
325 Int. Jnl. of Multiphysics Volume 15 · Number 3 · 2021 

 

 

FTMP-based Kink Deformation and 
Strengthening Mechanisms for  

Mille-feuille Structures 
 

Y Nawa1*, T Hasebe2 
1. Graduate School of Kobe University, Japan 

2. Kobe University, Japan 
 

ABSTRACT 

This study aims at reproducing deformation-induced kink morphologies, 

together with the recently-reported AE measurement-based energy 

releasing characteristics, based on FTMP (Field Theory of Multiscale 

Plasticity)-incorporated crystal plasticity finite element simulation for single 

crystal Mg under c-axis plane strain compression condition. Two models 

either with the well-defined deformation twin system or a rank-1 connection-

based kink system are considered, respectively, as the projection direction 

for the incompatibility tensor to be used in the constitutive model. The twin 

model yields “kink-like morphology” of growing kind, but fails to capture one 

of the energy releasing characteristics. The kink model, on the other hand, 

is demonstrated to be able to reproduce basically all the features, i.e., not 

only the “kink” morphology but also the AE energy-based features. 

 
 

1. INTRODUCTION  
Kink-Strengthening, observed in a group of Mg alloys associated with the mille-feuille 
structures, has attracted many attentions in recent years [1-5]. Kink deformation, initially 
observed within a long-period stacking ordered (LPSO) phase [1-5] in Mg-Zn-rare earth alloys 
after compression, is considered to be a common deformation mode to layered or fibrous 
materials. Figure 1 shows an example of the kink bands formed in Mg-based LPSO phase [5] 
under compression. Clarifying, for example, the critical conditions for the kinking in the 
presence of such “mille-feuille-like structures” in general, can lead us to propose a new 
guideline for material designs. 

Aizawa et al. [6] have recently reported based on AE measurement that there exists “scale 
free”-like, rather peculiar, kinking-related energy releasing characteristics during c-axis 
compression of 18R-LPSO single phase DS (directionally-solidified) Mg alloy samples in 
parallel to the solidification direction, both before and after the macro-yielding. This finding 
implies the following two, rather specific features of the LPSO structure, i.e., (i) multiscale 
aspects of the kink formation dynamics, having “no specific” scale, especially for larger sized 
kinks, accompanied by “avalanche-like” processes, and (ii) the kinking processes are 
following “precursor” counterpart “before” the macro-yielding takes place. These two features 
are further corroborated by the similarities also found in in the return maps both of the wait 
time and the energy differences for the measured AE signals. 
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Figure 1: Kinked microstructure observed in 4% compressed 6Zn-9Y DS Mg alloy 
(Courtesy of Prof. K. Hagihara). 
 

There have been no established models proposed to date for the kinking, however, that are 
capable of describing and simulating both the nucleation and the subsequent growths of the 
kinking regions. The difficulties of dealing with such deformation-induced kinking come 
down to how to introduce the microscopic degrees of freedom responsible for the targeted 
phenomenon (mode) as an alternative to the other deformation modes in rational manners. 
Field theory of multiscale plasticity (FTMP) [7-22] is a comprehensive theoretical framework 
that enables direct and effective treatments of “inhomogeneities” in general, in terms not only 
of such differential geometric quantities, based on the non-Riemannian plasticity [23,24], but 
also of their evolutionary aspects of deformation-induced kinds. A series of FTMP-based 
approaches [7-22] have revealed so far that the “incompatibility” tensor is the one that 
possesses a dominant ability to help drive the evolutions of such “inhomogeneities”.  

This study attempts to reproduce basic and essential features of the targeted phenomena 
associated with the kink formation processes based on a series of preliminary analyses, 
making use of the already-constructed constitutive model [7-12] for the slip-based mode, 
accommodated with the FTMP-based incompatibility model for deformation twinning [18,19] 
in two steps, against one of the simplest simulation setups with two symmetric twining planes 
under plane-strain c-axis tension mode. The first step utilizes the twin systems accommodated 
with newly-introduced orientation modification scheme, while the second step assumes the 
Rank-1 connectivity condition [20] in the place of the twin systems, without using the scheme. 
For both the steps, we examine a couple of the above-mentioned features about energy-
releasing characteristics [6], focusing on the formations and further growths of “kink” 
morphologies. 
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2. THEORETICAL BACKGROUND 
2.1. Brief overview of FTMP 
The authors have advocated a theoretical framework called FTMP (field theory of multiscale 
plasticity) [7-22], aiming at rationally dealing with the spatio-temporally deformation-induced 
evolving inhomogeneous fields in a comprehensive manner, by viewing them from three 
standpoints of (a)description, (b)evolution and (c)cooperation [7,14]. The theory mainly 
utilizes the differential geometric quantities, i.e., torsion tensor 𝑆𝑆𝑖𝑖𝑖𝑖𝑘𝑘   (or 𝑺𝑺) and curvature tensor 
𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑘𝑘  (or 𝑹𝑹), for (a) and (c), based on the non-Riemannian plasticity [23,24], advocated by K. 
Kondo and his colleagues. They, in the context of continuum mechanics of materials, 
correspond to the dislocation density tensor 𝛼𝛼𝑖𝑖𝑖𝑖 (or 𝜶𝜶) and the incompatibility tensor 𝜂𝜂𝑖𝑖𝑖𝑖 (or 
𝜼𝜼), respectively, because the former counts the closure failure of a circuit encircling the 
defected field, whereas the latter represents the indeterminacy of displacement vector after its 
parallel displacement along the circuit. They are defined as curls of plastic distortion and 
plastic strain tensors, i.e., 
 

�
𝜶𝜶 = −𝛻𝛻 × 𝜷𝜷𝑝𝑝 = 1

2
∈:𝑺𝑺

𝜼𝜼 = 𝛻𝛻 × 𝛻𝛻 × 𝜺𝜺𝑝𝑝 = 1
4𝑔𝑔
∈:∈:𝑹𝑹 �𝑔𝑔 = 𝑑𝑑𝑑𝑑𝑑𝑑(𝒈𝒈)�

                                  (1) 

 
where 𝜷𝜷𝑝𝑝 and 𝜀𝜀𝑖𝑖𝑖𝑖

𝑝𝑝 = �𝛽𝛽𝑖𝑖𝑖𝑖
𝑝𝑝 + 𝛽𝛽𝑗𝑗𝑗𝑗

𝑝𝑝�/2 ≡ 𝛽𝛽(𝑖𝑖𝑖𝑖)
𝑝𝑝  are plastic distortion and strain tensors, 

respectively, while 𝒈𝒈 (or 𝑔𝑔𝑖𝑖𝑖𝑖) is the metric tensor of the base space considered, whose 
difference between before and after deformation defines the strain tensor, i.e., 𝜀𝜀𝑖𝑖𝑗𝑗 =
�g𝑖𝑖𝑖𝑖 − 𝛿𝛿𝑖𝑖𝑖𝑖�/2. Here, (○)𝑠𝑠𝑠𝑠𝑠𝑠 = (○ + ○𝑇𝑇)/2 denotes symmetrization process. 

As can be understood from the definitions in Equation (1), 𝜶𝜶 and 𝜼𝜼 are interrelated as, 
 

𝜼𝜼 = −(∇ × 𝜶𝜶)𝑠𝑠𝑠𝑠𝑠𝑠 

= −1
2

{∇ × 𝜶𝜶 + (∇ × 𝜶𝜶)𝑇𝑇}.                                                 (2) 
 

Furthermore, the incompatibility tensor η can be decomposed into the pure rotation part 
𝜣𝜣 and the pure deformation part ∇ × 𝑲𝑲𝑇𝑇, as [13] 
 

𝜂𝜂 = 𝜣𝜣 + ∇ × 𝑲𝑲𝑇𝑇                                                        (3) 
 
where 𝛩𝛩 is also referred to as the disclination tensor, while 𝑲𝑲 is Nye’s contortion tensor, 
defined as 𝑲𝑲𝑇𝑇 = −𝜶𝜶 + 1

2
𝐼𝐼 ∙ 𝑡𝑡𝑡𝑡𝜶𝜶. 

One of the key ideas for the above (b), i.e., “evolution” of inhomogeneities, is to regard 
the incompatibility tensor η as the microscopic degrees of freedom (hereafter, μDOFs) of 
underlying sorts, responsible for driving the field evolutions, embodied as the pertaining 
working hypothesis called flow-evolutionary law (FEL) [7], which is briefly described in the 
following. 
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2.2. From Classical plasticity through FTMP-based plasticity 
Appropriate microscopic degrees of freedom (μDOFs) are generally necessary to be 
introduced or taken into account in attaining the descriptive capabilities of the theory being 
used. Figure 2 overviews the progress of development for theory of plasticity, (1) through (3), 
before reaching (4) the current FTMP in the light of μDOFs.  

The potential-based classical theory of plasticity [29,30] (row (1)) puts its basis on the yield 
function that is given as a function of the second invariance of the deviatoric stress tensor, 
𝐽𝐽2 ≡ 𝝈𝝈′:𝝈𝝈′/2, i.e., 𝑓𝑓(𝐽𝐽2) = 0, to be further used for defining the associated flow rule, and 
ultimately, for deriving the elasto-plastic constitutive equation based on it. In this case, 𝐽𝐽2 
itself can be regarded as the μDOFs for the theory construction. A shortcoming of this 
framework is the inability to express the plastic anisotropy-related features. A straightforward 
way to solve this is to explicitly introduce the slip-based KI, in the place of using 𝐽𝐽2, i.e., 
 

𝜏𝜏(𝛼𝛼) = 𝑷𝑷(𝛼𝛼):𝝈𝝈  and  𝜀𝜀̇′ = ∑ 𝑷𝑷(𝛼𝛼)
(𝛼𝛼) 𝛾̇𝛾(𝛼𝛼)                                          (4) 

 
with 𝜏𝜏(𝛼𝛼) and 𝛾̇𝛾(𝛼𝛼) the resolved shear stress and strain rate, respectively. Here, 𝑷𝑷(𝛼𝛼) ≡
�𝒔𝒔(𝛼𝛼) × 𝒎𝒎(𝛼𝛼)�

𝑠𝑠𝑠𝑠𝑠𝑠
 represents the Schmid tensor for the slip systems with the slip direction 

(Burgers vector) and slip plane normal �𝒔𝒔(𝛼𝛼),𝒎𝒎(𝛼𝛼)�. Such framework is conventionally called 
crystal plasticity (CP) (row (2)) [29-31]. 

One of the deficiencies of the CP include the inability to take account of the absolute size 
and, thus, to express the associated scale effects. Coping with this, widely-attempted approach 
includes the use of “strain gradients [32,33]” via, e.g., the density of “geometrically-necessary 
dislocations (GNDs) [32]” 𝜌𝜌𝐺𝐺𝐺𝐺 (row (3)). Note, the concept of 𝜌𝜌𝐺𝐺𝐺𝐺 is essentially equivalent 
to the dislocation density tensor 𝜶𝜶 defined in Equations (1-2) in the context of the non-
Riemannian plasticity and the current FTMP. The CP, even accommodated with the GNDs-
based μDOFs, however, is basically incompetent to predict dislocation substructures in 
general, neither in terms of the final morphologies nor of their evolutionary aspects, simply 
because of the lack of necessary information for them in the first place. 

To all the above, the current FTMP can provide, at least, one of the rational solutions, 
simply by introducing the incompatibility-related μDOFs in an appropriate manner. The 
simulated examples presented in Figure 2 eloquently demonstrates that the incompatibility-
based μDOFs (η-μDOFs, hereafter) is indispensable for such inhomogeneous fields to 
adequately evolve. 
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Figure 2: Developmental process of theory of plasticity in the light of μDOFs, from 
conventional macro plasticity up to current FTMP-based approach. 
 

3. KINEMATICS OF CRYSTAL PLASTICITY 
3.1. Kinematics framework of crystal plasticity for finite deformation 
We use the extended multiplicative decomposition of the deformation gradient tensor by Lee 
[34] to include the twinning/kinking mode, within the conventional kinematical framework of 
the continuum mechanics-based CP [29-31]. By introducing the corresponding intermediate 
configuration to the twinning (this is same for the kink model in 6), we have, 
 

𝑭𝑭 = 𝑭𝑭𝑒𝑒 ⋅ 𝑭𝑭𝑡𝑡𝑡𝑡 ⋅ 𝑭𝑭𝑝𝑝                                                      (5) 
 
where 𝑭𝑭∗ and 𝑭𝑭𝑝𝑝 are the deformation gradient tensors for combined elastic-rigid body 
rotations and slip-based plastic deformation modes, respectively, while that for the 
deformation twinning/kinking is all represented together by 𝑭𝑭𝑡𝑡𝑡𝑡,, to which we introduce the 
corresponding 𝜂𝜂-μDOFs. 

The corresponding velocity gradient tensor to the above 𝑭𝑭 is derived based on 𝑳𝑳 = 𝑭̇𝑭 ∙
𝑭𝑭−1,and is further decomposed into the symmetric and skew-symmetric part, i.e., 𝑳𝑳 =
(𝑳𝑳)𝑠𝑠𝑠𝑠𝑠𝑠 + (𝑳𝑳)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≡ 𝒅𝒅 + 𝛀𝛀, where 𝒅𝒅 and 𝛀𝛀 are called deformation rate and spin tensors, 
respectively [29-31]. With all these, we collectively have, 
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𝑳𝑳 = 𝑭̇𝑭 ∙ 𝑭𝑭−1 ≡ 𝑳𝑳∗ + 𝑳𝑳𝑝𝑝 + 𝑳𝑳𝑡𝑡𝑡𝑡 
= (𝒅𝒅∗ + 𝜴𝜴∗) + (𝒅𝒅𝑝𝑝 + 𝜴𝜴𝑝𝑝) + (𝒅𝒅𝑡𝑡𝑡𝑡 + 𝜴𝜴𝑡𝑡𝑡𝑡)                                    (6) 

 
𝒅𝒅 ≡ 𝒅𝒅∗ + 𝒅𝒅𝑝𝑝 + 𝒅𝒅𝑡𝑡𝑡𝑡  and  𝜴𝜴 ≡ 𝜴𝜴∗ + 𝜴𝜴𝑝𝑝 + 𝜴𝜴𝑡𝑡𝑡𝑡                              (7) 

 
and associatively, 
 

𝒅𝒅∗ = 𝒅𝒅 − (𝒅𝒅𝑝𝑝 + 𝒅𝒅𝑡𝑡𝑡𝑡)  and  𝜴𝜴∗ = 𝜴𝜴− (𝜴𝜴𝑝𝑝 + 𝜴𝜴𝑡𝑡𝑡𝑡)                          (7) 
 
here, 𝜴𝜴∗ is referred to as the substructural spin tensor, responsible for the lattice rotations.  

Combined the above Equation (6)2 with the crystal plasticity-based expressions, given in 
Equation (4)2, individually for the plastic and the twin parts, they ultimately yield the 
following relationship, 
 

𝑳𝑳 = (𝒅𝒅∗ + 𝜴𝜴∗) + (𝒅𝒅𝑝𝑝 + 𝜴𝜴𝑝𝑝) + (𝒅𝒅𝑡𝑡𝑡𝑡 + 𝜴𝜴𝑡𝑡𝑡𝑡)                                      (8) 

≡ 𝒅𝒅∗ + 𝜴𝜴∗ + ��𝑷𝑷𝑝𝑝(𝛼𝛼)𝛾̇𝛾𝑝𝑝(𝛼𝛼)

(𝛼𝛼)

+ �𝑾𝑾𝑝𝑝(𝛼𝛼)𝛾̇𝛾𝑝𝑝(𝛼𝛼)

(𝛼𝛼)

� + ��𝑷𝑷𝑡𝑡𝑡𝑡(𝛼𝛼�)𝛾̇𝛾𝑡𝑡𝑡𝑡(𝛼𝛼�)

(𝛼𝛼�)

+ �𝑾𝑾𝑡𝑡𝑡𝑡(𝛼𝛼�)𝛾̇𝛾𝑡𝑡𝑡𝑡(𝛼𝛼�)

(𝛼𝛼�)

� 

 
where 𝑷𝑷𝑖𝑖(𝛼𝛼) = �𝒔𝒔𝑖𝑖(𝛼𝛼) ⊗𝒎𝒎𝑖𝑖(𝛼𝛼)�

𝑠𝑠𝑠𝑠𝑠𝑠
 represents the Schmid tensors for slip and twin modes 

with 𝑖𝑖 = 𝑝𝑝 or 𝑡𝑡𝑡𝑡, respectively, while 𝑾𝑾𝑖𝑖(𝛼𝛼) = �𝒔𝒔𝑖𝑖(𝛼𝛼) ⊗𝒎𝒎𝑖𝑖(𝛼𝛼)�
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 are the material spin 
tensors, with (○)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≡ (○ − ○𝑇𝑇)/2 denoting the skew-symmetrization process. 
 
3.2. Treatments of lattice rotations 
For the slip and twin systems assumed, represented collectively by �𝒔𝒔𝑖𝑖(𝛼𝛼),𝒎𝒎𝑡𝑡(𝛼𝛼)� with 𝑖𝑖 = 𝑝𝑝 
and/or 𝑖𝑖 = 𝑡𝑡𝑡𝑡, they are updated as, 
 

𝒔𝒔𝑖𝑖∗(𝛼𝛼) = 𝑹𝑹 ⋅ 𝒔𝒔𝑖𝑖(𝛼𝛼)  and  𝒎𝒎𝑡𝑡∗(𝛼𝛼) = 𝑹𝑹 ⋅ 𝒎𝒎𝑡𝑡(𝛼𝛼)                                      (9) 
 
where 𝑹𝑹 is the orthogonal tensor, responsible for rigid rotations of the lattice that satisfies 𝑹𝑹 ∙
𝑹𝑹𝑇𝑇 = 𝑰𝑰, derived out of the deformation gradient tensor 𝑭𝑭 based on the polar-decomposition 
theorem, i.e., 𝑭𝑭 = 𝑹𝑹 ∙ 𝑼𝑼 = 𝑽𝑽 ∙ 𝑹𝑹, with 𝑼𝑼 and 𝑽𝑽 being the right and left Cauchy-Green stretch 
tensors, respectively [29,30]. For updating 𝑹𝑹, we utilize the above substructural spin tensor 
𝜴𝜴∗ as [35], 
 

∆𝑹𝑹 = 𝑰𝑰 + sin‖𝜴𝜴∗‖∆𝑡𝑡
‖𝜴𝜴∗‖∆𝑡𝑡

𝜴𝜴∗∆𝑡𝑡 + 1−cos‖𝜴𝜴∗‖
(‖𝜴𝜴∗‖∆𝑡𝑡)2

(𝜴𝜴∗∆𝑡𝑡)2                                    (10) 
 
where ∆𝑡𝑡 is the increment of the time step. 
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3.3. Elasto-plastic constitutive equation 
Since the crystal lattice is not affected by slip and twin-based inelastic deformations, the 
elastic constitutive equation can be written as, 
 

𝝉𝝉∗
∇

= 𝑪𝑪𝑒𝑒:𝒅𝒅∗ = 𝑪𝑪𝑒𝑒: (𝒅𝒅𝑝𝑝 + 𝒅𝒅𝑡𝑡𝑡𝑡)                                        (11) 
 

where 𝑪𝑪𝑒𝑒 is the elastic tensor. Here, 𝝉𝝉∗
∇

 represents the Jaumann rate of Kirchhoff stress tensor 
based on the lattice rotations [29-31], defined as the rate of change of Kirchhoff stress 𝝉𝝉∗ ≡

det(𝑭𝑭)𝝈𝝈 seen by an observer who rotates with the lattice according to 𝜴𝜴∗, i.e., 𝝉𝝉∗
∇

= 𝝈̇𝝈 − 𝜴𝜴∗ ⋅
𝜎𝜎 + 𝜎𝜎 ⋅ 𝛺𝛺∗, where 𝝈𝝈 and 𝝈𝝈  ̇are the Cauchy stress tensor and its material time rate, respectively. 

The difference of 𝝉𝝉∗
∇

 and that based on the material spin 𝝉𝝉
∇
 yields, 

 

𝝉𝝉∗
∇
− 𝝉𝝉

∇
= (𝜴𝜴𝑝𝑝 ∙ 𝝉𝝉 − 𝝉𝝉 ∙ 𝜴𝜴𝑝𝑝) + (𝜴𝜴𝑡𝑡𝑡𝑡 ∙ 𝝉𝝉 − 𝝉𝝉 ∙ 𝜴𝜴𝑡𝑡𝑡𝑡)                             (12) 

 

in the present context. Combining this with Equation (11) for 𝝉𝝉∗
∇

, and using the microscopic 
expressions for 𝜴𝜴𝑝𝑝 and 𝜴𝜴𝑡𝑡𝑡𝑡 in Equation (8), we finally have, 
 

𝝉𝝉
∇

= 𝑪𝑪𝑒𝑒:𝒅𝒅 − ∑ 𝑹𝑹𝑝𝑝(𝛼𝛼)𝛾̇𝛾𝑝𝑝(𝛼𝛼)𝑁𝑁
(𝛼𝛼) + ∑ 𝑹𝑹𝑡𝑡𝑡𝑡(𝛼𝛼�)𝛾̇𝛾𝑡𝑡𝑡𝑡(𝛼𝛼�)𝑁𝑁�

(𝛼𝛼�)                           (13) 
 
with 
 

� 𝑹𝑹𝑝𝑝(𝛼𝛼) = 𝑪𝑪𝑒𝑒:𝑷𝑷𝑝𝑝(𝛼𝛼) + 𝜷𝜷𝑝𝑝(𝛼𝛼)

𝜷𝜷𝑝𝑝(𝛼𝛼) = 𝑾𝑾𝑝𝑝(𝛼𝛼) ⋅ 𝝉𝝉 − 𝝉𝝉 ⋅ 𝑾𝑾𝑝𝑝(𝛼𝛼) and � 𝑹𝑹𝑡𝑡𝑡𝑡(𝛼𝛼�) = 𝑪𝑪𝑒𝑒:𝑷𝑷𝑡𝑡𝑡𝑡(𝛼𝛼�) + 𝜷𝜷𝑡𝑡𝑡𝑡(𝛼𝛼�)

𝜷𝜷𝑡𝑡𝑡𝑡(𝛼𝛼�) = 𝑾𝑾𝑡𝑡𝑡𝑡(𝛼𝛼�) ⋅ 𝝉𝝉 − 𝝉𝝉 ⋅ 𝑾𝑾𝑡𝑡𝑡𝑡(𝛼𝛼�) 

 
4. CONSTITUTIVE MODELS AND ANALYTICAL CONDITION 
4.1. FTMP-based model for deformation twinning: First-step model 
In the present series of attempts for reproducing deformation-induced “kink” morphologies, 
we make use of the FTMP-based model (η-μDOFs) as an alternative and/or additional model 
of inelastic deformation. As the first-step model, we utilize the η-μDOFs for deformation 
twinning [18,19], in addition to the major deformation mode by dislocation glides. 

In this first-step model, the strain rate due to deformation twinning is assumed to be driven 
by the evolution of the corresponding incompatibility tensor field to the twinning mode, 
�𝒕𝒕𝑡𝑡𝑡𝑡(𝛼𝛼�) ⊗𝒔𝒔𝑡𝑡𝑡𝑡(𝛼𝛼�)�:𝜼𝜼, i.e., 
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𝛾̇𝛾𝑡𝑡𝑡𝑡(𝛼𝛼�) = 𝑄𝑄𝛼𝛼�𝛽𝛽�
𝑡𝑡𝑡𝑡 �𝛾̇𝛾𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑡𝑡𝑡𝑡�𝛽𝛽���                                                   (14) 
 

𝑄𝑄𝛼𝛼�𝛽𝛽�
𝑡𝑡𝑡𝑡 = �A + 𝐹𝐹 �𝜂𝜂𝑡𝑡𝑡𝑡

�𝛽𝛽���� ⋅ �1 −
�𝐹𝐹�𝜂𝜂𝑡𝑡𝑡𝑡

�𝛽𝛽����

𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠
�                                      (15) 

 
for the twin systems (𝒔𝒔𝑡𝑡𝑡𝑡(𝛼𝛼�),𝒎𝒎𝑡𝑡𝑡𝑡(𝛼𝛼�)), with 𝒕𝒕𝑡𝑡𝑡𝑡(𝛼𝛼�) ≡ 𝒔𝒔𝑡𝑡𝑡𝑡(𝛼𝛼�) ×,𝒎𝒎𝑡𝑡𝑡𝑡(𝛼𝛼�). Thus, the activation of 
twinning in the present model depends solely on the evolution of 𝐹𝐹�𝜂𝜂𝑡𝑡𝑡𝑡

(𝛼𝛼�)�, which denotes the 
FTMP-based incompatibility term [7,18,19] defined as, 
 

𝐹𝐹�𝜂𝜂𝑡𝑡𝑡𝑡
(𝛼𝛼�)� = sgn�𝜂𝜂𝑡𝑡𝑡𝑡

(𝛼𝛼�)� 𝑘𝑘�

𝑝𝑝𝜂𝜂
�𝑙𝑙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑏𝑏
�𝜂𝜂𝑡𝑡𝑡𝑡

(𝛼𝛼�)��
1∕2

                                  (16) 

 
where 𝑘𝑘� is a coefficient, while 𝑙𝑙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 represents the characteristic length of the twinning field, 
normally coinciding with the lattice constant. 
 
4.2. FTMP-based model for slip – major deformation mode 
For the slip modes, we use the constitutive equation derived on the basis of the statistical 
mechanics-based dislocation dynamics [7,8], which serves a natural expression of the 
dislocation glide-based crystal plasticity in terms of strain rate/temperature dependency, given 
as, 
 

𝛾̇𝛾𝑝𝑝(𝛼𝛼) = 𝐴̇𝐴𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠�𝜏𝜏(𝛼𝛼)� �𝑒𝑒𝑒𝑒𝑒𝑒 𝐵𝐵𝑆𝑆𝑆𝑆 �1.0 − �𝜏𝜏
(𝛼𝛼)

𝐾𝐾(𝛼𝛼)�
𝑝𝑝
�
𝑞𝑞

+ 𝐶𝐶𝑆𝑆𝑆𝑆�
−1

                   (17) 

 
where 𝐴̇𝐴𝑆𝑆𝑆𝑆, 𝐵𝐵𝑆𝑆𝑆𝑆 and 𝐶𝐶𝑆𝑆𝑆𝑆 are material parameters. Here, 𝐾𝐾(𝛼𝛼) represents the drag stress, 
responsible for the isotropic hardening, whose time-evolution defines the instantaneous 
hardening moduli, further expressed as, 
 

𝐾̇𝐾(𝛼𝛼) = 𝑄𝑄𝛼𝛼𝛼𝛼𝐻𝐻(𝛾𝛾𝛼𝛼)�𝛾̇𝛾𝑝𝑝(𝛼𝛼)�                                              (18) 
 
where 𝐻𝐻(𝛾𝛾𝛼𝛼) represents the referential instantaneous hardening moduli. The present 
constitutive model incorporates the contributions of 𝛼𝛼(𝛼𝛼) and 𝜂𝜂(𝛼𝛼) through the hardening ratio 
𝑄𝑄𝛼𝛼𝛼𝛼 as, 
 

𝑄𝑄𝛼𝛼𝛼𝛼 = 𝛿𝛿𝛼𝛼𝛼𝛼 + 𝑓𝑓𝛼𝛼𝛼𝛼𝑆𝑆𝛽𝛽𝛽𝛽 + 𝛿𝛿𝛼𝛼𝛼𝛼�𝐹𝐹�𝛼𝛼(𝛼𝛼)� + 𝐹𝐹�𝜂𝜂(𝛼𝛼)�� (no sum on 𝛽𝛽)           (19) 
 
where 𝑓𝑓𝛼𝛼𝛼𝛼 denotes the dislocation interaction matrix, while 𝑆𝑆𝛽𝛽𝛽𝛽 expresses the history matrix, 
further given as an increasing function of the plastic work �𝑊𝑊𝑝𝑝�(𝛽𝛽)

∗
 done by the effective stress 

responsible for the on-going dislocation processes, i.e., 
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𝑆𝑆𝛼𝛼𝛼𝛼 = tanh �
�𝑊𝑊𝑝𝑝�𝛼𝛼𝛼𝛼

∗

�𝑊𝑊𝑝𝑝�𝑠𝑠𝑠𝑠𝑠𝑠
∗ �with �𝑊𝑊𝑝𝑝�𝛼𝛼𝛼𝛼

∗ = 𝛿𝛿𝛼𝛼𝛼𝛼�𝜏𝜏(𝛽𝛽) ∙ 𝛾̇𝛾𝑝𝑝(𝛽𝛽)�                          (20) 

 
The strain gradient terms in Equation (19), i.e., 𝐹𝐹�𝛼𝛼(𝛼𝛼)� and 𝐹𝐹�𝜂𝜂(𝛼𝛼)�, on the other hand, are 
given respectively as [7], 
 

⎩
⎨

⎧𝐹𝐹�𝛼𝛼(𝛼𝛼)� = 𝑘𝑘�

𝑝𝑝𝛼𝛼
��𝛼𝛼

(𝛼𝛼)�
𝑏𝑏
�
1∕2

𝐹𝐹�𝜂𝜂(𝛼𝛼)� = sgn�𝜂𝜂(𝛼𝛼)� 𝑘𝑘�

𝑝𝑝𝜂𝜂
�
𝑙𝑙𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑏𝑏
�𝜂𝜂(𝛼𝛼)��

1∕2                                 (21) 

 
where 𝑝𝑝𝛼𝛼, 𝑝𝑝𝜂𝜂 are coefficients, while 𝑙𝑙𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 represents the characteristic (referential) length of 
the defect field considered, e.g., 𝑙𝑙𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑏𝑏 for expressing dislocation dipoles and 𝑙𝑙𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
1.0𝜇𝜇𝜇𝜇 for dislocation substructures such as cell structures.  

For the explicit forms of the instantaneous hardening moduli 𝐻𝐻(𝛾𝛾𝛼𝛼) in Equation (18), we 
employ here the following phenomenological models, widely used for HCP Mg for the basal 
and non-basal slips [19], i.e., 
For basal: 
 

𝐻𝐻(𝛾𝛾𝛼𝛼) = ℎ0                                                                    (22) 
 
For non-basal: 
 

𝐻𝐻(𝛾𝛾𝛼𝛼) = ℎ0 �1 − 𝜏𝜏0
𝜏𝜏∞
� exp �− ℎ0𝛾𝛾𝛼𝛼

𝜏𝜏∞
�                                              (23) 

 
with 
 

𝛾𝛾𝛼𝛼 = � �𝛾𝛾(𝛼𝛼)�(𝛼𝛼)                                                           (24) 

 
where ℎ0, 𝑛𝑛 and 𝜏𝜏0 are material parameters. 
 
4.3. Simulation models and analytical conditions 
Figure 3 shows the schematics of analytical model employed in the present series of finite 
element (FE) analyses (common to both the models), which is divided into 100 × 100 crossed 
triangle elements (totally 40,000 elements with 20,201 nodes). We refer to the compression 
test in the c-axis direction under die constraint condition denoted in Figure 3(b), considered 
by Kelley and Hosford [38]. The nodes at the top end are given a total displacement of 15μm, 
corresponding to 15% compressive strain of the model, at the strain rate of 10-3s-1 in plane 
strain condition. 
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Figure 3: (a) Finite element analytical model. (b) Schematic view of channel-die 
compression experiment by Kelley and Hosford [38] and single crystal orientation 
E (Ori. E) assumed in present plane-strain compression simulations. 

 
5. RESULTS AND DISCUSSIONS: FIRST-STEP MODEL 
5.1. Basic properties 
The current FTMP-based model accommodated with the η-μDOFs can reproduce, e.g., a set 
of orientation-dependent experimental stress-strain curves by Kelly and Hosford [38] for a 
Mg single crystal [19]. The present model further exhibits not only the commensurate 
reproducibility of the stress-strain responses with those reported before [19], as presented in 
Figure 4(a), but also those of the evolving twinned regions explicitly, which is basically absent 
in the former model. Figure 4(b) shows an example of the growing twinned regions via 𝛾𝛾𝑡𝑡𝑡𝑡, 
the corresponding incompatibility via 𝐹𝐹(𝜂𝜂𝑡𝑡𝑡𝑡) and the attendant rotational field contours for 
the orientation A, together with the variation of the relative activity of the assumed twin 
system with strain, in comparison with those for the slip modes. Here, the compressive 
twinning was started to grow at around 𝜀𝜀 = 0.02, triggering abrupt changes in the activities 
of the pyramidal and prismatic slips, after which the twinned regions distinctly emerge in the 
contours. 
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Figure 4: Simulated orientation-dependent stress-strain curves for Mg single 
crystals under plane-strain compression (a), over-plotted on corresponding 
experimental data by Kelley and Hosford [38], together with an example of 
simulated twinned regions for Ori.A (b), comparing contours of incompatibility, 
twinning strain and attendant rotation angle, evolved after onset of {1011�} 
compressive twinning, together with variation of relative activity of it in comparison 
with those of pyramidal and prismatic slips. 
 

5.2. Simulation results: First-step model 
Figure 5(a) presents simulation results for the first step model, showing evolving 
incompatibility contours and the correspondingly developing rotational fields. The result 
shows ubiquitous interior initiations and the subsequent growths of “kink-like “regions 
accompanied by lattice rotations, with rather fixed vertex angle, because of the well-defined 
twin systems assumed in the simulation.  Figure 5(c) shows the nominal stress-nominal strain 
curves corresponding to the evolving contours, together with the relative activity ratios among 
the slip (basal, prismatic and pyramidal) and the twin (tensile and compressive) systems. 
Predominant activities of the tensile twin from the start of deformations are confirmed, 
resulting in small work hardening rate on the stress-strain curves. They are followed by 
relatively clear onsets of the compressive twin, respectively, bringing about an increase in the 
hardening rate. The onset of compressive twinning takes place after 0.08 nominal strain, 
around which avalanche-like rapid expansions of the “kinking” regions are observed in Figure 
5(a).  We refer to the morphology of thus simulated regions as “kink-like” hereafter, for 
making distinction from those obtained for the second-step model below, with which we 
reproduce much closer “kink” morphologies to the experimental observations. 
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Figure 5: Variations of contour diagrams with strain of (a) incompatibility (via 
𝐹𝐹(𝜂𝜂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) and (b) the corresponding rotation (b) for the first-step model, together 
with (c) nominal stress-nominal strain curve and the associated relative activity 
ratios. 
 

Aizawa et al. [6] reported rather “anomalous“ energy characteristics for the kinking 
phenomena based on the AE technique, as presented in Figure 6, where frequency 
distributions of the measured AE absolute energy distribution (a), comparing between before 
(i.e., precursor) and after kink formations are confirmed, together with the corresponding 
return maps against the AE energy difference. As in (a), the AE energy exhibits “scale-free” 
distribution except the low energy region which yields a flat component. The return map in 
Figure 6(b) suggests that there exist a strong correlation between the kink formation intervals 
and the energy released. 

  



337 Int. Jnl. of Multiphysics Volume 15 · Number 3 · 2021 

 

 
 
These results demonstrate at least three following features, i.e., (1) relatively larger number of 
small kinks compared with large kinks (102 difference in size and 106 difference in the 
energy) are formed, (2) no subsequent formations of large kinks judged from the return maps 
(b), and substantially the same mechanism can apply both to the precursor and the kink 
regions. 
 

 
Figure 6: Observed AE energy characteristics by Aizawa et al. (a) Frequency 
distribution of AE absolute energy (b) Return map diagrams against AE signal 
energy difference. (Courtesy of Dr. K. Aizawa, JAEA (2018)) 

 
Let us examine the attendant energy releasing characteristics for the simulated results (the 
first-step model). Figure 7 shows a frequency diagram of the elastic strain energy fluctuation 
𝛿𝛿𝑈𝑈𝑒𝑒, at four steps of nominal strains, corresponding to those in Figure 5. As demonstrated, 
the result basically exhibits the similar power-law type distributions to the experiment (Figure 
6(a)) from the early stage of deformation, even before the massive emergence of the “kink-
like” regions take place. These trends are analogous to the above-mentioned AE-based 
observations. From this power-law type distribution, we can see scale free characteristics of 
kinking as this picture implies. In this context, scale free characteristics mean the low 
probability of growths of large kinks, together with higher probability of small kink growths. 
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Figure 7: Frequency distribution diagrams of fluctuation of 𝛿𝛿𝑈𝑈𝑒𝑒 for the first-step 
model. 
 

We also correlate the return maps of 𝛿𝛿𝑈𝑈𝑒𝑒 based on the first-step simulation results in Figure 
8, taking the difference between the temporarily-adjacient values of the obtained elastic strain 
energy fluctuation, regarding it in here as the energy gap. As indicated in Figure 8, thus 
obtained distribution of return maps tends to concentrate in the first quadrant, whose trend is 
different from the experiment in Figure 6(b), exhibiting the clear concentrations in the fourth 
quadrant for both the precursor (b-1) and the kink (b-2). The first-quadrant concentration in 
the simulation results can be interpreted as that the energy gaps are constantly positive, 
meaning a monotonic growths of the size of deformation-induced events (in this case, 
twinning), as schematically illustrated in Figure 8(b). Micrographical observations, as in the 
inset in Figure 8, are also negative against these results. 
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Figure 8: Return maps at three steps from simulated results (a). Relationship 
between pattern of kink growth and distribution of return map in the first quadrant 
(b), in comparison with experimental micrograph [3]. 

 
6. KINK MODEL: SECOND-STEP MODEL 
In the place of the twinning model for the first step, we newly introduce the rank-1 connection-
based kink systems into Equations (14) and (15) as the alternative η-μDOFs, which is used 
here as the second-step model, otherwise basically unaltered. 
 
6.1. FTMP-based model for kinking 
The condition for the rank-1 connection is represented by [39], 
 

𝑭𝑭 − 𝑮𝑮 = 𝒂𝒂⊗ 𝒏𝒏                                                      (25) 
 
where, 𝑭𝑭 and 𝑮𝑮 are deformation gradients, while 𝒂𝒂 = (𝑭𝑭 − 𝑮𝑮) ∙ 𝒏𝒏, which ensures the 
continuity of the deformation on the plane 𝒏𝒏. By applying the rank-1 compatibility condition 
to the kink band [39], the direction of interface between the kink band and the matrix is defined 
as shown in Figure 9. Here, the vector s indicates the deformation direction, while the vector 
m is perpendicular to s. Also, the value of t indicates the magnitude of the shear. 
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Referring to the result of application of rank-1 connection to the kink band, we define 
afresh the 𝒔𝒔 and 𝒎𝒎 vectors in Equation (9), respectively, as, 
 

𝒔𝒔 = 1
�4+𝑡𝑡2

�
±2
𝑡𝑡2
0
�                                                      (26) 

 

𝒎𝒎 = 1
�4+𝑡𝑡2

�
±𝑡𝑡
2
0
�                                                      (27) 

 
In the present study, the value of t in Equations (26) and (27) is simply assumed to increase 

monotonically according to the simulation time steps, common to all the FE elements. Also, 
as show in Figure 9(b), the s and m vectors change depending on the t value. 
 

 
Figure 9: Schematics of Rank-1 kinematical compatibility condition for a kink band 
(a), together with analytical condition for the kink model used (b). 
 

The kink model used here is basically the same as the twin model for the first-step analyses 
(Equations (14) and (15)), except the projection direction of the incompatibility tensor, given 
as, 
 

𝛾̇𝛾𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘(𝛼𝛼�) = 𝑄𝑄𝛼𝛼�𝛽𝛽�
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 �𝛾̇𝛾𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘�𝛽𝛽���                                             (28) 
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with 
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�𝛽𝛽�� ��

𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠
�                                       (29) 

 
here, we also introduce the dislocation density term 𝐹𝐹(𝛼𝛼𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘) in the attenuation term, in the 
place of 𝐹𝐹(𝜂𝜂𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘), in order to reflect the effect of partial wedge disclination [39].  

Figure 10 summarizes the comparison between the twin and current kink models for the 
first and second-step analyses, emphasizing the difference between the assumed twin and the 
kink systems represented by s and m. 
 

 
Figure 10: Comparison between twin and kink models for the first and the second-
step analyses. 

 
6.2. Simulation models and analytical conditions: Second-step model 
Same as the first-step analysis, the simulation model is divided into 100 × 100 crossed triangle 
elements. To mimic a directionally-solidified (DS) single crystal Mg with LPSO mill-feuille 
structure, we set aligned soft and hard layers in parallel to the basal plane, with 1μm layer 
widths. The soft/hard regions are controlled by the values of the hardening ratio. Also, we 
assume that the kink mode is only active, while the basal, prismatic and pyramidal slip and 
the twin systems are not operative associated with the layered structure. 
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Figure 11: (a) Single crystal Mg model with alternating soft and hard layers, 
distinguished by the values of the hardening ratio. (b) Assumptions in this study. 

 
6.3. Results and discussions: Second-step model 
Figure 12 displays the simulated results, showing variation of incompatibility contours with 
strain (a) and the corresponding rotation angles, measured by the change in the basal plane 
angle (b). A comparison with a typical micrograph for kinked structure [5] is also made in 
Figure 12(c), taking the rotational angle counter at 𝜀𝜀=0.15 as an example. We confirm 
successfully reproduced kink morphologies by the present FTMP-based FE simulation, 
together with the attendant significant misorientation developments, also commensurate with 
experiments. 

The major difference between the current kink (second-step) model and the first-step 
counterpart (twin model) is in the assumed projection directions of the incompatibility tensor, 
i.e., s and m, as emphasized in Figure 10. Therefore, we tentatively conclude that one of the 
necessary conditions for the deformation-induced kink morphologies to be numerically 
reproduced is a crystallographically-compatible but variable projection directions for the 
incompatibility tensor, which will possibly be regard as, at least, one of the indispensable 
microscopic degrees of freedom (μDOFs) for kink formations. 

Figure 13 shows frequency diagrams at four simulation time steps from simulated results. 
Similar to the first-step (twin) model presented in Figure 7, the result also basically exhibits 
power-law type distributions from the early stage of deformation, even before the massive 
emergence of the kink-like regions take place, in good agreement with the experimentally-
observed trends in Figure 6. 
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Figure 12: Variations of contour diagrams with strain of (a) incompatibility (via 
F(𝜂𝜂𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)) and (b) the corresponding rotation (b) for the first-step model, together 
with a tentative comparison with a micrographically-observed typical kink structure 
in LPSO-Mg (Courtesy of Prof. K. Hagihara). 
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Figure 13: Frequency distribution diagrams of fluctuation of 𝛿𝛿𝑈𝑈𝑒𝑒 for second-step 
model (with kink model). 
 

Figure 14(a) shows the return maps at three simulation time steps for the current second-
step (kink) model. We observe certain fractions of the elements belonging to the fourth 
quadrant of the maps, in sharp contrast to those for the first-step model in Figure 8(a). The 
result is analogous to the AE-based observation in Figure 6(b), meaning that the introduction 
of the rank-1 connection-based kink system significantly improves the accuracy of the model, 
in terms not only of the simulated morphology but also the energy releasing characteristics. 
The existence of the fourth quadrant elements in the current simulation result implies the 
alternating growths of the large and small kink regions are also successfully reproduced. 

This still-incomplete but partially-reproduced energy characteristics can be a strong 
leverage for supporting the above tentative conclusion, i.e., the incompatibility tensor field 
coupled with crystallographically-compatible-but-variable projection directions (i.e., 
appropriate kink systems) is one of the crucial μDOFs for such kink morphologies to be 
numerically reproduced. 
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Figure 14: (a)Return maps at three steps from simulated results. (b) Relationship 
between pattern of kink growth and distribution of return map in the fourth 
quadrant, in comparison with experimental micrograph [3]. 

 
7. CONCLUSIONS 
In this paper, the FTMP (field theory of multiscale plasticity)-based twin and kink models are 
utilized to examine the basic capabilities for reproducing the deformation-induced “kink” 
morphologies. Our main conclusions are as follows. 
(1) We succeeded in reproducing kink morphologies, together with the attendant well-

developed misorientation fields, based on the FTMP-implemented crystal plasticity FE 
simulation, considering Rank-1 connection for assuming the kink systems. The use of the 
deformation twin model, on the other hand, also allowed us to simulate “kink-like” 
structures of evolving kind.   

(2) Both twin and kink models exhibited basically mutually-similar similar “scale-free” 
frequency distributions of strain energy fluctuation both before and after the onset of 
“kink” region emergence, whose trend is in good agreement with the AE measurements in 
experiment. 

(3) The use of the rank-1 connection-based kink model was demonstrated also to be able to 
qualitatively reproduce another key feature observed in the return maps for the AE signal 
energy difference in experiment, whereas the twin model cannot. 
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(4) Taking account of all the results above, we tentatively conclude that the appropriate use of 

the incompatibility tensor is one of the microscopic degrees of freedom (μDOFs) for both 
the “kink“ morphologies and the attendant energy release characteristics altogether to be 
reproduced based on crystal plasticity-implemented finite element simulations, provided 
the crystallographically-compatible-but-variable kink systems as the projection directions. 
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