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Abstract

The nature of the variable in many regression usages is the response in terms of rate
and ratio. As in economics, economists seek to understand the relationship between
growth or unemployment rates and several other economic variables. Logistic and Probit
models are usually used to model data with a variation range (0,1). However, Logistic
and Probit models are not suitable for rate or ratio data modeling due to their
concentration in a certain sub-range of their variation ranges. Regarding the high
flexibility of the beta distribution for this type of data, a proper and efficient model is a
regression based on beta distribution, which is called beta regression. This paper
introduces the model and estimates its parameters. Then, we obtain an asymptotic
distribution of estimators and evaluate the performance of the proposed model based on
the MSE index using simulation. In the end, we will show the use of the model in a real
example of concrete strength data.

Keywords: Concrete Strength Data, Beta Regression, Bond Function, Asymptotic
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Introduction

An objective of statistical surveys is to find relationships that can be used to evaluate the effect of one or more
variable changes on other variables (herman et al., 2019). Regression is the most common tool for achieving this
goal. In many uses, the variable nature of the response is in terms of rate and ratio (Delcea & Siserman, 2020). In
economics, for example, economists seek to understand the relationship between the rate of growth,
unemployment, the percentage of national production, etc., and several other economic variables. In the
industry, a manager seeks to find the factors that increase the defect rate of a device such as a turbine. In
medicine, researchers seek to discover the proportion of the total lung cancer patients in a particular region
(Voita-Mekeres et al., 2023). In fact, the response variable in this data has a range at a distance of (0,1). Logistic
and Probit models are usually used to model data with a variation range (0,1) (Lemeshow et al. 2013). The
models are not suitable for their modeling since the rate or ratio data are usually concentrated in a certain sub-
distance of their variation range (in other words, the distribution of this type of data is severely skewed). Thus,
we provide a model known as the beta regression model with regard to great beta distribution flexibility. The
main motive for introducing beta regression is the flexibility of beta distribution to consider the various types of
distributions (0,1).

The statistical distribution of rates and ratios in the literature of statistical science has attracted many scholars
and researchers (Murray et al. 2014). Various researchers have conducted studies based on beta regression
models, the main idea of which was introduced by Williams (1982); however, the use of this model was
welcomed after Ferrari and Cribari-Neto (2004). They carried out basic and comprehensive research on the beta
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regression model based on the rate and ratio data and showed the usage of the beta regression model as well.
They considered the accuracy parameter of the beta model to be constant and developed the maximum
likelihood deduction. Simas et al. (2010) generalized the proposed model for a case where the parameter was not
constant and was a function of observations. They analyze this kind of regression model from the Bayesian
point of view. In this view, Branscum et al. (2007) also analyzed beta regression models. This regression model
has found many advocates in recent years, including Paolini (2001), Smithson and Verkuilen (2006), Kelly et al.
(2007), Espinheira (2008), Hahn (2008), Wallis et al. (2009), De Lima et al. (2016), Da Silva and de Oliveira
Lima (2017), and Chen et al. (2017).

In this paper, we first introduce the beta regression model and estimate its parameters using the Maximum
Likelihood method. In Section 3, we present an asymptotic distribution of estimators. In Section 4, we evaluate
the asymptotic properties of the estimators using simulations. In Section 5, we implement the usage of the model
on a real example that relates to concrete resistance data. In Section 6, we conclude and present the proposal
(Figure 1).
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Figure 1. Beta density function graphs for different values of ¢ and p.

1. Introduction of the beta regression model

Assume that the response variable y has a beta distribution with the parameters p and g. In this case, the density
functiony is:

foa@) =T+ @)/ TOIT(@)y* (1 -y), 0<y<1, p>0,
q>0 1)

Typically, the regression model is formulated in terms of the mean of the response. A different form of the beta
distribution density function is needed for an appropriate regression model based on the beta distribution, whose
parameters are defined in terms of the mean p and the accuracy parameter ¢. For this purpose, if we set p=p /
(p +q)and ¢ =p + q, we will have q = (1-p) ¢ and p = pe. Thus, it can be written as (Ferrari and Cribari-Neto
2004):
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E(Y)=pu @
¢?ud—pw) _pd—-—w VW ®)
P2 (p+1) p+1  1+¢
In the expression Var(Y), with the assumption of p, the variance decreases if ¢ is increased. Therefore, ¢ can be

interpreted as a model's accuracy estimation parameter. By defining new parameters, the density function of the
response variable is as follows:

Flu @) = [T(@)/TuP)T((1 — )y =11 — )¢, 0<y < 1,0
<u<1l, ¢>0 4)

Var(Y) =

Wherein ¢> 0, 0 <p <1 and 0 <y <1. This type of beta display enables us to provide a regression model based on
the category of generalized linear models (GLM). In fact, beta regression is a member of the GLM category. In
this model, p is a function of explanatory variables, and ¢ can be a constant or a function of variables (Simas et
al. 2010). Suppose that the mean and accuracy parameters for p_i are as follows:

g1(u) =11 = %' 92(P) = =70 (%)

in which g = (B4, ...,8r)" and @ = (64, ...,0;)" are vectors of unknown parameters for mean and accuracy
functions, respectively, and (B € R¥), (8 € R¥) and k + h < n, as well as the functions 7,; and 7,; are linear
predictors, and x;4, ..., X3 and z;4, ..., z;, are the explanatory variables. Assume that the matrices X and Z are the
matrices of the scheme corresponding to the explanatory variables x4, ..., xj, and zy, ..., z,.

2.1 Fitting the model

The logarithm of likelihood for a sample of n is expressed as follows for this beta regression model:

z ©)
£B,9) = ) 4 $)

(1, ¢1) = logT(¢;) — logT (i) — logT((1 — u) ;) + (i — Dlogy;  (7)
+{(1 = p)¢; — 1}log(1 — y,)
where the functions g_1 (i;) =n_li and g_2 (¢b;) = ny; defined in (6) are respectively the functions of § and 6.

To estimate the parameters by the maximum likelihood method, we must obtain the corresponding function of 8
and ¢. For the proof of theorem 1, a new approach is presented in the following.

Theorem 1: Consider the vector of the parameter & = (B’,0"). We write the vector of the (k + h) dimension of
U(§) as (Ug(B,6)',Ug(B,6)"). The corresponding score functions of  and 6 are:

Up(B,0) =X'¢T,(y" — 1") (8)
Ug(B,0) = Z'T,v )
where Ty = diag(<2L) T, = diag( de/dny;) «p = diag($),y* = (i, ... y3) 'And p* = (i, .., s3)’ such

anyg
that y; = logli'—;i, and p; = Y (up) — p((1 — u)¢) .The diag diag(y;), A n-dimensional matrix with g

components. We also have v = (vq, ..., V)’ so that
vi = (i = ) + () — (1 = u) ;) +log(1 — yy).

Argument; By deriving from the logarithmic likelihood function, we have:

0. (6.8) = afég,re) _ Z afig;i;qbi) [< j:lii) (3731:)] (10)

According to the definition of (d/dz)logl'(z) = Y(2):
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— W) +P((1 = )} (11)

04 (ui, ¢1)/0u; = [log 1

By replacing the equations, we get:

" (12
UrB,#) = ) i (O — /93 (1))

i=1

Therefore:

= | = X'PTy(y" = ).

Ug=|  |= ' =Z'Tyv.
\Uh/ n z
=19'(¢0) (¢) "

To complete the model's fitting process, we need to know the accuracy of the obtained estimators. Thus, we
require calculating Fisher's knowledge matrix of estimators. The inverse of this matrix results in a covariance
matrix of model estimators.

Theorem 2: The Fisher Informational Matrix for the model parameters (4) is K(§) = P'WP, in which:

p=[¥

0 Z
and W is a 2n x 2n matrix as follows:

Wgp WﬁB]

W= [
Wge Woe

so that

. 1
Wgp = diag <¢i2ai(gé(#.))2>;

Wﬁg = dlag <¢l {,uici l,b((l .ul)d) )}( r(#l))( /((p )))

dl““’( ey ))2>

where

d d
a; = d_uil'b((l —u)p) + d_‘uilp(ﬂi(Pi),
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w((l 1)) (A — 1) + — I — — (¢,

bi = de; d¢>L dcb,

w((l ) + 7~ w(wb)

Argument: By deriving Equation (10) by B, we have:

9%4(B,0) Z (M (ul.¢)dm)dui annx
aﬁraﬁs aﬂl :ui dnli dT’li aﬂs T

irXis-

n 2
=Z<6 £:(B,6) dy _l_afi(ﬁ,@)i d.“i) dy;
ouf  dny ow;  dp;dny;)dny

i=1

Since E (@) = 0, then

Hi

Deriving from the derivation of (11) results in:

0%¢; (i, ) d (cpl[l

= dn 90 - (1 - 19}

d d
= (pi(_(pid_#il/)(ﬂid)i) - d_,uil‘b((l — u)d:))

d d
= ¢7f (d_mlp(lli(f’i) - d—ﬂilp((l - ﬂi)¢i)>-

According to the definition a;, we have:

i) ~2jo i)
E< %96 ) ;(d)ial) gi(uy) N

(0 _ g g gy = Xy
apop )~ X e\ il gy S o

Other components of the Fisher Informational Matrix are similar to those above.

As a result:

Maximum Likelihood Estimates of Beta Regression Parameters are not analytically computable and should be
obtained by numerical methods. These estimators are calculated by the betareg package in R software (Cribari-
Neto and Zeilis 2010).

2. Asymptotic distribution of estimators

In this section, we examine the asymptotic characteristics of the estimators and introduce confidence intervals
for them. The theorem below shows the asymptotic distribution of estimators.

Theorem 3: (Casella and Berger 2002) When the sample size is large, and assuming the existence and reversible
of J(§) = hm (f), under the terms of the order, the asymptotic distribution of the maximum likelihood

estimators of the vector parameter & is:

V(€ = €)~Nsn (0,J(O).
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Using this, the asymptotic confidence intervals of estimators can be calculated as follows. If K ()", the r" of
component of the matrix K (§)~ and K (§)RR, (K + R), the diameter of the component K (§)~*, and then the
asymptotic confidence intervals of 100 (1 -a)% for 3, and 6, are obtained as follows.

FrFo(1-3) GaD)

1
6. F 07 (1-3) K(Em)P),
3. Simulation study

With a simulation study in the small sample, we will examine the compatibility and normal asymmetry of model
estimators for a case where ¢ is a function of explanatory variables. We consider the model as follows:

N1 = Bo + B1x1 + Baxo, Ny = Po + 0121 + 0,2,, i=1,..,n, (13)

in which the values of the explanatory variables x; and x, were respectively generated from distributions
NV (0,1) and Bernoulli with a probability of success of 0.6. The values of the explanatory variables z_1 and z_2
were also generated respectively from Bernoulli distributions with a probability of success of 0.5 and N (1,2).
We produced a collection of data from model (12) with real values (B,,81,82) = (—1,0.75,1.5) and
(6y,64,6,) = (2,—1,0.5), and we obtained the maximum likelihood estimates for the parameters of each.
Using the vector of estimated parameters, we calculated the error values and Mean Squared Error (MSE). The
results are reported in Table 1.

Table 1. Simulation results for estimating coefficients of beta regression with the logit bonding function for
mean and logarithms for the accuracy parameter using 500 data sets.

Sample Size Parameters Qiﬁli ty Estimation MSE Bias
Bo -1 -1.0188 -0.0407 0.0407
B1 0.75 0.7558 -0.0209 0.0209
20 B2 15 1.5331 -0.0331 0.0591
0o 2 2.2430 0.2430 0.3042
04 -1 -1.1278 -0.1278 0.4496
6, 0.5 0.5569 0.0569 0.0262
Bo -1 -0.9981 -0.0018 0.0218
B1 0.75 0.7490 -0.0009 0.0103
50 B2 15 1.4983 -0.0016 0.0349
0o 2 2.1159 0.1159 0.1137
01 -1 -1.0404 -0.0404 0.1714
0, 0.5 0.5262 0.0262 0.0146
Bo -1 -1.0026 -0.0026 0.0090
100 B1 0.75 0.7515 -0.0015 0.0047
B 15 1.4951 -0.0048 0.0153
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Figure 2. Quantile-quantile plots for the model coefficients (13).
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According to the results of Table 1, the MSE estimates decrease with the increase in sample size. On the other
hand, the bias tends to be zero. The odd values appear to be unbiased. Consequently, the compatibility of
estimators can be deduced. According to Theorem 3, the asymptotic distribution of estimators is normal. We use
multi-quintile graphs (Figure 2) to examine this feature in a small sample. The asymptomatic estimators are
verified to be normal according to Figure 2.

4. Formation of concrete strength data

In this section, we fit the introduced beta regression model onto concrete resistance data. In this data, the
response variable is the percentage of hardness (strength) of the concrete. The purpose of the data analysis is to
investigate the effect of micro silica, sand, cement, and water as the model variables on concrete hardness.
Rezaei (2012) reported this dataset.

To accurately determine the model, we first sought explanatory variables using an exploratory analysis that
could be present in the linear predictor of the p and ¢ parameters. We use all variables for the p parameter. To
determine the possible candidates for attending ¢, we use the box plot of the response variable in the categories
of explanatory variables. Figure 3 shows these charts for all explanatory variables. According to this figure, the
response variables are different in the categories of sand, cement, and water variables. Nevertheless, these
changes remain almost the same in the different categories of microsilica variables. Therefore, the linear
predicate for @ is the explanatory variables of sand, water, and cement as primary candidates. In summary, the
beta regression model for these data is as follows:

logit(y;) = x{B, log(¢;) = z/6 i=1,..,108,
Where
x; = (1, sand, water, Micro silica, Cement), z; = (1, Sand, Water, Cement)
B = (Bo, Br, B2 B3, Ba), 8 = (6o,61,62,63)
Table 2. Estimated Parameters Using Concrete Construction Data with the Variable ¢.
Model | Coefficients Parameter | Estimation | Wald Statistic | Standard error | p-value
Width from origin Bo -11.8 -9.98 1.110 <0.0001***
Sand B 0.01 9.24 0.008 <0.0001***
n Water B2 -0.01 -5.26 0.001 <0.0001***
Micro silica Bs 0.02 9.61 0.001 <0.0001%**
Cement Ba 0.01 13.44 0.009 <0.0001%**
Width from origin 6, -10.89 -3.42 3.170 <0.0001***
Sand 0, 0.01 2.34 0.002 <0.0001***
¢ Water 0, 0.02 2.76 0.005 0.0059**
Cement 04 0.02 5.27 0.003 <0.0001***
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Figure 3. Box variables for response variables in different categories of explanatory variables for concrete
strength data.

5. Discussion and conclusion

According to the fitting results of the model in Table 2, all coefficients in the model are significant considering
the obtained p-value, which is less than the contract value of 0.00. Moreover, only the water explanatory
variable has a reverse effect on the concrete hardness, and an increase in the amount of water decreases concrete
strength. Similarly, the greatest effect on the average concrete hardness was due to the microsilica variable. In
other words, the amount of microsilica in concrete strength significantly affects the other concrete ingredients.
Finally, the degree of model accuracy increases with increasing levels of variables for all the explanatory
variables in the linear predicate of ¢.

In this paper, an appropriate regression model is presented for responses that are continuously changed at the
distance of (0,1). This kind of data includes the rates and ratios that researchers encounter in different usage
situations. In the introduced models, the basic acceptance is that the response variable follows the beta
exponential distribution. It is well known that the beta distribution is very flexible for modeling data at unit
intervals because the beta density function shows different curves with different shape parameters.

The simulation study shows that the asymptomatic behavior of estimators is consistent with the theoretical
results, which are available even for small and medium-sized volumes.
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