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ABSTRACT 
Tungsten heavy alloy is a kind of two-phase alloy composed of high-

strength tungsten phase and binder phase with good-plasticity. Its 

mechanical properties and damage evolution are affected by both phases. 

The static and dynamic mechanical tests of 92.5W-4.9Ni-2.1Fe-0.5Co are 

carried out. According to the characteristics of stress-strain curves, KHL 

model is selected as the constitutive model of the material. Then, combined 

with Eshelby equivalent inclusion theory and Mori Tanaka mean field theory, 

the stress-strain relationship of each phase in tungsten heavy alloy is studied 

by introducing representative volume element (RVE). The damage evolution 

model considering the strain rate effect is proposed, and according to the 

different loading states, a two-phase constitutive model with damage is 

established. By compiling the UMAT subroutine, the test conditions of 

different strain rates are calculated in ABAQUS software. The simulation 

results are in good agreement with the test results, and the validity of the 

proposed model is verified. 

 
 

1. INTRODUCTION  
Tungsten heavy alloy is a kind of alloy based on tungsten and combined with nickel, copper, 
iron, manganese, cobalt, chromium and other elements [1]. Generally, the mass fraction of 
tungsten phase is between 88% and 97% [2]. The microstructure of tungsten heavy alloy is a 
typical two-phase metal structure, which is composed of numerous tungsten grains and the 
binder phase. The mechanical properties of the two phases are significantly different. The 
tungsten phase has high strength but poor plasticity. The brittle property limits the application 
of the pure tungsten. Although the strength of the alloy with binder phase is lower than that of 
the pure tungsten, the plasticity of the alloy increases obviously, which strengthens the 
comprehensive properties of the tungsten heavy alloy. It shows that the mechanical properties 
of tungsten heavy alloy are determined by the mechanical properties of the two phases, and 
also affected by the strength of the interface between the tungsten grain and the tungsten grain 
and between the tungsten grain and the binder phase [3][4]. Many research show that tungsten 
heavy alloy has excellent mechanical properties such as high density, high strength, good 
toughness, high temperature resistance and impact resistance [5]. Especially under the 
condition of high-speed impact, it can maintain good penetration ability and lethality.  
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Therefore, it is widely used as the killing element of weapons, such as the fragment material 
for killing warhead, core of the armor piercing projectile, etc., which has been widely used in 
military field [6]. 

Considering that the loading conditions of tungsten heavy alloy are mostly high strain rate 
loads, it is particularly important to study the dynamic mechanical properties of materials. At 
present, there are mainly several kinds of dynamic constitutive models based on different 
theoretical basis: 1) the empirical model obtained by fitting test data has no clear physical 
meanings, and the strain rate effect and temperature effect are decoupled. The representative 
models are Johnson-Cook model (JC model) [7] and KHL model [8][9]; 2) The model based 
on the micro deformation mechanism of materials has the certain physical theoretical basis. 
The representative models are Zerilli-Amstrong model (Z-A model) [10][11][12] and 
Mechanical Threshold Stress model (MTS model) [13][14]; 3) Under the loading condition 
of high pressure and high strain rate (above 105s-1), assuming that the strain rate effect is 
saturated, the effect of strain rate on flow stress can be ignored. Therefore, this kind of model 
is expressed as a function of pressure and temperature, and the representative models are 
Steinberg-Guinan model (SG model) [15], etc. Although many researchers have proposed 
various constitutive models based on the understanding of the mechanical behavior of metal 
materials, considering the feasibility of parameter fitting and engineering application, the 
empirical fitting model represented by JC model has been widely used. It is easy to modify 
the original JC model according to different material properties and all the parameters are easy 
to fit, so it can be applicable for the dynamic deformation behavior of a large number of metal 
materials. Based on JC model, the coupling of strain hardening, and strain rate effect is taken 
into account in KHL model, which is suitable for more general stress-strain behaviors. 

In addition, the microstructure of tungsten heavy alloy is a typical two-phase structure. The 
overall mechanical properties of the alloy are closely related to the mechanical properties of 
the two phases and the bonding strength of the interface. During loading, especially under 
high strain rate loading such as explosion impact, the stress cannot be rapidly diffused and 
redistributed between the two phases due to the short loading time, resulting in the difference 
of stress and strain state between the two phases. In this process, the damage and its evolution 
process will significantly weaken the mechanical properties of materials. It’s known that the 
fracture modes of tungsten heavy alloy are as follows:  cleavage fracture of tungsten grains, 
ductile fracture of binder phase, separation of tungsten-tungsten interface and separation of 
tungsten-binder interface [16]. So, the overall mechanical properties of the alloy are closely 
related to the mechanical properties of the two phases and the bonding strength of the 
interface. At present, the common dynamic constitutive models such as JC model seldom 
consider the damage evolution process of materials, and it considers that when the strain 
reaches the critical value, fracture occurs instantaneously, which is also inconsistent with the 
true mechanical behavior of materials [17]. In fact, the damage in materials evolves and 
accumulates gradually. The results show that the plastic deformation behavior of tungsten 
grains and binder phase in tungsten heavy alloy is different under external load, and 
continuous damage mechanics [18] considers that the damage evolution is related to the plastic 
deformation of materials, which leads to the difference of damage evolution between the two 
phases. In this case, it is unreasonable to ignore the damage effect of two phases and to 
describe the damage only by the critical fracture parameter. 
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Considering that most of the current constitutive models only focus on the mechanical 
properties of the whole material from the macro scale, there is lack of research on the damage 
and its evolution process, which cannot fully represent the difference of the two-phase damage 
evolution and the influence on the overall damage of the alloy, so it still exist many 
inaccuracies when applied to some loading conditions. In this paper, the influence of the 
properties and damage evolutions of each phase on the mechanical properties of tungsten 
heavy alloy are considered. Based on micromechanics theory, the KHL constitutive model 
with more general applicability is used in this study. Combined with Eshelby equivalent 
inclusion theory [19] and Mori-Tanaka mean field theory [20], the representative volume 
element (RVE) and a rate-form damage evolution model [21] are introduced to study the 
deformation behavior and damage evolution process of tungsten grains and binder phase 
respectively, and finally, a new two-phase constitutive model of tungsten heavy alloy with 
damage is established. The simulation results obtained by ABAQUS finite element software 
are in good agreement with the test results. 
 
2. TEST WORK 
2.1. Material and tests 
92.5W-4.9Ni-2.1Fe-0.5Co (wt%) is prepared in the experiment. Many studies [22][23] show 
that the strength and plasticity of tungsten heavy alloy can be improved by adding the Co 
element. The powder parameters are listed in Table 1. The powder is mixed into the ball mill 
in proportion for 48 h. The well-mixed powder is added into a specific mold and pressed at 
300MPa for 20min for cold isostatic pressing, and then liquid phase sintering is carried out. 
The sintering temperature is 1460and is kept for 2 h. The sintering atmosphere is hydrogen. 
The density is measured by Archimedes method. The geometries of static and dynamic tensile 
standard specimen are shown in Figure 1, which are obtained by wire-electrode cutting from 
original samples. 
 
Table 1: Characteristics of powders 
Powders W Ni Fe Co 
Particle size/ mµ  9±0.3 3±0.5 7±0.7 4±0.5 
Purity/% 99.9 99.5 99.5 99.7 
Density/(g/cm3) 19.32 8.91 7.8 8.9 
 

The quasi-static tensile test is carried out by universal material testing machine at room 
temperature (298K). The dynamic tensile test system is split Hopkinson tensile bar. The 
schematic diagram is shown in Figure 2. Its working principle is [24]: the bullet impacts the 
right end of the incident bar at a speed driven by high pressure gas and forms a direct incident 
tensile wave in the incident bar. The strain 𝜀𝜀𝑖𝑖 is recorded by the strain gauge. The reflected 
stress wave and transmitted stress wave are generated on both ends of the specimen after 
stretched by incident wave, which are recorded as 𝜀𝜀𝑟𝑟 and 𝜀𝜀𝑡𝑡 by strain gauge. Then, according 
to the strain 𝜀𝜀𝑖𝑖, 𝜀𝜀𝑟𝑟 and 𝜀𝜀𝑡𝑡 recorded by strain gauge and the elastic wave velocity c, cross-section 
area 𝐴𝐴 and 𝐴𝐴0 of bar and specimen, elastic modulus 𝐸𝐸 and initial thickness 𝑙𝑙0 of the specimen, 
the dynamic mechanical properties of the material, including strain rate 𝜀𝜀̇, strain 𝜀𝜀 and stress  
𝜀𝜀 , can be calculated combining with Equation (2.1)~(2.3). 
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𝜀𝜀̇ = −2𝑐𝑐
𝑙𝑙0
𝜀𝜀𝑟𝑟                                                        (2.1) 

 
𝜀𝜀 = −2𝑐𝑐

𝑙𝑙0
∫ 𝜀𝜀𝑟𝑟𝑑𝑑𝑑𝑑
𝑡𝑡
0                                                    (2.2) 

 
𝜎𝜎 = 𝐴𝐴

𝐴𝐴0
𝐸𝐸𝜀𝜀𝑡𝑡                                                      (2.3) 

 
In order to obtain better waveforms, the specimen is tied with the incident bar and the 

transmitted bar by adhesive method. The adhesive is high strength impact resistant adhesive. 
 

 
(a) 

 

 
(b) 

Figure 1: Schematic of test specimen 
 

 
Figure 2: Schematic diagram of split Hopkinson tensile bar 
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2.2. Test results 
According to the quasi-static tensile test data, the mechanical properties of 92.5W-4.9Ni-
2.1Fe-0.5Co are listed in Table 2. Where, 𝜌𝜌 is the density of material, 𝜎𝜎𝑠𝑠 is the yield strength, 
UTS  (Ultimate tensile strength) is the ultimate tensile strength, 𝛿𝛿 is the elongation percentage 
of the section, 𝜈𝜈 is Poisson's ratio. 
 
Table 2: Mechanical properties of 92.5W-4.9Ni-2.1Fe-0.5Co 
𝝆𝝆 /(gcm-3) 𝑬𝑬 /GPa 𝝈𝝈𝒔𝒔/MPa 𝑼𝑼𝑼𝑼𝑼𝑼 /MPa 𝜹𝜹 𝝂𝝂 

17.56 308 661 1114 0.158 0.33 
 

 
Figure 3: Flow stress-strain curves of 92.5W-4.9Ni-2.1Fe-0.5Co 
 

Figure 3 shows the flow stress-strain curve of 92.5W-4.9Ni-2.1Fe-0.5Co in the range of 
strain rate 0.001s-1~3930s-1. It can be seen from the figure that with the increase of strain rate, 
the flow stress and the dynamic yield strength increases significantly, showing obvious strain 
rate hardening effect. This is consistent with the results observed in many literatures [25][26]. 
In addition, under the condition of low strain rate loading (0.001s-1, 1s-1 and 640s-1 strain rate), 
the flow stress has obvious strain hardening phenomenon in the plastic deformation stage, but 
with the further increase of strain rate, the strain hardening phenomenon is no longer 
significant, and the trend of stress-strain curve in the plastic deformation stage is relatively 
gentle. Strain softening even occurs in the case of 2090s-1 and 3930s-1 strain rates. 

Since the JC model implies that the stress-strain curve trend of the material under different 
strain rates should be similar, which is inconsistent with the characteristics of dynamic tensile 
stress-strain curve of 92.5%W tungsten alloy in this paper, a more general KHL constitutive 
model is selected to describe the macroscopic stress-strain characteristics of the material. 
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3. TWO-PHASE CONSTITUTIVE MODEL OF TUNGSTEN HEAVY 
ALLOY WITH DAMAGE 
3.1. KHL constitutive mode 
The form of KHL constitutive model is similar to JC model. The effects of strain rate, 
temperature and plastic deformation are considered when describing the plastic flow stress of 
materials. Compared with the three decoupling forms of JC model, KHL model also considers 
the effect of strain rate in the strain term, so it applies to more materials. Moreover, according 
to the tensile test results of 92.5%W tungsten heavy alloy shown in Figure 3, KHL model can 
describe the stress-strain relationship more appropriately than JC model. It takes the form of 
 

𝜎𝜎 = �𝐴𝐴 + 𝐵𝐵(1 − 𝑙𝑙𝑙𝑙𝜀̇𝜀
𝑙𝑙𝑙𝑙𝐷𝐷0

)𝑛𝑛1𝜀𝜀𝑛𝑛0� � 𝜀̇𝜀
𝜀̇𝜀0
�
𝐶𝐶
� 𝑇𝑇𝑚𝑚−𝑇𝑇
𝑇𝑇𝑚𝑚−𝑇𝑇𝑟𝑟

�
𝑚𝑚

                              (3.1) 

 
where, 𝐷𝐷0 is the upper limit of the reference strain rate, here 𝐷𝐷0 = 106𝑠𝑠−1, 𝑇𝑇𝑚𝑚 is the melting 
point of the material (the melting point of tungsten heavy alloy is usually 1730K), 𝑇𝑇𝑟𝑟 = 296𝐾𝐾 
is the reference temperature, 𝐴𝐴, 𝐵𝐵, 𝑛𝑛0, 𝑛𝑛1, 𝐶𝐶 and 𝑚𝑚 are material parameters obtained by fitting 
test data. 
 
3.2. Establish stress-strain relation of each phase 
According to the results of micro-morphology analysis, tungsten heavy alloy is mainly 
composed of spherical reinforced W phase and Ni-Fe-W binder phase. The mechanical 
properties of tungsten heavy alloy are determined by the mechanical properties of the two 
phases, and also affected by the interaction between the two phases, such as the interfacial 
strength of W-binder phase. Meanwhile, the damage of tungsten heavy alloy is also affected 
by the damage of the W phase and binder phase [27]. 

In order to study the effect of mechanical properties and interaction of two phases on the 
overall properties of the material, an equivalent medium with the same elastic properties is 
introduced to characterize the composite. Here, the representative volume element (RVE) in 
continuum mechanics is introduced as the study object. The binder phase and tungsten phase 
are regarded as the matrix phase and reinforced W phase of RVE. According to Eshelby 
equivalent inclusion theory and Mori-Tanaka mean field theory, the stress-strain relationship 
between RVE and two phases is established. 

As shown in Figure 4, the three curves represent the stress-strain curves of reinforced W 
phase, RVE and matrix phase respectively from top to bottom. The subscript m represents the 
matrix phase and w represents the reinforced W phase. The elastic modulus of RVE is defined 
as and the initial static yield strength is 𝜎𝜎𝑦𝑦. The corresponding strain is 𝜀𝜀𝑦𝑦. The stress-strain 
curve of RVE can be obtained directly by test, and the elastic modulus of reinforced W phase 
is 𝐸𝐸𝑤𝑤. The initial static yield strength is 𝜎𝜎𝑦𝑦𝑦𝑦, and the corresponding strain is 𝜀𝜀𝑦𝑦𝑦𝑦. Considering 
that the reinforced W phase accounts for the majority of 92.5% tungsten heavy alloy, it can 
be reasonably considered that the hardening law of reinforced W phase is similar to that of 
tungsten heavy alloy, and also conforms to the law of nonlinear hardening, which is consistent 
with the research results [28]; the elastic modulus of matrix phase is 𝐸𝐸𝑚𝑚. The initial static 
yield strength is 𝜎𝜎𝑦𝑦𝑦𝑦, and the corresponding strain is 𝜀𝜀𝑦𝑦𝑦𝑦. 
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Because of the small proportion of matrix phase, the influence of hardening behavior on 
RVE is weaker than that of reinforced W phase. Considering that the real plastic behavior of 
matrix phase is difficult to be directly characterized by test results, in order to simplify the 
model, it is assumed that the constitutive behavior of matrix phase also conforms to the 
nonlinear hardening law. 
 

 
Figure 4: Schematic diagram of stress-strain curves of each phase 

 
According to Eshelby's equivalent inclusion theory, the stress in the matrix and reinforced 

W phase can be expressed respectively as 
 

𝜎𝜎𝑚𝑚 = 𝐸𝐸𝑚𝑚𝜀𝜀𝑚𝑚 = 𝐸𝐸𝑚𝑚(𝜀𝜀 ̅+ 𝜀𝜀̃)                                                    (3.2) 
 

𝜎𝜎𝑤𝑤 = 𝐸𝐸𝑤𝑤𝜀𝜀𝑤𝑤 = 𝐸𝐸𝑤𝑤�𝜀𝜀 ̅+ 𝜀𝜀̃ + 𝜀𝜀𝑤𝑤
𝑝𝑝𝑝𝑝� = 𝐸𝐸𝑚𝑚�𝜀𝜀 ̅+ 𝜀𝜀̃ + 𝜀𝜀𝑤𝑤

𝑝𝑝𝑝𝑝 − 𝜀𝜀𝑤𝑤∗ �                         (3.3) 
 
where, 𝜎𝜎𝑚𝑚, 𝜀𝜀𝑚𝑚 and 𝜎𝜎𝑤𝑤, 𝜀𝜀𝑤𝑤 are the mean stress and strain in matrix phase and reinforced W 
phase respectively.  𝜀𝜀 ̅is the strain of RVE, and ε  is the disturbance strain in two phases due 
to the existence of the reinforced phase. 𝜀𝜀𝑤𝑤

𝑝𝑝𝑝𝑝 is the additional disturbance strain caused by the 
presence of reinforced phase, which is also known as the perturbation strain. 𝜀𝜀𝑤𝑤∗  is the eigen 
strain in the reinforced phase. Eshelby considered that the reinforced phase can be regarded 
as the equivalent reinforced phase with eigen strain and the same stiffness tensor as the matrix 
phase and satisfy the relationship. 
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𝜀𝜀𝑤𝑤
𝑝𝑝𝑝𝑝 = 𝑆𝑆𝜀𝜀𝑤𝑤∗                                                           (3.4) 

 
where, 𝑆𝑆 is the fourth order Eshelby tensor, which is related to Poisson's ratio of matrix phase 
and shape of reinforced phase and indicates the influence of inhomogeneity of reinforced 
phase. For the isotropic case, the Eshelby tensor is expressed as 
 

𝑆𝑆 =

⎣
⎢
⎢
⎢
⎢
⎡
𝑆𝑆1111 𝑆𝑆1122 𝑆𝑆1133 0 0 0
𝑆𝑆2211 𝑆𝑆2222 𝑆𝑆2233 0 0 0
𝑆𝑆3311 𝑆𝑆3322 𝑆𝑆3333 0 0 0

0 0 0 𝑆𝑆1212 0 0
0 0 0 0 𝑆𝑆2323 0
0 0 0 0 0 𝑆𝑆3131⎦

⎥
⎥
⎥
⎥
⎤

                             (3.5) 

 
When the shape of reinforced W phase is approximately regarded as a sphere, 𝑆𝑆 will be 

simplified as 
 

𝑆𝑆1111 = 𝑆𝑆2222 = 𝑆𝑆3333 = 7−5𝜈𝜈
15(1−𝜈𝜈)

                                         (3.6) 

 
𝑆𝑆1122 = 𝑆𝑆2233 = 𝑆𝑆3311 = 1−5𝜈𝜈

15(1−𝜈𝜈)
                                          (3.7) 

 
𝑆𝑆1212 = 𝑆𝑆2323 = 𝑆𝑆3131 = 4−5𝜈𝜈

15(1−𝜈𝜈)
                                           (3.8) 

 
where, 𝜈𝜈 is the Poisson’s ratio of matrix phase. According to the Equation (3.2) and (3.3), 
there are 
 

𝜀𝜀𝑤𝑤 = 𝜀𝜀𝑚𝑚 + 𝜀𝜀𝑤𝑤
𝑝𝑝𝑝𝑝                                                      (3.9) 

 
𝐸𝐸𝑤𝑤𝜀𝜀𝑤𝑤 = 𝐸𝐸𝑚𝑚(𝜀𝜀𝑤𝑤 − 𝜀𝜀𝑤𝑤∗ )                                           (3.10) 

 
Substituting Equation (3.10) into Equation (3.4), there is 

 
𝜀𝜀𝑤𝑤
𝑝𝑝𝑝𝑝 = 𝑆𝑆𝐸𝐸𝑚𝑚−1(𝐸𝐸𝑚𝑚 − 𝐸𝐸𝑤𝑤)𝜀𝜀𝑤𝑤                                        (3.11) 

 
Combining with Equation (3.9), the relationship between the average strain of matrix phase 

and reinforced phase is expressed as 
 

𝜀𝜀𝑤𝑤
𝑝𝑝𝑝𝑝 = 𝑆𝑆𝐸𝐸𝑚𝑚−1(𝐸𝐸𝑚𝑚 − 𝐸𝐸𝑤𝑤)𝜀𝜀𝑤𝑤                                        (3.12) 
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Define the strain tensor 𝐴𝐴𝑟𝑟 as 
 

𝐴𝐴𝑟𝑟 = [𝐼𝐼 −  𝑆𝑆𝐸𝐸𝑚𝑚−1(𝐸𝐸𝑚𝑚 − 𝐸𝐸𝑟𝑟)]−1                                        (3.13) 
 
where, 
 

𝐴𝐴𝑚𝑚 = 𝐼𝐼                                                           (3.14) 
 

𝐴𝐴𝑤𝑤 = [𝐼𝐼 − 𝑆𝑆𝐸𝐸𝑚𝑚−1(𝐸𝐸𝑚𝑚 − 𝐸𝐸𝑤𝑤)]−1                                          (3.15) 
 

Then, Equation (3.12) can be expressed as 
 

𝜀𝜀𝑤𝑤 = 𝐴𝐴𝑤𝑤𝜀𝜀𝑚𝑚                                                        (3.16) 
 

According to the average rule of stress and strain, the stress-strain relationship of RVE 
and each phase can be expressed as 
 

𝜎𝜎 = 𝑓𝑓𝑚𝑚𝜎𝜎𝑚𝑚 + 𝑓𝑓𝑤𝑤𝜎𝜎𝑤𝑤                                                 (3.17) 
 

𝜀𝜀 = 𝑓𝑓𝑚𝑚𝜀𝜀𝑚𝑚 + 𝑓𝑓𝑤𝑤𝜀𝜀𝑤𝑤                                                  (3.18) 
 
where, 𝜎𝜎 and 𝜀𝜀 are the total mean stress and mean strain of RVE, 𝑓𝑓𝑚𝑚 and 𝑓𝑓𝑤𝑤 are the volume 
fraction of matrix phase and reinforced phase respectively, which satisfy the following 
equation: 
 

𝑓𝑓𝑚𝑚 + 𝑓𝑓𝑤𝑤 = 1                                                       (3.19) 
 

Substituting Equation (3.16) into Equation (3.17) and (3.18), there are 
 

𝜎𝜎 = 𝑓𝑓𝑚𝑚𝜎𝜎𝑚𝑚 + 𝑓𝑓𝑤𝑤𝐸𝐸𝑤𝑤𝐴𝐴𝑤𝑤𝐸𝐸𝑚𝑚−1𝜎𝜎𝑚𝑚 = (𝑓𝑓𝑚𝑚 + 𝑓𝑓𝑤𝑤𝐸𝐸𝑤𝑤𝐴𝐴𝑤𝑤𝐸𝐸𝑚𝑚−1)𝜎𝜎𝑚𝑚                      (3.20) 
 

𝜀𝜀 = 𝑓𝑓𝑚𝑚𝜀𝜀𝑚𝑚 + 𝑓𝑓𝑤𝑤𝐴𝐴𝑤𝑤𝜀𝜀𝑚𝑚 = (𝑓𝑓𝑚𝑚 + 𝑓𝑓𝑤𝑤𝐴𝐴𝑤𝑤)𝜀𝜀𝑚𝑚                                  (3.21) 
 

The relationship between the mean stress and strain of each phase and the total mean stress 
and strain of RVE can be obtained 
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𝜎𝜎𝑚𝑚 = 𝐸𝐸𝑚𝑚(𝑓𝑓𝑚𝑚𝐸𝐸𝑚𝑚 + 𝑓𝑓𝑤𝑤𝐸𝐸𝑤𝑤𝐴𝐴𝑤𝑤)−1𝜎𝜎                                  (3.22-1) 
 

𝜎𝜎𝑤𝑤 = 𝐸𝐸𝑤𝑤𝐴𝐴𝑤𝑤(𝑓𝑓𝑚𝑚𝐸𝐸𝑚𝑚 + 𝑓𝑓𝑤𝑤𝐸𝐸𝑤𝑤𝐴𝐴𝑤𝑤)−1𝜎𝜎                              (3.22-2) 
 

𝜀𝜀𝑚𝑚 = (𝑓𝑓𝑚𝑚 + 𝑓𝑓𝑤𝑤𝐴𝐴𝑤𝑤)−1𝜀𝜀                                        (3.23-1) 
 

𝜀𝜀𝑤𝑤 =  𝐴𝐴𝑤𝑤(𝑓𝑓𝑚𝑚 + 𝑓𝑓𝑤𝑤𝐴𝐴𝑤𝑤)−1𝜀𝜀                                     (3.23-2) 
 

As shown in Figure 4, when the RVE is in the stress-strain state of point P, the stress-strain 
states of matrix phase and reinforced W phase can be calculated as 𝑃𝑃𝑚𝑚 and 𝑃𝑃𝑤𝑤 by Equation 
(3.23) and (3.24). 

The constitutive relation of RVE in elastic deformation is expressed as 
 

𝜎𝜎 = 𝐸𝐸𝐸𝐸                                                        (3.24) 
 

According to Equation (3.20) and (3.21), the relationship between elastic modulus 𝐸𝐸 of 
RVE and elastic modulus of matrix phase and reinforced W phase can be expressed as follows: 
 

𝐸𝐸 = �∑ 𝑓𝑓𝑟𝑟𝐴𝐴𝑟𝑟𝐸𝐸𝑟𝑟𝑟𝑟=𝑚𝑚,𝑤𝑤 ��∑ 𝑓𝑓𝑟𝑟𝐴𝐴𝑟𝑟𝑟𝑟=𝑚𝑚,𝑤𝑤 �−1 = 𝑓𝑓𝑚𝑚𝐸𝐸𝑚𝑚+𝑓𝑓𝑤𝑤𝐴𝐴𝑤𝑤𝐸𝐸𝑤𝑤
𝑓𝑓𝑚𝑚+𝑓𝑓𝑤𝑤𝐴𝐴𝑤𝑤

              (3.25) 

 
For 92.5W-4.9Ni-2.1Fe-0.5Co, the elastic modulus E of RVE can be determined by test, 

which has been listed in Table 2. The elastic modulus 𝐸𝐸𝑤𝑤 of W phase is obtained by consulting 
the literature [28]. So, the elastic modulus 𝐸𝐸𝑚𝑚 of the matrix phase can be calculated by 
Equation (3.25). 
 
3.3. Establish damage evolution model 
3.3.1. Damage variable definition 
In general, the initiation and growth of micropores and microcracks are defined as damage 
and its evolution [29]. However, it is still difficult to accurately measure and monitor the 
development of voids and cracks on the microscale by means of current technology. 
Therefore, damage is introduced from the perspective of phenomenology in continuum 
damage mechanics. The damage is regarded as an internal defect with uniform and continuous 
distribution in RVE, which can be described by homogenization variables. For isotropic 
materials, the damage variable degenerates to scalar. Two methods are usually used to 
describe the damage state of materials: (1) reduction of effective stress area; (2) reduction of 
effective elastic modulus. 
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Figure 5: Diagram of damaged rod under uniaxial tension 
 

When the effective elastic modulus is used to describe the damage state, the uniaxial 
tension condition of a rod is taken as an example. Figure 5(a) is the original state of the 
material, and Figure 5(b) and 5(c) are the damaged state and the fictitious undamaged state of 
the material respectively. According to the principle of strain equivalence, the elastic strain 𝜀𝜀 
caused by the effective stress 𝜎𝜎� in Figure 5(c) should be the same as that caused by stress 𝜎𝜎 in 
Figure 5(b): 
 

𝜎𝜎� = 𝐸𝐸0𝜀𝜀,𝜎𝜎 = 𝐸𝐸(𝐷𝐷)𝜀𝜀                                            (3.26) 
 
or 
 

𝜀𝜀 = 𝜎𝜎
𝐸𝐸(𝐷𝐷)

= 𝜎𝜎�
𝐸𝐸0

                                                   (3.27) 

 
where, 𝐸𝐸0 and 𝐸𝐸(𝐷𝐷) are the elastic modulus of the material in the initial undamaged state and 
the damaged elastic modulus, respectively. The effective stress can be defined as 
 

𝜎𝜎� = 𝐸𝐸0
𝐸𝐸(𝐷𝐷)

𝜎𝜎                                                      (3.28) 

 
Then the relationship between damage state and elastic modulus is 

 
𝐸𝐸(𝐷𝐷) = (1 − 𝐷𝐷)𝐸𝐸0                                                 (3.29) 

 
or 
 

𝐷𝐷 = 1 − 𝐸𝐸(𝐷𝐷)
𝐸𝐸0

                                                        (3.30) 
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3.3.2. Establish damage evolution model 
It is generally believed that the microscopic essence of plastic flow behavior of metal materials 
is the irreversible dislocation motion based on thermo-activation mechanism. Moreover, the 
dynamic constitutive behavior of materials is also related to strain rate. For the plastic 
deformation behavior within   strain rate, the strain rate and temperature usually satisfy 
Arrhenius equation [30]: 
 

𝜀𝜀̇ = 𝜀𝜀0̇𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝑈𝑈𝑆𝑆(𝜎𝜎,𝑇𝑇)
𝑘𝑘𝑘𝑘

�                                                (3.31) 
 
where, 𝜀𝜀̇ is the strain rate, 𝜀𝜀̇ is the rate factor, also known as the nominal limit strain rate, 
which is affected by the density of movable dislocations. 𝑈𝑈𝑆𝑆 is the thermal activation energy, 
which is related to the stress 𝜎𝜎 and temperature 𝑇𝑇, and 𝑘𝑘 is the Boltzman constant. According 
to continuum damage mechanics, the damage of metal materials is caused by plastic 
deformation. Compared with Equation (3.31), the evolution of damage can also be regarded 
as the thermal activation behavior caused by dislocation motion. There is 
 

𝐷̇𝐷 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷̇𝐷0𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝑈𝑈𝐷𝐷(𝜎𝜎,𝑇𝑇)

𝑘𝑘𝑘𝑘
�                                    (3.32) 

 
where, 𝐷̇𝐷 is the damage evolution rate. Similar to 𝜀𝜀̇, 𝐷̇𝐷 is the rate factor of damage evolution, 
𝑈𝑈𝐷𝐷 is the thermal activation energy related to damage evolution. Suppose that for the same 
material, the thermal activation energy 𝑈𝑈𝑆𝑆 and 𝑈𝑈𝐷𝐷 satisfies the proportional relation 
 

𝑈𝑈𝐷𝐷 = 𝑎𝑎𝑈𝑈𝑆𝑆                                                   (3.33) 
 
where, a is the material parameter. The relationship between damage evolution rate and strain 
rate can be obtained from Equation (3.31), (3.32) and (3.33) 
 

𝐷̇𝐷
𝐷̇𝐷0

= � 𝜀̇𝜀
𝜀̇𝜀0
�

a
                                                    (3.34) 

 
or 
 

𝐷̇𝐷 = 𝐾𝐾𝐷𝐷𝜀𝜀̇𝑎𝑎                                                    (3.35) 
 

Integrating Equation (3.35), the damage evolution equation in the form of rate is obtained 
 

𝐷𝐷 = 𝐾𝐾𝐷𝐷𝛹𝛹𝐷𝐷(𝜀𝜀̇)                                                  (3.36) 
 
where, 𝐾𝐾𝐷𝐷 = 𝐷̇𝐷0/𝜀𝜀0̇𝑎𝑎,𝛹𝛹𝐷𝐷(𝜀𝜀̇) = ∫ 𝜀𝜀̇𝑎𝑎t

0 𝑑𝑑𝑑𝑑. 
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Besides, there is usually a certain strain threshold value 𝜀𝜀𝑡𝑡ℎ for the damage evolution. By 
integrating Equation (3.35), under the loading condition of constant strain rate, it can be 
obtained 
 

𝐷𝐷 = 𝐾𝐾𝐷𝐷𝜀𝜀̇𝑎𝑎−1(𝜀𝜀 − 𝜀𝜀𝑡𝑡ℎ)      𝜀𝜀 ≥ 𝜀𝜀𝑡𝑡ℎ                                    (3.37) 
 

In addition, the dynamic failure criterion is described by 
 

𝐷𝐷 ≥ 𝐷𝐷𝐶𝐶                                                         (3.38) 
 
where, 𝐷𝐷𝐶𝐶  is the critical damage value. It is considered that when the damage value is greater 
than 𝐷𝐷𝐶𝐶 , the material will be completely fractured. 

If Equation (3.37) is extended to more general cases, the relationship between damage 
value 𝐷𝐷 and strain 𝜀𝜀 may be nonlinear. Hence, the dynamic damage evolution model of 
materials in general is obtained 
 

𝐷𝐷 = 𝐷𝐷𝑘𝑘(𝜀𝜀̇/𝜀𝜀0̇)𝑎𝑎−1(𝜀𝜀 − 𝜀𝜀𝑡𝑡ℎ)𝑏𝑏 , 𝜀𝜀 ≥ 𝜀𝜀𝑡𝑡ℎ                                  (3.39) 
 
where, 𝐷𝐷𝑘𝑘, 𝑎𝑎 and 𝑏𝑏 are material parameters, which can be fitted by test data. 
 
3.4. Two-phase constitutive model of tungsten heavy alloy with damage 
Combining the damage evolution model with the stress-strain relationship of RVE and each 
phase obtained in Section 3.2, a two-phase constitutive model of tungsten heavy alloy with 
damage is established. The damage value of matrix phase is defined as 𝐷𝐷𝑚𝑚. The damage value 
of reinforced W phase is defined as 𝐷𝐷𝑤𝑤. The total damage value of RVE is 𝐷𝐷. 

According to damage mechanics theory, the damage begins to occur in the plastic stage 
due to irreversible deformation and is gradually accumulated with the increase of plastic 
deformation. However, as shown in Figure 4, the mechanical behaviors of matrix phase and 
reinforced W phase are significantly different. When RVE is loaded, the strain states of matrix 
phase and reinforced W phase are different, which makes the damage evolution process and 
damage value in the two phases inconsistent. During the powder sintering process, the 
powders of two phases fully mix and interact to form a whole structure for tungsten heavy 
alloy, which determines that the damage of materials not only evolves independently in each 
phase, but also is affected by the interaction between each phase. Then, a two-phase 
constitutive model of tungsten heavy alloy with damage is proposed. 

To simplify the analysis, only the uniaxial tensile load is discussed here. With the increase 
of load on RVE, the damage evolution of two-phase constitutive model under the uniaxial 
tension can be divided into the following three cases: 

The tensile load is small, so the matrix phase, reinforced W phase and RVE are in the 
elastic stage and no damage occurs. The stress-strain relationship of the whole RVE is 
described as 
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𝜎𝜎 = 𝐸𝐸𝐸𝐸                                                              (3.40) 
 

where, 𝜎𝜎, 𝜀𝜀 and 𝐸𝐸 are the stress, strain and elastic modulus of RVE. 
With the increase of load, the matrix phase first occurs to plastic deformation and begins 

to appear damage due to the low yield strength. RVE and the reinforced W phase are still in 
the elastic stage. Then the strain of matrix is obtained by Equation (3.23) 
 

𝜀𝜀𝑚𝑚 = (𝑓𝑓𝑚𝑚 + 𝑓𝑓𝑤𝑤𝐴𝐴𝑤𝑤)−1𝜀𝜀                                                  (3.41) 
 

According to Equation (3.39), the damage mD  of matrix phase can be calculated by 
 

𝐷𝐷𝑚𝑚 = 𝐷𝐷𝑘𝑘(𝜀𝜀̇/𝜀𝜀0̇)𝑎𝑎−1(𝜀𝜀𝑚𝑚 − 𝜀𝜀𝑡𝑡ℎ,𝑚𝑚)𝑏𝑏                                      (3.42) 
 
where, 𝜀𝜀𝑡𝑡ℎ,𝑚𝑚 is the strain threshold of matrix phase for damage. 

According to Equation (3.29), the elastic modulus 𝐸𝐸𝐷𝐷𝐷𝐷 of matrix phase with damage is 
updated by 
 

𝐸𝐸𝐷𝐷𝐷𝐷 = (1 − 𝐷𝐷𝑚𝑚)𝐸𝐸𝑚𝑚                                           (3.43) 
 

In this stage, the reinforced W phase is still in elastic deformation, which no damage occurs. 
Therefore, the damaged elastic modulus 𝐸𝐸𝐷𝐷 of RVE is updated according to Equation (3.28) 
 

𝐸𝐸𝐷𝐷 = 𝑓𝑓𝑚𝑚𝐸𝐸𝐷𝐷𝐷𝐷+𝑓𝑓𝑤𝑤𝐴𝐴𝑤𝑤𝐸𝐸𝑤𝑤
𝑓𝑓𝑚𝑚+𝑓𝑓𝑤𝑤𝐴𝐴𝑤𝑤

                                             (3.44) 

 
The damage value of RVE is obtained as follows 

 
𝐷𝐷 = 1 − 𝐸𝐸𝐷𝐷

𝐸𝐸
                                                   (3.45) 

 
Then, the stress-strain state of RVE is updated to 

 
𝜎𝜎 = (1 − 𝐷𝐷)𝐸𝐸𝐸𝐸 = 𝐸𝐸𝐷𝐷𝜀𝜀                                          (3.46) 

 
When the load is large enough, both the matrix phase and the reinforced W phase occur to 

the plastic deformation, but the damages of the two phases are also different due to the 
different plastic deformation. Therefore, the total strain and plastic strain of each phase are 
calculated by Equation (3.23) respectively 
 

� 𝜀𝜀𝑚𝑚 = (𝑓𝑓𝑚𝑚 + 𝑓𝑓𝑚𝑚𝐴𝐴𝑤𝑤)−1𝜀𝜀
𝜀𝜀𝑤𝑤 = 𝐴𝐴𝑤𝑤(𝑓𝑓𝑚𝑚 + 𝑓𝑓𝑚𝑚𝐴𝐴𝑤𝑤)−1𝜀𝜀

                                              (3.47) 
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The damage 𝐷𝐷𝑚𝑚 and 𝐷𝐷𝑤𝑤 of the matrix phase and the reinforced W phase can be calculated 
by Equation (3.39) 
 

�
𝐷𝐷𝑚𝑚 = 𝐷𝐷𝑘𝑘(𝜀𝜀̇/𝜀𝜀0̇)𝑎𝑎−1(𝜀𝜀𝑚𝑚 − 𝜀𝜀𝑡𝑡ℎ,𝑚𝑚)𝑏𝑏

𝐷𝐷𝑤𝑤 = 𝐷𝐷𝑘𝑘(𝜀𝜀̇/𝜀𝜀0̇)𝑎𝑎−1(𝜀𝜀𝑤𝑤 − 𝜀𝜀𝑡𝑡ℎ,𝑤𝑤)𝑏𝑏
                             (3.48) 

 
where, 𝜀𝜀𝑡𝑡ℎ,𝑤𝑤 is the strain threshold of the reinforced 𝑊𝑊 phase for damage. The damage 
calculation of RVE is the same as that of (2), then the flow stress model of RVE is expressed 
as 
 

𝜎𝜎 = (1 − 𝐷𝐷) �𝐴𝐴 + 𝐵𝐵(1 − 𝑙𝑙𝑙𝑙𝜀̇𝜀
𝑙𝑙𝑙𝑙𝐷𝐷0

)𝑛𝑛1𝜀𝜀𝑛𝑛0� � 𝜀̇𝜀
𝜀̇𝜀0
�
𝐶𝐶
�𝑇𝑇𝑚𝑚−𝑇𝑇
𝑇𝑇𝑚𝑚−𝑇𝑇𝑟𝑟

�
𝑚𝑚

                           (3.49) 

 
Based on the realization of microstructure and mechanical properties of tungsten heavy 

alloy, the two-phase constitutive model with damage is established by analyzing the above 
three loading conditions. 
 
4. FINITE ELEMENT SIMULATION 
4.1. Parameter calibration 
Firstly, the parameters in the constitutive model Equation (3.1) of RVE are calibrated. When 
the x-axis of the flow stress-strain curve obtained by test is changed to plastic strain without 
considering the failure section, Figure 3 is replotted to Figure 6. The test in Section 2 is carried 
out at room temperature without considering the adiabatic temperature rise and environmental 
temperature variation, so the temperature term is omitted. Equation (3.1) becomes into 
 

𝜎𝜎 = �𝐴𝐴 + 𝐵𝐵(1 − 𝑙𝑙𝑙𝑙𝜀̇𝜀
𝑙𝑙𝑙𝑙𝐷𝐷0

)𝑛𝑛1𝜀𝜀𝑝𝑝
𝑛𝑛0� � 𝜀̇𝜀

𝜀̇𝜀0
�
𝐶𝐶
                               (4.1) 

 
where, the upper limit of the reference strain rate 𝐷𝐷0 = 106𝑠𝑠−1, the reference strain rate 
 𝜀𝜀̇ = 1𝑠𝑠−1. Under the loading condition of strain rate 1𝑠𝑠−1, Equation (4.1) changes to 
 𝜎𝜎 = 𝐴𝐴 + 𝐵𝐵𝜀𝜀𝑝𝑝

𝑛𝑛0. According to the relationship of 𝜎𝜎~𝜀𝜀𝑝𝑝, the parameters 𝐴𝐴, 𝐵𝐵, and 𝑛𝑛0 can be 
obtained. When 𝜀𝜀𝑝𝑝 is taken to be 0, Equation (4.1) is simplified to 
 

𝜎𝜎 = 𝐴𝐴 �
𝜀𝜀̇
𝜀𝜀0̇
�
𝐶𝐶

 

 
Then, the parameters of the reinforced W phase and matrix phase are calibrated. 

According to Section 3.2, the reinforced W phase also has a nonlinear hardening trend, and 
the constitutive model of pure tungsten is as follows 
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𝜎𝜎 = �𝐴𝐴𝑤𝑤 + 𝐵𝐵𝑤𝑤𝜀𝜀𝑝𝑝
𝑛𝑛𝑤𝑤� �1 + 𝐶𝐶𝑤𝑤ln 𝜀̇𝜀

𝜀̇𝜀0
�                                  (4.2) 

 
where, 𝐴𝐴𝑤𝑤 = 890𝑀𝑀𝑀𝑀𝑀𝑀, 𝐵𝐵𝑤𝑤 = 144𝑀𝑀𝑀𝑀𝑀𝑀, 𝑛𝑛𝑤𝑤 = 0.5026, 𝐶𝐶𝑤𝑤 = 0.0745. 

In order to simplify the calculation, it can be reasonably assumed that the matrix phase and 
RVE have the same strain hardening and strain rate hardening effects and the parameters of 
constitutive model are the same as RVE except parameter 𝐴𝐴𝑚𝑚. Referring to the method of 
Wan [31] to determine the parameter 𝐴𝐴𝑚𝑚, discuss the material parameters in a reasonable 
range, which are difficult to be determined. Considering the low strength of matrix phase and 
combining with the results of the finite element simulation, the parameter is determined as 
𝐴𝐴𝑚𝑚 = 70% 𝐴𝐴. 

Finally, the parameters of damage evolution model are calibrated. Substituting Equation 
(3.39) into Equation (3.51) without considering the temperature term, there is 
 

𝜎𝜎 = (1 − 𝐷𝐷𝑘𝑘(𝜀𝜀̇/𝜀𝜀0̇)𝑎𝑎−1(𝜀𝜀 − 𝜀𝜀𝑡𝑡ℎ)𝑏𝑏 �𝐴𝐴 + 𝐵𝐵(1 − 𝑙𝑙𝑛𝑛𝜀̇𝜀
𝑙𝑙𝑙𝑙𝐷𝐷0

)𝑛𝑛1𝜀𝜀𝑝𝑝
𝑛𝑛0� � 𝜀̇𝜀

𝜀̇𝜀0
�
𝐶𝐶
            (4.3) 

 
When 𝜀𝜀̇ = 1𝑠𝑠−1 , it takes to 𝜎𝜎 = (1 − 𝐷𝐷𝑘𝑘𝜀𝜀𝑝𝑝𝑏𝑏)(𝐴𝐴 + 𝐵𝐵𝜀𝜀𝑝𝑝

𝑛𝑛0). According to the 𝜎𝜎~𝜀𝜀𝑝𝑝  curve in 
Figure 6, the parameter 𝐷𝐷𝑘𝑘 and 𝑏𝑏 are obtained. By substituting the fitted parameters to the 
Equation (4.3), the corresponding 𝑎𝑎 of each strain rate 𝜀𝜀̇ can be calculated. Then take the 
average to determine the parameter 𝑎𝑎. For simplicity, the matrix phase and the reinforced W 
phase share a set of damage parameters with RVE. 𝜀𝜀𝑡𝑡ℎ,𝑚𝑚 and 𝜀𝜀𝑡𝑡ℎ,𝑤𝑤 is considered as the strain 
value when the plastic strain of each phase is taken as 0. 

In conclusion, all parameters of the two-phase constitutive model of tungsten heavy alloy 
with damage are calibrated, and the specific parameters are listed in Table 3. 
 
Table 3: Parameters of two-phase constitutive model with damage of 92.5W 

𝐴𝐴/MPa 713.9 
𝐵𝐵/MPa 1915.9 
𝑛𝑛0 0.73 
𝑛𝑛1 2.84 
𝐶𝐶 0.0809 

𝐴𝐴𝑤𝑤/MPa 890 
𝐵𝐵𝑤𝑤/MPa 144 
𝑛𝑛𝑤𝑤 0.5026 
𝐶𝐶𝑤𝑤 0.0745 

𝐸𝐸𝑤𝑤/MPa 413 
𝐴𝐴𝑚𝑚/MPa 499.7 
𝐷𝐷𝑘𝑘 0.2 
𝑎𝑎 0.89 
𝑏𝑏 0.317 
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4.2. Finite element simulation 
Considering the symmetry of the model, the finite element model of a 1/4 split Hopkinson 
tensile bar and specimen is established in ABAQUS, as shown in Figure 7. The length and 
radius of incident bar and transmission bar are 970mm and 10mm, respectively. The material 
model of the bar is elastic. The elastic modulus and Poisson's ratio are 72GPa and 0.33 
respectively, and the density is 2.7 × 103 𝑘𝑘𝑘𝑘/𝑚𝑚3. Schematic of dynamic specimen is shown 
in Figure 1(b). Two symmetrical planes are respectively applied symmetry constraints. All 
contact surfaces of the specimen and the two bars are tie constraints. The element type is 
C3D8. Stress pulses are applied to the right end of the incident bar to replace the bullet. 
 

 
Figure 7: The finite element model of specimen 

 
The maximum time step of incremental step is determined by the stability limit   of the 

element which can be calculated by 
 

𝛥𝛥𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐿𝐿0
𝐶𝐶

                                                    (5.1) 

 
where, 𝐿𝐿0 is the characteristic length of the element, 𝐶𝐶 is the longitudinal wave velocity of the 
material. In this model, the characteristic length of elements in bar is 10mm, and the 
propagation velocity of stress wave in bar is 𝐶𝐶𝑑𝑑 = 5164 𝑚𝑚/𝑠𝑠, so the maximum time step is 
 2 × 10−6𝑠𝑠. 

Considering that the damage evolution is a continuous accumulation process and the 
stress-strain state needs to be updated according to the previous damage value, the UMAT 
subroutine is compiled in ABAQUS/standard for the simulation. Implicit stress updating 
algorithm is referred to the book [32], then the whole split Hopkinson tensile bar test is 
simulated according to the proposed two-phase constitutive model with damage. The whole 
simulation flowchart is shown in Figure 8. 
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Figure 8: Simulation flowchart for two-phase constitutive model with damage 
 

The simulation results of the specimen under the condition of 𝜀𝜀̇ = 1200𝑠𝑠−1 are shown here 
in Figure 9. Firstly, it can be seen that the front edge of stress wave reaches the specimen at 
the time 𝑡𝑡0 = 1.96 × 10−4 𝑠𝑠, which is consistent with the time calculated by the longitudinal 
wave velocity. The stress value on the specimen is 0 before 𝑡𝑡0. 
 

 

Figure 9: The stress propagation diagram of the specimen at 4
0 1.96 10t s−= ×  
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Figure 10 shows the stress distribution diagram of the specimen at 𝑡𝑡 = 3.74 × 10−4 𝑠𝑠. 
After the steady rising stage of stress wave, some of the stress wave continues to propagate in 
the incident bar through reflection, and some enters into the transmission bar. After multiple 
reflections of the stress wave, the stress state of the middle section of the specimen tends to 
be stable and the deformation of each point is uniform. Draw the strain rate-time curve of any 
point in the middle section. As shown in Figure 11, after the stress rising section, the strain 
rate gradually adjusts to a stable state. The stress-plastic strain curve is shown in Figure 12. 
The black solid line represents the test result, and the red dotted line represents the simulation 
result by the two-phase KHL model. The simulation curve is basically consistent with the test 
curve, which verifies the effectiveness of the proposed model. 

In addition, Figure 12 also compares the simulation result of JC model under strain rate 
1200s-1 with that of the proposed model, and JC model has the obvious inaccuracy, which is 
shown as the red dashed line. The static stress-strain curve of 92.5% tungsten heavy alloy 
satisfies the strain hardening effect, while the strain hardening effect under dynamic tensile 
condition is not obvious and even strain softening phenomenon occurs. However, JC model 
is only applicable to the materials with similar stress-strain curves at different strain rates, 
which is inconsistent with the tensile mechanical properties of 92.5% tungsten heavy alloy, so 
it is not suitable to describe the dynamic tensile properties of 92.5% tungsten heavy alloy 
 

 
Figure 10: The stress distribution diagram of the specimen at 𝑡𝑡0 = 1.96 × 10−4𝑠𝑠. 
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Figure 11: Strain rate curve in simulation under 1200s-1 
 

 
Figure 12: Stress-plastic strain curve of 1200s-1 strain rate 
 

The comparison of simulation results and test results of 92.5% tungsten heavy alloy under 
other working conditions are shown in Figure 13. It can be seen that the simulation results of 
the proposed constitutive model for different strain rates are in good agreement with the test 
results, except for some cases of high strain rate conditions. The strain softening effect of 
92.5% tungsten heavy alloy at high strain rate is obvious, while the influence of strain 
softening effect has not been well considered in this model. 
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Figure 13: Stress-plastic strain curve of different strain rates 
 

5. CONCLUSIONS 
In this paper, the static and dynamic mechanical properties of 92.5W-4.9Ni-2.1Fe-0.5Co are 
studied by tests. Based on mesomechanics theory, the property and the stress-strain 
relationship of each phase are studied by combining with Eshelby equivalent inclusion theory 
and Mori-Tanaka mean field theory. Then the damage variable is introduced according to the 
continuous damage mechanics theory, and a two-phase constitutive model of tungsten heavy 
alloy with damage is established by combining damage evolution model with constitutive 
model. Then, the finite element simulations for 92.5% tungsten heavy alloy are carried out. 
The simulation results are in good agreement with the test results, which verifies the 
effectiveness of the proposed model. The main conclusions in this paper are as follows: 
1) The results of tensile property tests show that the strain hardening effect is obvious in the 

static stress-strain curve of 92.5% tungsten heavy alloy. With the increase of strain rate, 
the strain hardening effect gradually weakens, and even the strain softening effect occurs 
at high strain rate. Therefore, the 92.5% tungsten heavy alloy is suitable for KHL 
constitutive model. 

2) The results show that the mechanical properties of tungsten phase and binder phase of 
92.5% tungsten heavy alloy are quite different. The tungsten phase has high strength but 
poor plasticity, while the binder phase has low strength but good plasticity. Therefore, the 
stress-strain state and damage condition of the two phases are different. The damage 
evolution in the two phases affects the mechanical properties of the alloy, respectively. 

3) Considering the accumulation of damage evolution and that the stress-strain state needs 
to be updated according to the previous damage value, the finite element simulation of the 
constitutive model is implemented with UMAT, and the simulation results are in good 
agreement with the test results. 
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