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Abstract 

Machine learning has excellent potential to predict rock types and depositional trends at a 

sub-centimeter scale using borehole data in oil and gas wells. The required dataset 

includes core plug extracted from the wells and well-log data acquired through different 

tools in run in boreholes from six wells in the lower Indus basin. Core plugs are the only 

subsurface data that is true to geologic scale and inherent heterogeneity. The research 

employs a rock-type driven labeling scheme and a rock depositional process focused 

classification scheme to interpret the training data from core plugs at a sub-centimeter 

scale. To generate predictions for lithology and facies, an “RGB log” (RGBL) is developed 

to summarize the core plug image at each depth step. The use of RGBL data has 

generated even more accurate results and requires far less computing power than core 

image data. On the other hand, it is anticipated that well-log data will continue to be 

inadequate in predicting rock types or depositional trends at the sub-centimeter level due 

to logging speed and step interval. To overcome this challenge, multiple curves are used 

as inputs for activation functions to predict rock types from well-log data with signatures of 

encountered rock types. The study demonstrates the potential to transform large quantities 

of photographed core into a normalized digital format for geologic insights. The 

methodology involves a machine learning workflow developed in python; employed for the 

analysis of core image data in a scalable and reproducible manner. This approach can be 

extended to other geologic basins with similar clastic depositional trends, provided there 

is an abundance of photographed core plugs. RandomForest and GradientBoosting were 

used to estimate the facies using well log data; RandomForest was slightly higher in 

accuracy at 87.1% compared to GradientBoosting's 85.7%. Using RGB log data, MLP-

SVM predicted facies with an overall accuracy of 92.31%, with metrics for precision, recall, 

and F1 scores of 0.96, 0.93, and 0.94, respectively. 

Introduction 

The lower Indus basin still has huge upside gas potential. With exploration efforts dating back to 1980’s, Miano 

Gas Field was discovered at B-Sand Interval of the early Cretaceous Lower Goru Formation in August 1994 and 

is something of a geological puzzle. The sands which were supposed to flow gas proved to be either low porosity 

(tight) or produced water. This relates directly to facies variation within the Lower Goru Formation. With only B-
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Sand interval producing commercially viable gas, other sand bodies were extensively tested but due to a poor 

understanding of depositional geomorphology, most models were inconclusive in evaluating the true potential of 

Lower Goru Formation.   

 

Figure 1 Study area map 

However, the B-Sand interval has been exploited thoroughly for commercial gas flow for the past three decades. 

A lack of facies control and understanding in the deltaic and pro-deltaic environment have hindered subsequent 

exploration endeavors. This is precisely where machine learning driven workflows with a high level of detail can 

be of immense value. 

Identifying facies (the characteristics of a rock that reflect its origin and differentiate it from other rocks in its 

vicinity) within the morphologies is the key to understand how the hydrocarbon reservoir will perform throughout 

its life. The main challenges include lack of control over facies identification, interpretation bias, uncertainties in 

data acquisition and the level of detail is far less than required for a thorogh distinction depositional patterns. With 

the advent of computing power and machine learning workflows, these challenges can be overcome to a significant 

degree in understanding the depositional patterns, heterogeneity and the associated uncertainty. The 

unprecedented capability of machine learning models to provide unbiased identification and classification with 

scaleable accuracy is leveraged in this study to assess the performance of a data driven machine learning in its 

ability to create value in facies identification at a much finer scale than what the current technology can offer.  

Machine learning workflows have been used for hydrocarbon reservoir evaluation in the oil and gas sector for 

over forty years. Recently, there has been a resurgence of machine-learning focused research for subsurface 

characterization. The historical progression of integrating machine learning applications into geoscience 

workflows represents a gradual shift from conventional manual approaches to more advanced computational 

methods, fundamentally altering our understanding and subsurface interpretation. In its early stages, geoscientists 

heavily relied on traditional methods for data analysis and interpretation, grappling with the complexities of large 

and intricate datasets inherent to the field. The introduction of machine learning into geoscience gained 

momentum as researchers sought computational solutions to address these challenges. Initial applications centered 

on basic pattern recognition and statistical analyses, laying the groundwork for the development of more 

sophisticated algorithms. The adoption of supervised learning methods, as such decision trees and support vector 

machines marked a notable advancement, automating tasks such as facies prediction from well logs. The 

subsequent emergence of deep learning, specifically with convolutional neural networks (CNNs) and recurrent 

neural networks (RNNs), further transformed geoscience workflows, allowing models to capture intricate spatial 

and temporal relationships within geological data. Over time, interdisciplinary collaboration has gained 

prominence, combining domain expertise with machine learning capabilities to enhance the accuracy and 

reliability of predictions in geoscience applications.  
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The Society of Exploration Geophysicists organized a machine learning hackathon in 2016 poised at predicting 

rock types and depositional trends from a core-calibrated well-log dataset. The most accurate model utilized a 

boosted tree approach with a median accuracy of 0.64 from nine classes. Encouraged by the promising results, 

this study uses an “RGB log” (RGBL) and core images at each data acquired step interval. This method needs a 

lot less computational power than core image data and predicts results with a higher accuracy. The WaveNet model 

was proposed to predict individual lithology classes of reservoir potential clastic facies.  

Although wireline logs are useful to oil and gas professionals, they are limited in their resolution and cannot fully 

capture the subsurface depositional character, especially at fine scales (<5 cm). This is where core data becomes 

important. Machine learning algorithms are now being used to predict lithology and facies in cored well images 

at the centimeter scale.  

Presently, machine learning has become an important component of geoscience, contributing to more efficient 

resource exploration, environmental monitoring, and informed decision-making in the face of complex geological 

challenges. 

Literature Review 

Clastic depositional environments are diverse, heterogeneous and have massive potential for being hydrocarbon 

reservoirs. The study focuses on the potential of automated lithology prediction in clastic depositional conditions 

using borehole data from the Miano block in the Lower Indus Basin.  Facies prediction is a critical yet challenging 

endeavor for oil and gas field development, particularly at centimeter scale. Since the deposition does not happen 

randomly and depends entirely on the energy of water at different stages of sea level rise and fall, there are patterns 

in nature (Ahmad et al., 2012). The effort to integrate core-based facies to reservoir scale models is especially 

complicated while trying to capture the thin-bedded heterogeneity that is common to deposition via interacting 

dynamic processes (wave energy, tidal regime, currents etc.; each with different energy), which re-work and 

disperse fluvial clastic sediments in a deltaic setting (Wolf et al., 1982b). Depositional morphology in deltaic 

environments include distributary channels, river-mouth bars, inter-distributary bays, tidal flats, shore-face, 

beaches, swamps, marshes, and evaporite flats (Fu et al., 2012).  

Identifying facies (the characteristics of a rock that reflect its origin and differentiate it from other rocks in its 

vicinity) within the morphologies is the key to understanding how the hydrocarbon reservoir will perform 

throughout its life (Baldwin et al., 1990). The main challenges include lack of control over facies identification, 

interpretation bias, uncertainties in data acquisition and the level of detail are far less than required for a thorough 

distinction depositional patterns. With the advent of computing power and machine learning workflows, these 

challenges can be overcome to a significant degree in understanding the depositional patterns, heterogeneity, and 

the associated uncertainty (Hall, 2016). The unprecedented capability of machine learning models to provide 

unbiased identification and classification with scalable accuracy is leveraged in this study to assess the 

performance of a data driven machine learning in its ability to create value in facies identification at a much finer 

scale than what the current technology can offer. 

The subsequent emergence of deep learning, specifically with convolutional neural networks (CNNs) and 

recurrent neural networks (RNNs), further transformed geoscience workflows, allowing models to capture 

intricate spatial and temporal relationships within geological data (Quinlan, 1986). Over time, interdisciplinary 

collaboration has gained prominence, combining domain expertise with machine learning capabilities to enhance 

the accuracy and reliability of predictions in geoscience applications (Liu et al., 2018). 

Advances in machine learning have enabled the use of semi-supervised learning and self-training methods in 

geoscience applications. Dunham et al. (2020) showed how these techniques can improve well-log classification, 

increasing the accuracy and efficiency of lithology prediction. Additionally, integrating subsurface core images 

with depth-registered datasets has opened new paths for lithology prediction and characterization. Meyer et al. 

(2020) introduced CoreBreakout, a novel approach to generate depth-registered datasets from subsurface core 

images, providing valuable insights into lithological properties and depositional patterns. 
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The use of machine learning in geoscience has also helped predict lithology and rock layers in cored wells at a 

very detailed, centimeter-level scale. A study by Martin et al. (2021) showed that machine learning techniques can 

accurately predict these fine-scale features, allowing for better understanding of underground reservoir 

complexities. These advancements demonstrate the increasing significance of machine learning in geoscience and 

its potential to transform subsurface analysis and forecasting. 

In the world of digital rock analysis, Luthi (1994) presented a method to divide digital rock images into distinct 

bedding layers. This approach used texture energy and cluster labels to segment the images. This has opened the 

door for more advanced and accurate characterization of reservoir rocks. This allows for better understanding and 

prediction of the rock's properties and how it was formed. By combining these innovative techniques with machine 

learning, the industry can now do more precise and detailed analyses of what's underground. This leads to 

improved reservoir characterization and better oil and gas exploration. 

In the digital rock analysis field, Luthi (1994) developed a textural segmentation method. This technique uses 

texture energy and cluster labels to divide digital rock images into bedding units. This approach has paved the 

way for more advanced and precise characterization of reservoir rocks. It enables better understanding and 

prediction of lithological properties and depositional environments. By combining these innovative techniques 

with machine learning algorithms, the industry can achieve more accurate and detailed subsurface analyses. This 

ultimately leads to improved reservoir characterization and hydrocarbon exploration. 

The Lower Indus Basin is surrounded by the Central Indus and Sulaiman Fold-Belt Basins to the north and the 

Kirthar Fold-Belt Basin to the west. This area contains both clastic and carbonate sediments dating from ancient 

times to the present (Fig. 2). Located within the "Indus Platform and Foredeep" tectonic region, it has multiple 

structural zones characterized by tilted fault blocks and thrust-fault anticlines (Kazmi and Jan 1997; Nazir and 

Fazeelat 2014). During the early Cretaceous period, the Indian Plate shifted northward into warmer areas (Jadoon 

et al. 1992; Kazmi and Jan 1997; Khalid et al. 2014a; Fig. 3a). Along the western shelf, the Lower Cretaceous 

Sembar and Goru formations, consisting of marine shales, limestone, and nearshore sandstones, were deposited 

over the Sulaiman Limestone Group, under a widespread erosional layer. This area transitioned into sedimentary 

rocks called sandstones, including the Lumshiwal and Pab formations in the west and the Tura Formation in the 

east (Khalid et al. 2014b). As the Indian Plate moved northward towards the Asian Plate in the Late Cretaceous, 

the formation of the Bengal Basin seafloor led to the buildup of flysch around the Indian Plate (Shah 2009; Fig. 

3b). Later, a significant flooding event occurred, followed by the widespread deposition of the Upper Goru 

Formation, which acted as a regional seal for the reservoirs of the Lower Goru Formation (Sahito et al. 2013). 

 

Figure.2 Sequence stratigraphic correlation of Miano-03, Miano-05, Miano-07 

Methodology 
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Lithofacies are predicted using well logs and RGB pixel information of core images as different lithology has 

different colors for example sandstone common color are tan, brown, yellow, red, grey, pink, white based on 

composition, sandstone can be classified based on RGB response (Passay et al., 2006). Open-hole log 

interpretation of the wells Miano 3, 5 and 7 classified lithology of the reservoir into 5 lithotypes Lithotype 1 was 

Sand, Lithotype 2 was Sandy Shale, Lithotype 3 was Silt, Lithotype 4 was Shaly-sand and Lithotype 5 was Shale. 

Well data was preprocessed NaN values were removed in training and testing data and the data was merged into 

a single data-frame. Skewness was removed in curve data required through machine learning algorithms and the 

dataset was normalized using yeo-johnson normalization. The outliers were subsequently removed. Miano 5 was 

used as a blind well and two machine learning algorithms (Random Forest Classification and Gradient Boosting 

Classification) were used to train wells Miano-3 and Miano-7 and predict facies on Miano-5 (Chen et al., 2016). 

Random Forest predicted facies with little more accuracy than Gradient Boosting. Randon Forest classifier had 

an accuracy of 87.1% and accuracy of each lithology column were Sand 92%, Sandy Shale 88%, Siltstone 87.16%, 

Shaly Sand 88% and Shale 88%. Gradient Boosting had an accuracy of 85.7% and accuracy of each lithology 

column were Sand 91%, Sandy Shale 88%, Siltstone 87.14%, Shaly Sand 86% and Shale 88%.  
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Figure 3 Manual interpretation of litho facies of Miano-3  

Type – 1 (Sand) 

Type – 2 (Sandy-Shale) 

Type – 3 (Silt) 

Type – 4 (Shaly-Sand) 

Type – 5 (Shale) 
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Figure 4 Manual interpretation of litho facies of Miano-5  

  

 

 

 

 

 

Figure 5 Manual interpretation of litho facies of Miano-7 

Type – 1 (Sand) 

Type – 2 (Sandy-Shale) 

Type – 3 (Silt) 

Type – 4 (Shaly-Sand) 

Type – 5 (Shale) 

Type – 1 (Sand) 

Type – 2 (Sandy-Shale) 

Type – 3 (Silt) 

Type – 4 (Shaly-Sand) 

Type – 5 (Shale) 
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 Core images were split into RGB components the Red, Green and Blue pixel rows were average to plot 

it as a pseudo litho-log, yeo-johson normalization was used to normalize the RGB logs from 0-255 to 0-1 per 

channel (red green blue) representing the mean value for each channel across the core (Hall and Hall, 2017). the 

RGB logs capture fine-scale detail that the GR log does not. MLP-SVM (Multilayer Perception Support Vector 

Machines) was used to predict facies using RGB log instead the GR log. Miano-5 was a blind well and Miano 3, 

Miano-7 are used as training dataset. 

 

Figure 6 An illustration of the well Mian-5, RGB log (left), and gamma ray log (GR, right) (depth in meters). 

To represent the mean value for each channel across the core, we normalize the RGB log's scale from 0–

255 values to 0–1 on a per-channel basis (i.e., red, green, blue, and gray). Keep in mind that the GR log 

lacks fine-scale detail, but the RBG log does. 

According to confusion metrix Class 2: 13 instances were correctly classified as class 2, and 1 instance of class 6 

was misclassified as class 2 Class 4: 12 instances were correctly classified as class 4, and 2 instances of class 5 

were misclassified as class 4. The overall accuracy of 92.31% and performance metric showed precision of 0.96, 

recall of 0.93 and F1 score of 0.94. 
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Figure 7 Workflow of the study 

Discussion and Results 

Core sedimentology was evaluated and seven lithotypes have been defined, mainly based on the different grain 

size and amount of sedimentary and biogenic structures. Lithotype 1A is tight, very coarse-grained, siderite-

cemented, strongly bioturbated, shaly sandstone rich in mollusk fragments. Lithotype 1B is very coarse-grained, 

strongly bioturbated, shaly sandstone showing common biogenically distributed granules to pebbles and 

occasional mollusk fragments. Determinable burrow structures comprise mainly Ophiomorpha sp. traces. 

Lithotype 2A is characterize as Whitish, coarse-grained, quartz-cemented sandstone to granule-sized 

conglomerate with occasional. scattered pebbles. Recognizable bedding types are represented by low- to high-

angle cross-bedding. Fore-set beds are partly accentuated by thin layers of granules to pebbles. Remarkable is the 

frequent occurrence of rip-up clay clasts. This lithotype displays further occasional Ophiomorpha sp. burrow 

structures and contains a thin interlayer of fine-medium-grained sandstone showing a single large coalified wood 

fragment (>10 cm). Also visible are isolated pyrite nodules. Lithotype 2B is recognized as Whitish to light grey, 

fine- to medium-grained, quartz-cemented sandstone characterized by parallel lamination, low-angle cross-

bedding, ripple- and herringbone cross-bedding. In some degree Ophiomorpha sp. traces and enrichments of rip-

up clay clasts are present. Lithotype 3A is grey, fine-grained sandstone mainly characterized by large-scale low-

angle crossbedding, hummocky- and swaley cross-bedding as well as parallel lamination. Occasional obliteration 

by biogenic activity mainly Ophiomorpha sp. and Chondrites sp. burrows. Partly oblique and vertical escape traces 

observable. Lithotype 3B is grey, strongly bioturbated, shaly silt- to fine-grained sandstone. Determinable burrow 

structures comprise Ophiomorpha sp., Ophiomorpha nodosa, Planolites sp., Chondrites sp., Helminthopsis sp. and 

Palaeophycus sp. In isolated cases, biogenically distributed medium- to coarse sand grains discernable. Very rare 

relict primary sedimentary structures visible. Lithotype 4A is interbedded black shale and thin silt- to fine-grained 

sandstone layers and lenses. Bedding types correspond to lenticular and wavy bedding. Quite frequent occurrence 

of pyrite nodules and occasional Planolites sp. and Chondrites sp. trace fossils. 

The study focuses on using machine learning methods to forecast lithology facies by analyzing well log data from 

the Miano-5 site using RandomForest Classification and GradientBoosting Classification. GradientBoosting 

showed an accuracy rate of 85.7%, whereas RandomForest showed a slightly higher rate of 87.1%. This 
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discrepancy in accuracy raises the likelihood that RandomForest was more effective at recognising the underlying 

patterns in the data, which led to more accurate lithology facies predictions. 

 

Figure 8 Facies predicted on Miano-5 using Random Forest Classification model 

 

Figure 9 Facies predicted on Miano-5 using Gradient Boosting Classification model 

Interesting insights were obtained from looking more closely at the accuracy rates for each lithology column. 

Across a range of lithology types, RandomForest attained accuracy values between 87.16% and 92%; sand (92%) 

and sandy shales (88%), in particular, showed especially high accuracy values. These findings show how well 

RandomForest classified these lithologies; this efficacy may be related to its ability to manage complex 

interactions within the data and identify small patterns specific to each type of lithology. GradientBoosting, on 

the other hand, demonstrated less accuracy across lithology columns, ranging from 86% to 91%. These results 

imply that GradientBoosting may have had slightly more difficulty capturing the finer properties of few lithology 

types. This might have led to lower accuracy rates. GradientBoosting was still able to attain good accuracy. 

Furthermore, with an impressive total accuracy of 92.31%, the use of MLP-SVM for predicting facies using RGB 

log data showed encouraging results. This high accuracy rate suggests that the lithology facies predictions made 

by MLP-SVM were based on successful training from the RGB log data. The robustness of the model's 

performance is further demonstrated by the accuracy, recall, and F1 score metrics of 0.96, 0.93, and 0.94, 

respectively. These metrics show that the model can achieve high precision while simultaneously catching a large 

proportion of relevant occurrences. 
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Furthermore, the analysis of the confusion matrix provided helpful details about the misclassifications the models 

created. As an example, two examples of class 5 were incorrectly classed as class 4, whereas one case of class 6 

was wrongly classified as class 2. These misclassifications point to possible areas where the predicted accuracy 

of the models might be improved, such improving feature selection or modifying model hyperparameters to more 

effectively discriminate across similar lithology types. 
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Figure 10 Facie predicted on Miano 5 using RGB log along with actual facies (left). Comparison of 

distribution of actual and predicted facies (right) 

 

 

Fig 11 Confusion Matrix of MLP SVM model prediction 

Conclusion 

The study uses borehole data of Miano block in lower indus basin to analyze the application of automatic lithology 

prediction. Lithology of core from 3 wells were labelled at finer scale, classifying into 7 classes. RGB channels 
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summarize the image at each depth interval, with model accuracy >92% for clastic lithology classes. RGB data 

was faster to compute and had more accurate results, likely because RGB data summarizes data important for 

lithology prediction. 

The well log data model showed some limitations in predictive accuracy, although the core images performed 

well. The Random Forest and Gradient Boosting models achieved accuracies of 87.1% and 85.7%, respectively. 

This research demonstrates the potential of using standard consumer desktop equipment, freely available data, 

and software to convert large amounts of previously imaged core into a standardized digital format. This format 

is enriched with specific geological insights and interpretations, allowing geoscientists to better integrate extensive 

subsurface datasets and enhance core-image data characterization. This approach benefits sectors such as mining, 

hydrogeology, geothermal energy, carbon capture, and geotechnical research. Moreover, the workflow proves 

adaptable for basin-wide or other large-scale subsurface studies requiring lithology identification.  

Although geoscientists' interpretations will always be necessary, machine-learning processes can supplement and 

expedite certain repetitious activities (such core description), particularly when used at the large, basin scale. An 

expert geoscientist's physical examination of the core material will never be replaced by the interpretation of core 

photos alone. 
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