm and Heuristic for MARL-SG

The following description of the training and execution algorithms of MARL-SG incorporates advanced scaling
and efficiency techniques. For clarity, the heuristic approach is described separately. MARL-SG is engaged in
two phases to address the challenges of multi-agent energy management in smart grids. During the training phase
(centralized), global policies are trained using shared parameters and global models of learning are integrated to
improve sample efficiency. To ensure the stability of the grid, this phase focuses on managing the behavior of
different devices and optimizing energy consumption. The execution phase (decentralized) is a stage in which
each device independently executes the learned policy, applying heuristic masking to focus on the relevant states
and actions. By ensuring the efficiency and adaptability of computing, algorithms can scale and function in
dynamic energy environments.
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Algorithm 1: MARL-SG Training and Execution
Input:
e  State space S, Action space A, Reward function R(S,A)
e Device constraints Req, Rem, MaxD and grid capacity GridCap
Output:
e  Optimized policy T

1. Initialize Parameters:

¢ Initialize the policy grid 7, and the value function Q¢ .

e  Set up shared parameters across agents shared_params.
e |Initialize an empty replay buffer B.
¢ Initialize the world model M.

2. While Not Converged

a) Episode Simulation:

o For each episode:

1. Initialize the environment and device states (Req, Rem, MaxD, GridCap) to obtain the

initial state so.

2. Simulate Time Steps: For t=0 to T—1:
= Sample an action &, ~ 7,(S,).

= Execute & in the environment to obtain the next state s+1 and reward rt.
= Store the transition (s, a, I, S+1) in the replay buffer B.
b) Train World Model:
o  Train the world model M using transitions stored in B.
o Generate synthetic transitions (s, a, ft, Sw+1) using M and augment B.
c) Policy and Value Function Optimization:
For each update step k = 1 to N:

1. Sample a mini-batch from B (including synthetic transitions).

2. Update the policy 7z, and the value function Q¢ using a reinforcement learning algorithm.

3. Update shared parameters shared_params across agents for stability and scalability.
d) Performance Evaluation:

o Evaluate the performance metrics (e.g., cumulative reward, energy cost, grid stability).
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o If the performance metrics meet the desired threshold, set converged < True.

3. Return Optimal Palicy:
e Return the optimized policy 7, as .

To achieve robust and scalable energy management, MARL-SG combines centralized training with decentralized
implementation. Data from all devices are aggregated in the centralized training phase to ensure the policy is
robust and generalized. Using a learned global model, policy can handle edge cases and invisible scenarios more
effectively. In the decentralized execution phase, policies apply independently to each device to ensure the
scalability of large grids. Further improving performance is the heuristic approach, which dynamically focuses on
devices that are approaching deadlines or have a significant impact on user satisfaction and cost. It aligns actions
with grid constraints and prevents overload by monitoring the total load of the grid. The focus of critical devices
reduces computational requirements and enables scalability and efficiency in real time. Using the heuristic
algorithm, computational resources focus on the most important components through dynamic filtering states and
actions. This guarantees real-time scalability and avoids grid instability.

Algorithm 2: Heuristic Masking for Efficient Decision-Making
Input:
e Current state S
e Device parameters Req, Rem, MaxD, GridCap
Output:
o Filtered state Sy
Steps:
1. Compute Device Urgency:

Rem, N Delay,

o For each device d, calculate urgency: Ud =
Req, MaxD

2. Select Critical Devices:
o Rank devices by Uq.
o  Select the top k devices with the highest scores.

3. Evaluate Grid Stability:

o Compute current grid load: Load, = Z Power,

deactive
o If Load:> GridCap, deactivate least urgent devices until Load:< GridCap.
4. Filter State:

o Construct reduced state S’ with selected devices.
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1. Experimental

Based on a grid configuration with a 50 kW capacity, the simulation included five time slots from 18h00 to 22:59,
with dynamic prices rising during peak times (6 units) and declining during peak times (4 units). In the simulation,
each household contains a random power consumption of 10 devices (1-4 kW), task requirements and maximum
delays. We compared two methods: MARL-SG and the first-in-first-out strategy FIFO. The simulation evaluation
criteria included the energy costs during peak and off-peak hours, which measure total energy expenditures across
time frames at different prices; the completion rate of tasks, which represents the percentage of completed tasks
within the limits of reasonable delays; and the stability of the grid, which represents the percentage of time that
the grid load remains within the allowable capacity. To make a robust statistically significant comparison, 100
episodes have been simulated per method.

1. Energy Cost Comparison

Figure 1 shows that MARL-SG costs less during peak and off- peak hours than FIFO, while FIFO costs more at
both times. Using intelligent simulated decision-making to delay non-critical tasks during peak times, MARL-SG
can reduce energy costs by dispersing energy consumption during peak times when costs are lower. On the
contrary, FIFO incurs higher costs because the tasks are executed in the order requested, without considering cost
variations, resulting in excessive energy consumption during peak hours.

Energy Cost Comparison

B Peak Hours
mm Off-Peak Hours

50000 A

Cost (Units)

Methods

Figure 1. Comparison of Energy Costs During Peak and Off-Peak Hours for MARL-SG and FIFO
Methods

2. Grid Stability

Figure 2 shows that MARL-SG had a nearly perfect grid stability, nearly 100%, keeping the grid load well within
the capacity, whereas FIFO had a significantly lower stability, about 60%, and more cases of over-the-grid
capacity. MARL-SG maintains almost perfect stability by actively monitoring grid capacity and dynamically
adjusting device activation, thereby avoiding grid overload. However, the lower stability of FIFO is due to the
lack of capacity management because it processes requests without considering the current load of the grid and
often exceeds its maximum capacity.

664



International Journal of Multiphysics
Volume 18, No. 4, 2024
ISSN: 1750-9548

Grid Stability Comparison
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Figure 2. Grid Stability Comparison Between MARL-SG and FIFO Methods

V. Conclusion

The paper introduces MARL-SG, a framework for strengthening learning to optimize energy management in
smart grids. MARL-SG combines centralized training and decentralized execution to achieve scalability and
adaptability. Advanced technologies, such as heuristic masking and the generation of synthetic data, ensure
computational efficiency and dynamic response to real-time pricing and grid constraints. Experimental studies
have shown that MARL-SG reduces energy costs during peak and off-peak hours and maintains near-perfect grid
stability. Consequently, it is ideal for dynamic prices and tight grid capacity scenarios where cost efficiency and
grid reliability are essential. MARL-SG is a significant advance in smart grid management and offers an efficient
and flexible approach to balancing energy costs, grid stability, and user satisfaction. To improve the performance
and applicability of MARL-SG, future research will improve the RL model, incorporate advanced neural
architectures and test it in real energy systems.
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