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Abstract 

The nature of the variable in many regression usages is the response in terms of rate 

and ratio. As in economics, economists seek to understand the relationship between 

growth or unemployment rates and several other economic variables. Logistic and Probit 

models are usually used to model data with a variation range (0,1). However, Logistic 

and Probit models are not suitable for rate or ratio data modeling  due to their 

concentration in a certain sub-range of their variation ranges.  Regarding the high 

flexibility of the beta distribution for this type of data, a proper and efficient model is a 

regression based on beta distribution, which is called beta regression. This paper 

introduces the model and estimates its parameters. Then, we obtain an asymptotic 

distribution of estimators and evaluate the performance of the proposed model based on 

the MSE index using simulation. In the end, we will show the use of the model in a real 

example of concrete strength data. 

Keywords: Concrete Strength Data, Beta Regression, Bond Function, Asymptotic 

Distribution, Generalized Linear Models

Introduction 

An objective of statistical surveys is to find relationships that can be used to evaluate the effect of one or more 

variable changes on other variables (herman et al., 2019). Regression is the most common tool for achieving this 

goal. In many uses, the variable nature of the response is in terms of rate and ratio (Delcea & Siserman, 2020). In 

economics, for example, economists seek to understand the relationship between the rate of growth, 

unemployment, the percentage of national production, etc., and several other economic variables. In the 

industry, a manager seeks to find the factors that increase the defect rate of a device such as a turbine. In 

medicine, researchers seek to discover the proportion of the total lung cancer patients in a particular region 

(Voiţă-Mekereş  et al., 2023). In fact, the response variable in this data has a range at a distance of (0,1). Logistic 

and Probit models are usually used to model data with a variation range (0,1)  (Lemeshow et al. 2013). The 

models are not suitable for their modeling since the rate or ratio data are usually concentrated in a certain sub-

distance of their variation range (in other words, the distribution of this type of data is severely skewed). Thus, 

we provide a model known as the beta regression model with regard to great beta distribution flexibility. The 

main motive for introducing beta regression is the flexibility of beta distribution to consider the various types of 

distributions (0,1). 

The statistical distribution of rates and ratios in the literature of statistical science has attracted many scholars 

and researchers (Murray et al. 2014). Various researchers have conducted studies based on beta regression 

models, the main idea of which was introduced by Williams (1982); however, the use of this model was 

welcomed after Ferrari and Cribari-Neto (2004). They carried out basic and comprehensive research on the beta 
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regression model based on the rate and ratio data and showed the usage of the beta regression model as well. 

They considered the accuracy parameter of the beta model to be constant and developed the maximum 

likelihood deduction. Simas et al. (2010) generalized the proposed model for a case where the parameter was not 

constant and was a function of observations. They analyze this kind of regression model from the Bayesian 

point of view. In this view, Branscum et al. (2007) also analyzed beta regression models. This regression model 

has found many advocates in recent years, including Paolini (2001), Smithson and Verkuilen (2006), Kelly et al. 

(2007), Espinheira (2008), Hahn (2008), Wallis et al. (2009), De Lima et al. (2016), Da Silva and de Oliveira 

Lima (2017), and Chen et al. (2017). 

In this paper, we first introduce the beta regression model and estimate its parameters using the Maximum 

Likelihood method. In Section 3, we present an asymptotic distribution of estimators. In Section 4, we evaluate 

the asymptotic properties of the estimators using simulations. In Section 5, we implement the usage of the model 

on a real example that relates to concrete resistance data. In Section 6, we conclude and present the proposal 

(Figure 1). 

  

Figure 1. Beta density function graphs for different values of φ and μ. 

 

1. Introduction of the beta regression model 

Assume that the response variable y has a beta distribution with the parameters p and q. In this case, the density 

function y is: 

                 

(1) 

𝑓𝑝,𝑞(𝑦) = (Γ(𝑝 + 𝑞)/Γ(𝑝)Γ(𝑞))𝑦
𝑝−1(1 − 𝑦)𝑞−1,    0 < 𝑦 < 1,   𝑝 > 0,

𝑞 > 0 

Typically, the regression model is formulated in terms of the mean of the response. A different form of the beta 

distribution density function is needed for an appropriate regression model based on the beta distribution, whose 

parameters are defined in terms of the mean μ and the accuracy parameter φ. For this purpose, if we set μ = p / 

(p + q) and φ = p + q, we will have q = (1-μ) φ and p = μφ. Thus, it can be written as (Ferrari and Cribari-Neto 

2004): 
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(2) 𝐸(𝑌) = 𝜇 

(3) 
𝑉𝑎𝑟(𝑌) =

𝜙2𝜇(1 − 𝜇)

𝜙2(𝜙 + 1)
=
𝜇(1 − 𝜇)

𝜙 + 1
=
𝑉(𝜇)

1 + 𝜙
 

In the expression 𝑉𝑎𝑟(𝑌), with the assumption of μ, the variance decreases if φ is increased. Therefore, φ can be 

interpreted as a model's accuracy estimation parameter. By defining new parameters, the density function of the 

response variable is as follows: 

 

(4) 

𝑓(𝑦|𝜇, 𝜙) = (Γ(𝜙)/Γ(𝜇𝜙)Γ((1− 𝜇)𝜙))𝑦𝜇𝜙−1(1 − 𝑦)(1−𝜇)𝜙−1,    0 < 𝑦 < 1, 0

< 𝜇 < 1, 𝜙 > 0  

Wherein φ> 0, 0 <μ <1 and 0 <y <1. This type of beta display enables us to provide a regression model based on 

the category of generalized linear models (GLM). In fact, beta regression is a member of the GLM category. In 

this model, μ is a function of explanatory variables, and φ can be a constant or a function of variables (Simas et 

al. 2010). Suppose that the mean and accuracy parameters for μ_i are as follows: 

(5) 𝑔1(𝜇𝑖) = 𝜂1𝑖 = xi′β                    𝑔2(𝜙𝑖) = 𝜂2𝑖 = zi′θ 

in which 𝜷 = (𝛽1, … , 𝛽𝑘)
′ and 𝜽 = (𝜃1, … , 𝜃𝑘)

′ are vectors of unknown parameters for mean and accuracy 

functions, respectively, and (𝜷 ∈ ℝ𝑘), (𝜽 ∈ ℝ𝑘) and 𝑘 + ℎ < 𝑛, as well as the functions 𝜂1𝑖 and 𝜂2𝑖 are linear 

predictors, and 𝑥𝑖1, … , 𝑥𝑖𝑘 and 𝑧𝑖1, … , 𝑧𝑖ℎ are the explanatory variables. Assume that the matrices X and Z are the 

matrices of the scheme corresponding to the explanatory variables 𝑥1, … , 𝑥𝑘 and 𝑧1, … , 𝑧ℎ.  

2.1 Fitting the model 

The logarithm of likelihood for a sample of n is expressed as follows for this beta regression model: 

(6) 
ℓ(𝜷,𝜙) =∑ℓ𝑖(𝜇𝑖 , 𝜙)

𝑛

𝑖=1

   

(7) ℓ𝑖(𝜇𝑖, 𝜙𝑖) = 𝑙𝑜𝑔Γ(𝜙𝑖) − 𝑙𝑜𝑔Γ(𝜇𝑖𝜙𝑖) − 𝑙𝑜𝑔Γ((1 − 𝜇𝑖)𝜙𝑖) + (𝜇𝑖𝜙𝑖 − 1)𝑙𝑜𝑔𝑦𝑖

+ {(1 − 𝜇𝑖)𝜙𝑖 − 1} log(1 − 𝑦𝑖) 

where the functions g_1 (𝜇𝑖) = η_1i and g_2 (𝜙𝑖) = 𝜂2𝑖 defined in (6) are respectively the functions of β and θ. 

To estimate the parameters by the maximum likelihood method, we must obtain the corresponding function of β 

and φ. For the proof of theorem 1, a new approach is presented in the following. 

Theorem 1: Consider the vector of the parameter ξ = (𝛽′, 𝜃′). We write the vector of the (k + h) dimension of 

𝑈(𝜉) as (𝑈𝛽(𝛽, 𝜃)
′, 𝑈𝜃(𝛽, 𝜃)′)′. The corresponding score functions of β and θ are: 

(8) 𝑈𝛽(𝛽, 𝜃) = 𝑋
′𝜙𝑇1(𝑦

∗ − 𝜇∗) 

(9) 𝑈𝜃(𝛽, 𝜃) = 𝑍
′𝑇2𝜈 

where  𝑇1 = 𝑑𝑖𝑎𝑔( 
𝑑𝜇𝑖

𝑑𝜂1𝑖
)  ،𝑇2 = 𝑑𝑖𝑎𝑔( 𝑑𝜙𝑖/𝑑𝜂2𝑖)  ،𝜙 = 𝑑𝑖𝑎𝑔(𝜙𝑖), 𝑦

∗ = (𝑦1
∗,… , 𝑦𝑛

∗)′  'And 𝜇∗ = (𝜇1
∗ , … , 𝜇𝑛

∗ )′  such 

that  𝑦𝑖
∗ = 𝑙𝑜𝑔

𝑦𝑖

1−𝑦𝑖
, and 𝜇𝑖

∗ = 𝜓(𝜇𝑖𝜙) − 𝜓((1 − 𝜇𝑖)𝜙)  .The diag  𝑑𝑖𝑎𝑔(𝜇𝑖), A n-dimensional matrix with 𝜇𝑖 

components. We also have 𝜈 = (𝜈1, … , 𝜈𝑛)′ so that 

ν𝑖 = 𝜇𝑖(𝑦𝑖
∗ − 𝜇𝑖

∗) + 𝜓(𝜙𝑖) − 𝜓((1 − 𝜇𝑖)𝜙𝑖) + log(1 − 𝑦𝑖). 

Argument: By deriving from the logarithmic likelihood function, we have: 

𝑈𝑟(𝛽, 𝜃) =
𝜕ℓ(𝛽, 𝜃)

𝜕𝛽𝑟
=∑

𝜕ℓ𝑖(𝜇𝑖 , 𝜙𝑖)

𝜕𝜇𝑖
[(
𝑑𝜇𝑖
𝑑𝜂1𝑖

) (
𝜕𝜂1𝑖
𝜕𝛽𝑟

)]

𝑛

𝑖=1

 
(10) 

According to the definition of (𝑑/𝑑𝑧)𝑙𝑜𝑔Γ(𝑧) = 𝜓(𝑧): 
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(11) 𝜕ℓ𝑖(𝜇𝑖 , 𝜙𝑖)/𝜕𝜇𝑖 = [𝑙𝑜𝑔
𝑦𝑖

1 − 𝑦𝑖
− {𝜓(𝜇𝑖𝜙𝑖) + 𝜓((1 − 𝜇𝑖)𝜙𝑖)}] 

By replacing the equations, we get: 

(12) 
𝑈𝑟(𝛽,𝜙) = ∑𝜙𝑖

𝑛

𝑖=1

((𝑦𝑖
∗ − 𝜇𝑖

∗)/𝑔1
′(𝜇𝑖))𝑥𝑖𝑟 

Therefore: 

 

Uβ =

(

  
 𝑈1.
.
.
𝑈𝑘)

  
 
=

(

 
 
 
 
 ∑ 𝜙𝑖

(𝑦𝑖
∗ − 𝜇𝑖

∗)
𝑔′(𝜇𝑖)

𝑛
𝑖=1 𝑥𝑖1

.

.

.

∑ 𝜙𝑖
(𝑦𝑖
∗ − 𝜇𝑖

∗)

𝑔′(𝜇𝑖)
𝑛
𝑖=1 𝑥𝑖𝑘)

 
 
 
 
 

= 𝑋′𝜙𝑇1(𝑦
∗ − 𝜇∗). 

Similarly, by calculating the 𝜃𝑅  rating function, we have: 

Uθ =

(

  
 𝑈1.
.
.
𝑈ℎ)

  
 
=

(

 
 
 
 ∑

𝜈𝑖
𝑔′(𝜙𝑖)

𝑛
𝑖=1 𝑧𝑖1

.

.

.

∑
𝜈𝑖

𝑔′(𝜙𝑖)
𝑛
𝑖=1 𝑧𝑖ℎ)

 
 
 
 

= 𝑍′𝑇1𝜈. 

To complete the model's fitting process, we need to know the accuracy of the obtained estimators. Thus, we 

require calculating Fisher's knowledge matrix of estimators. The inverse of this matrix results in a covariance 

matrix of model estimators. 

Theorem 2: The Fisher Informational Matrix for the model parameters (4) is 𝐾(𝜉) = 𝑃′𝑊𝑃, in which: 

𝑃 = [
𝑋 0
0 𝑍

] 

and W is a 2n × 2n matrix as follows: 

𝑊 = [
𝑊𝛽𝛽 𝑊𝛽𝜃
𝑊𝛽𝜃 𝑊𝜃𝜃

] 

so that 

𝑊𝛽𝛽 = 𝑑𝑖𝑎𝑔 (𝜙𝑖
2𝑎𝑖(

1

𝑔2
′ (𝜇𝑖)

)2), 

𝑊𝛽𝜃 = 𝑑𝑖𝑎𝑔 (𝜙𝑖 {𝜇𝑖𝑐𝑖 −
𝑑

𝑑𝜙𝑖
𝜓((1 − 𝜇𝑖)𝜙𝑖)} (

1

𝑔1
′(𝜇𝑖)

)(
1

𝑔2
′ (𝜙𝑖)

)), 

𝑊𝜃𝜃 = 𝑑𝑖𝑎𝑔 (𝑏𝑖(
1

𝑔2
′ (𝜙𝑖)

)2), 

where 

𝑎𝑖 =
𝑑

𝑑𝜇𝑖
𝜓((1 − 𝜇𝑖)𝜙) +

𝑑

𝑑𝜇𝑖
𝜓(𝜇𝑖𝜙𝑖), 
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𝑏𝑖 =
𝑑

𝑑𝜙𝑖
𝜓((1 − 𝜇𝑖)𝜙)(1 − 𝜇𝑖)

2 +
𝑑

𝑑𝜙𝑖
𝜓(𝜇𝑖𝜙𝑖)𝜇𝑖

2 −
𝑑

𝑑𝜙𝑖
𝜓(𝜙𝑖), 

𝑐𝑖 =
𝑑

𝑑𝜙𝑖
𝜓((1 − 𝜇𝑖)𝜙) +

𝑑

𝑑𝜙𝑖
𝜓(𝜇𝑖𝜙𝑖). 

Argument: By deriving Equation (10) by β, we have: 

𝜕2ℓ(𝛽, 𝜃)

𝜕𝛽𝑟𝜕𝛽𝑠
=∑

𝜕

𝜕𝜇𝑖
(
𝜕ℓ𝑖(𝜇𝑖 , 𝜙𝑖)

𝜕𝜇𝑖

𝑑𝜇𝑖
𝑑𝜂1𝑖

)
𝑑𝜇𝑖
𝑑𝜂1𝑖

𝑛

𝑖=1

𝜕𝜂1𝑖
𝜕𝛽𝑠

𝑥𝑖𝑟 

                                               = ∑(
𝜕2ℓ𝑖(𝛽, 𝜃)

𝜕𝜇𝑖
2

𝑑𝜇𝑖
𝑑𝜂1𝑖

+
𝜕ℓ𝑖(𝛽, 𝜃)

𝜕𝜇𝑖

𝜕

𝑑𝜇𝑖

𝑑𝜇𝑖
𝑑𝜂1𝑖

)

𝑛

𝑖=1

𝑑𝜇𝑖
𝑑𝜂1𝑖

𝑥𝑖𝑟𝑥𝑖𝑠. 

Since 𝐸 (
𝜕ℓ𝑖(𝜇𝑖,𝜙𝑖)

𝜕𝜇𝑖
) = 0, then 

𝐸 (
𝜕2ℓ(𝛽, 𝜃)

𝜕𝛽𝑟𝜕𝛽𝑠
) =∑(

𝜕2ℓ𝑖(𝜇𝑖 , 𝜃𝑖)

𝜕𝜇𝑖
2 ) (

𝑑𝜇𝑖
𝑑𝜂1𝑖

)
2

𝑥𝑖𝑟𝑥𝑖𝑠.

𝑛

𝑖=1

 

Deriving from the derivation of (11) results in: 

𝜕2ℓ𝑖(𝜇𝑖 , 𝜙𝑖)

𝜕𝜇𝑖
2 =

𝑑

𝑑𝜂1𝑖
(𝜙𝑖 [𝑙𝑜𝑔

𝑦𝑖
1 − 𝑦𝑖

− {𝜓(𝜇𝑖𝜙𝑖) − 𝜓((1 − 𝜇𝑖)𝜙𝑖)}]) 

= 𝜙𝑖(−𝜙𝑖
𝑑

𝑑𝜇𝑖
𝜓(𝜇𝑖𝜙𝑖) − 𝜙𝑖

𝑑

𝑑𝜇𝑖
𝜓((1 − 𝜇𝑖)𝜙𝑖)) 

= 𝜙𝑖
2 (

𝑑

𝑑𝜇𝑖
𝜓(𝜇𝑖𝜙𝑖) −

𝑑

𝑑𝜇𝑖
𝜓((1 − 𝜇𝑖)𝜙𝑖)). 

According to the definition 𝑎𝑖, we have: 

𝐸 (
𝜕2ℓ(𝛽, 𝜃)

𝜕𝛽𝑟𝜕𝛽𝑠
) = −∑(𝜙𝑖

2𝑎𝑖) (
1

𝑔1
′(𝜇𝑖)

)

2

𝑥𝑖𝑟𝑥𝑖𝑠 .

𝑛

𝑖=1

 

As a result: 

−𝐸 (
𝜕2ℓ(𝛽, 𝜃)

𝜕𝛽𝜕𝛽′
) = 𝑋′𝑑𝑖𝑎𝑔(𝜙𝑖

2𝑎𝑖 (
1

𝑔1
′(𝜇𝑖)

)

2

)𝑋 = 𝑋′𝑊𝛽𝛽𝑋. 

Other components of the Fisher Informational Matrix are similar to those above. 

Maximum Likelihood Estimates of Beta Regression Parameters are not analytically computable and should be 

obtained by numerical methods. These estimators are calculated by the betareg package in R software (Cribari-

Neto and Zeilis 2010). 

2. Asymptotic distribution of estimators 

In this section, we examine the asymptotic characteristics of the estimators and introduce confidence intervals 

for them. The theorem below shows the asymptotic distribution of estimators. 

Theorem 3: (Casella and Berger 2002) When the sample size is large, and assuming the existence and reversible 

of 𝐽(𝜉) = lim
𝑛→∞

𝐾(𝜉)

𝑛
, under the terms of the order, the asymptotic distribution of the maximum likelihood 

estimators of the vector parameter ξ is: 

√𝑛(𝜉̂ − 𝜉)~𝑁𝑘+ℎ(0, 𝐽(𝜉)
−1). 
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Using this, the asymptotic confidence intervals of estimators can be calculated as follows. If 𝐾(𝜉)𝑟𝑟, the rth of 

component of the matrix 𝐾(𝜉)−1 and 𝐾(𝜉)𝑅𝑅, (K + R), the diameter of the component 𝐾(𝜉)−1, and then the 

asymptotic confidence intervals of 100 (1 -α)% for 𝛽𝑟 and θ𝑅 are obtained as follows. 

𝛽𝑟̂ ∓Φ
−1 (1 −

𝛼

2
) (𝐾(𝜉𝑟𝑟)

1
2), 

𝜃𝑅̂ ∓ Φ
−1 (1 −

𝛼

2
) (𝐾(𝜉𝑟𝑟)

1
2), 

3. Simulation study 

With a simulation study in the small sample, we will examine the compatibility and normal asymmetry of model 

estimators for a case where φ is a function of explanatory variables. We consider the model as follows:  

𝜂1 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2,          𝜂2 = 𝛽0 + 𝜃1𝑧1 + 𝜃2𝑧2,           𝑖 = 1,… , 𝑛, (13) 

in which the values of the explanatory variables 𝑥1 and 𝑥2 were respectively generated from distributions 

𝒩(0,1) and Bernoulli with a probability of success of 0.6. The values of the explanatory variables z_1 and z_2 

were also generated respectively from Bernoulli distributions with a probability of success of 0.5 and 𝒩(1,2). 

We produced a collection of data from model (12) with real values (𝛽0, 𝛽1, 𝛽2) = (−1, 0.75, 1.5) and 

(𝜃0, 𝜃1, 𝜃2) = (2,−1, 0.5), and we obtained the maximum likelihood estimates for the parameters of each. 

Using the vector of estimated parameters, we calculated the error values and Mean Squared Error (MSE). The 

results are reported in Table 1. 

Table 1. Simulation results for estimating coefficients of beta regression with the logit bonding function for 

mean and logarithms for the accuracy parameter using 500 data sets. 

Sample Size Parameters 
Real 

Quantity 
Estimation MSE Bias 

30 

𝛽0 -1 -1.0188 -0.0407 0.0407 

𝛽1 0.75 0.7558 -0.0209 0.0209 

𝛽2 

𝜃0 

𝜃1 

𝜃2 

1.5 

2 

-1 

0.5 

1.5331 

2.2430 

-1.1278 

0.5569 

-0.0331 

0.2430 

-0.1278 

0.0569 

0.0591 

0.3042 

0.4496 

0.0262 

50 

𝛽0 -1 -0.9981 -0.0018 0.0218 

𝛽1 0.75 0.7490 -0.0009 0.0103 

𝛽2 

𝜃0 

𝜃1 

𝜃2 

1.5 

2 

-1 

0.5 

1.4983 

2.1159 

-1.0404 

0.5262 

-0.0016 

0.1159 

-0.0404 

0.0262 

0.0349 

0.1137 

0.1714 

0.0146 

100 

𝛽0 -1 -1.0026 -0.0026 0.0090 

𝛽1 0.75 0.7515 -0.0015 0.0047 

𝛽2 1.5 1.4951 -0.0048 0.0153 



International Journal of Multiphysics 

Volume 18, No. 3, 2024 

ISSN: 1750-9548 

 

1880 

𝜃0 

𝜃1 

𝜃2 

2 

-1 

0.5 

2.0575 

-1.0156 

0.5119 

0.0575 

0.0156- 

0.0119 

0.0445 

0.0715 

0.0052 

200 

𝛽0 -1 -1.0033 -0.0033 0.0044 

𝛽1 0.75 0.7512 -0.0012 0.0017 

𝛽2 

𝜃0 

𝜃1 

𝜃2 

1.5 

2 

-1 

0.5 

1.5040 

2.0311 

-1.0144 

0.5056 

-0.0040 

0.0311 

-0.0144 

-0.0056 

0.0072 

0.0226 

0.0360 

0.0022 

400 

𝛽0 -1 -0.9988 -0.0015 0.0022 

𝛽1 0.75 0.7497 -0.0015 0.0009 

𝛽2 

𝜃0 

𝜃1 

𝜃2 

1.5 

2 

-1 

0.5 

1.4996 

2.0126 

-0.9997 

0.0504 

-0.0009 

0.0218 

-0.0098 

-0.0025 

0.0038 

0.0105 

0.0171 

0.0010 

 

 

Figure 2. Quantile-quantile plots for the model coefficients (13). 
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According to the results of Table 1, the MSE estimates decrease with the increase in sample size. On the other 

hand, the bias tends to be zero. The odd values appear to be unbiased. Consequently, the compatibility of 

estimators can be deduced. According to Theorem 3, the asymptotic distribution of estimators is normal. We use 

multi-quintile graphs (Figure 2) to examine this feature in a small sample. The asymptomatic estimators are 

verified to be normal according to Figure 2. 

4. Formation of concrete strength data 

In this section, we fit the introduced beta regression model onto concrete resistance data. In this data, the 

response variable is the percentage of hardness (strength) of the concrete. The purpose of the data analysis is to 

investigate the effect of micro silica, sand, cement, and water as the model variables on concrete hardness. 

Rezaei (2012) reported this dataset. 

To accurately determine the model, we first sought explanatory variables using an exploratory analysis that 

could be present in the linear predictor of the μ and φ parameters. We use all variables for the μ parameter. To 

determine the possible candidates for attending φ, we use the box plot of the response variable in the categories 

of explanatory variables. Figure 3 shows these charts for all explanatory variables. According to this figure, the 

response variables are different in the categories of sand, cement, and water variables. Nevertheless, these 

changes remain almost the same in the different categories of microsilica variables. Therefore, the linear 

predicate for φ is the explanatory variables of sand, water, and cement as primary candidates. In summary, the 

beta regression model for these data is as follows: 

𝑙𝑜𝑔𝑖𝑡(𝜇𝑖) = 𝑥𝑖
′𝛽,                   log(𝜙𝑖) = 𝑧𝑖

′𝜃                 𝑖 = 1,… ,108, 

Where  

𝑥𝑖 = (1, sand, water,Micro silica, Cement),     𝑧𝑖 = (1, Sand,Water, Cement) 

β = (𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4),               𝜃 = (𝜃0, 𝜃1, 𝜃2, 𝜃3) 

Table 2. Estimated Parameters Using Concrete Construction Data with the Variable φ. 

Model Coefficients Parameter Estimation Wald Statistic Standard error p-value 

 

 

𝛍 

Width from origin 𝛽0 -11.8 -9.98 1.110 <0.0001*** 

Sand 𝛽1 0.01 9.24 0.008 <0.0001   ***  

Water 𝛽2 -0.01 -5.26 0.001 <0.0001    ***  

Micro silica 𝛽3 0.02 9.61 0.001 <0.0001    ***  

Cement 𝛽4 0.01 13.44 0.009 <0.0001    ***  

 

 

𝝓 

Width from origin 𝜃0 -10.89 -3.42 3.170 <0.0001    ***  

Sand 𝜃1 0.01 2.34 0.002 <0.0001    ***  

Water 𝜃2 0.02 2.76 0.005 0.0059    **  

Cement 𝜃3 0.02 5.27 0.003 <0.0001    ***  
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Figure 3. Box variables for response variables in different categories of explanatory variables for concrete 

strength data. 

 

5. Discussion and conclusion 

According to the fitting results of the model in Table 2, all coefficients in the model are significant considering 

the obtained p-value, which is less than the contract value of 0.00. Moreover, only the water explanatory 

variable has a reverse effect on the concrete hardness, and an increase in the amount of water decreases concrete 

strength. Similarly, the greatest effect on the average concrete hardness was due to the microsilica variable. In 

other words, the amount of microsilica in concrete strength significantly affects the other concrete ingredients. 

Finally, the degree of model accuracy increases with increasing levels of variables for all the explanatory 

variables in the linear predicate of φ. 

In this paper, an appropriate regression model is presented for responses that are continuously changed at the 

distance of (0,1). This kind of data includes the rates and ratios that researchers encounter in different usage 

situations. In the introduced models, the basic acceptance is that the response variable follows the beta 

exponential distribution. It is well known that the beta distribution is very flexible for modeling data at unit 

intervals because the beta density function shows different curves with different shape parameters. 

The simulation study shows that the asymptomatic behavior of estimators is consistent with the theoretical 

results, which are available even for small and medium-sized volumes. 
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