ISSN: 1750-9548

Semi-Modules Which are E-Piequvelent to Projective Semi-Module

Kareem A.L.Alghurabi^{1, a}, Asaad M.A.Alhossaini^{2, b}

¹ University of Babylon, College of Basic Education, Babylon, Iraq¹

² University of Babylon, College of Pure Sciences, University of Babylon Iraq²

^a kareem_alghurabi@uobabylon.edu.iq , ^b asaad_hosain@itnet.uobabylon.edu.iq

Abstract

The aim of this study is an expanded study of the concept projective semi module. I projective property was defined for the module in a certain way, and we described it for the semi-module as follows: a semi-module X is projective if for any surjective hom $f\colon B\to A$ and any hom $g\colon X\to A,\ \exists\ a$ hom $h\colon X\to B$ s.t f $h(X)\ \supseteq g(X).$ This concept is closed, as in modules, under direct sum. X is an E-piequvelent semi-module to Y if there are surjective homs $h\colon X\to Y$ and $g\colon Y\to X.$ Any semi-module is a projective semi-module if and only if it is an im-projective semi-module and quasi-projective semi-module, where a semi-module M is quasi-projective if, for any surjective hom $f\colon M\to N,$ and any hom $g\colon M\to N$, $\exists\ a$ hom α s.t f $\alpha=g$.

1. Introduction

In previous research, we studied the concept of rad-projective and strongly rad-projective on semi-modules. This paper will examine a new concept (previously studied on modules[1]), the idea of im-projective, for semi-modules.

Projective semi-modules were studied a lot in the literature ([1], [3], [5], [6], ...), but the generalizations of projective semi-modules are less found. As in a previous paper[4], another generalization of projective semi-module will be introduced and studied in this paper. A semi-module X is im-projective if for any surjective hom $f: A \to B$ and any hom $g: X \to A$, $\exists a$ hom $h: X \to B$ s.t $f(a) \to g(a)$. This concept was studied for the module, and it was proved that the class of im-projective modules is closed under direct sums, and it contains the principal left ideals of a ring R for which $Rx=Rx^2$ and the class of modules which are e-equivalent to projective modules[8]. Some of the results achieved in modules can be proved directly for semi-modules, but other results need to add conditions or weaken them. In the following, left unitary semi-modules over a semi-ring are considered, $S_1 \le S_2$, $S_1 \cong S_2$, denote S_1 sub-semi-module of S_2 , S_1 isomorphic to S_2 , the direct sum of N copies of S, and S_1 is e-equivalent semi-module to S_2 , respectively.

A semi-module S is strictly an im-projective semi-module if S is an im-projective semi-module but not projective.

The second section will give a background for semi-rings and semi-modules, including the definitions and concepts related to semi-modules that will be needed to fulfill our study. At the same, The main results will appear in the last section.

2. Definitions and propositions

Definition 2.1. [2] Assume \aleph be a semi-ring. A left \aleph -semi-module A is a commutative monoid (A, +, 0) for which we have a function $\aleph \times A \longrightarrow A$, defined by $(n, a) \mapsto na$ such that $\forall n, t \in \aleph$ and $a, a' \in A$,

ISSN: 1750-9548

1- n(a + a') = na + na'.

2- (n + t)a = na + ta.

3- (nt)a = n(ta).

4- $0_n \ \alpha = 0_A = n0_A$.

If $1_{\aleph}a = a$ holds, then a left \(\mathbb{R}\)-semi-module A is called unitary.

Definition 2.2.[3] Assume Y be a subset of a left \aleph -semi-module P, then Y is called sub-semi-module of P if Y is closed under addition and scalar multiplication. In this case, it is denoted by $Y \le P$.

Definition 2.3.[3] A sub-semi-module O of an \aleph - semi-module P is called subtractive if $\forall a, a' \in P a, a + a' \in O$ implies $a' \in O$.

Note that 0 and A are always subtractive sub-semi-modules of A.

An \aleph -semi-module A is considered subtractive if all its sub-semi-modules are subtractive.

Definition 2.4.[2] Assume U and W be ℵ-semi-modules.U hom from W to W is a map

 $\varphi: U \longrightarrow W \text{ s.t}$

1- $T(a + a') = \varphi(a) + \varphi(a')$ and

2- $T(na) = n\varphi(a)$ $\forall a, a' \in U \text{ and } s \in \Re$.

For a home of \aleph -semi-modules T: U \longrightarrow W we define:

- 1- $\ker(T) = \{ a \in U \mid \varphi(a) = 0 \}.$
- 2- $T(U) = {\varphi(a)|a \in U}$.
- 3- $Im(\varphi) = \{b \in W \mid b + f(a) = f(a') \text{ for some a,a'} \in U \}.$

A hom of \aleph -semi-modules $T: U \longrightarrow W$ isa

- 1- Isomorphism if φ is injective and surjective map.
- 2- Image regular (*i*-regular), if T(U) = Im(T).
- 3- Kernel regular (k-regular) if T(a) = T(a') implies

a + k = a' + k' for some, $k, k' \in \ker(\varphi)$.

4- Regular if T is *i*-regular and k-regular.

<u>Definition.2.5.[3]:</u> An element n of \aleph is an additive inverse of m∈ \aleph if and only if n+m=0. And n is unique. The set of all elements of \mathcal{R} having additive inverse is denoted by $V(\aleph)$.

<u>Definition.2.6.[3]:</u> A semi-module \mathcal{A} is said to be semi-subtractive if for any

 $a \neq b$ in \mathcal{A} there is always some $x \in \mathcal{A}$ satisfying b + x = a or some $y \in \mathcal{A}$ satisfying a + y = b

<u>Definition.2.7.[3]p.184:</u> A sub-semi-module \aleph of a left $\mathcal R$ -semi-module $\mathcal M$ is a direct summand of $\mathcal M$ if

ISSN: 1750-9548

and only if \exists a sub-semi-module \aleph' of \mathcal{M} satisfying $\mathcal{M} = \aleph \oplus \aleph'$.

3. Main results

<u>Definition 3.1.</u> A semi-module X is im-projective if for any surjective hom $f: \mathcal{A} \to \mathcal{B}$ and any hom $g: X \to \mathcal{A}$, $\exists a \text{ hom h: } X \to \mathcal{B} \text{ s.t f h}(X) \supseteq g(X).$

A semi-module \mathcal{A} is said to be strictly an im-projective semi-module if \mathcal{A} is an im-projective semi-module but not projective.

Example 3.2. Assume \mathcal{R} be a semi-ring s.t $\mathcal{R} = Y \oplus X$ with $\mathcal{R} \cong Y \cong X$ (e.g. the endo morphism ring of an infinite dimensional vector space over a field). Since R is not compassumeely reducible \exists , a maximal left ideal K is not a direct summand of \mathcal{R} . Then $\mathcal{R} \oplus \mathcal{R}$ /K e-piequivalent of \mathcal{R} . Thus, $\mathcal{R} \oplus \mathcal{R}$ /K is a cyclic strictly improjective semi-module, a direct sum of a projective semi-module.

Definition 3.3. A semi-module X is e-piequivalent to a semi-module Y if there are surjective homs from X onto Y and Y onto X. In this case, we write $X \equiv Y$.

Theorem 3.1 Assume X is a semi-module, then the following are equivalent:

- (1) X is im-projective semi-module.
- (2) \exists a projective semi-module F, and hom f: F \rightarrow X and h: X \rightarrow F s.t fh(X)=X.
- (3) Given any surjective hom $f:\mathcal{B}\to\mathcal{A}$ and any hom $g:X\to\mathcal{A}$ $\exists a$ surjective hom $k:X\to X$ and a hom $h:X\to\mathcal{B}$ s.t fh(s)=gk(s) \forall s in X.

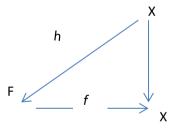
Proof:

(1) \Longrightarrow (2): Assume X is an im-projective semi-module. Since X is a homomorphic image of a free semi-module, say F, assume f: F \rightarrow X be a surjective hom

consider the diagram, then there exists

h: $X \rightarrow F$ (F is projective) s.t

 $fh(X) \supseteq 1_X(X) = X (X \text{ im-projective}). So fh(X) = X.$



(2) \Longrightarrow (3): Assume (2) holds, assume $f:\mathcal{B}\to\mathcal{A}$ be surjective, and $g:X\to\mathcal{A}$

a hom, consider the diagram where F is projective, and α is surjective by (2)

 $\exists \beta: X \rightarrow F \text{ s.t } \alpha\beta(X) = X, \text{ assume } k = \alpha\beta: X \rightarrow X$

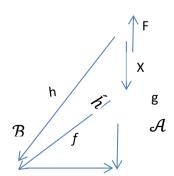
Since F is projective, $\exists h: F \rightarrow \mathcal{B}$ s.t

fh=g α , put h β = \acute{h} : X $\rightarrow \mathcal{B}$

 $f(h(s))=f(h(\beta(s)))=g(\alpha(\beta(s)))=g(k(s)) \forall s \in X.$

 $(3) \Longrightarrow (1)$: Consider the diagram

 $f:\mathcal{B}\to\mathcal{A}$ surjective hom; $g:X\to\mathcal{A}$ any hom



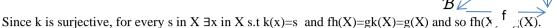
Volume 18, No. 3, 2024

ISSN: 1750-9548

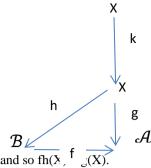
then by (3) \exists a surjective k:X \rightarrow X and

a hom h: $X \to \mathcal{B}$ s.t fh(s)=gk(s)

 \forall s in X, we must prove that X is im-projective.



Hence, X is an im-projective semi-module.



Proposition 3.2. Assume X is an im-projective calculative semi-module. If Y is semi-subtractive semi-module and $f: Y \to X$ a surjective hom, with $\ker(f) \subseteq V(Y)$, then $Y = \overline{X} + \ker(f)$ where \overline{X} is a homomorphic image of X (Hence \overline{X} is e-piequivalent to X).

Proof: By taking $\mathcal{B} = Y$, $\mathcal{A} = X$, $g = 1_X$ in Theorem 3.1(3), $\exists k: X \to X$ and

 $h:X \to Y \text{ homs s.t } f(h(s)))=k(s) \ \forall \ x \in X.$

Then f(h(X))=k(X)=X and $f^{-1}(f(h(X)))=f^{-1}(X)=Y$, assume $\overline{X}=h(X)$.

It is clear that \overline{X} + ker(f) $\subseteq Y$.

Assume $y \in Y$ then $f(y) \in f(\overline{X}) \Longrightarrow f(y) = f(x)$ for some $x \in \overline{X}$.

y=x+j or x=y+j(Y) is semisubtractive), in any case $j \in \ker(f)(X)$ is cancellative). that is, y=x+j or y=x-j ($\ker(f) \subseteq V(Y)$). Hence $y \in \overline{X} + \ker(f)$.

Therefore $Y = \overline{X} + \ker(f)$, where $\overline{X} = h(X)$, and f(Y) = X,

then \overline{X} is e-piequivalent to X.

Proposition3.3: Assume X is a semi-module; consider the following statements:

- (1) For every surjective homs $f: Y \to X$; $Y = \overline{X} + \ker(f)$ where \overline{X} is a homomorphic image of X (Hence \overline{X} is epiequivalent to X).
- (2) \exists a projective semi-module F s.t F= $\mathcal{M}+K$ where \mathcal{M} is a homomorphic image of F/K and X is epiequivalent to \mathcal{M} (Hence \mathcal{M} is e-piequivalent to F/K.
- (3) \exists a projective semi-module F and $g \in End(F)$ s.t $g^2(F) = g(F)$ and X is e-piequivalent to g(F).
- (4) \exists a projective semi-module F and f, $g \in End(F)$ s.t $f^2h=f$ and X is e-piequivalent to f(F).

Then: $(1) \Longrightarrow (2)$, $(2) \Longrightarrow (3)$ and $(3) \Longrightarrow (4)$

Proof:

(1) \Rightarrow (2): By (1), if we consider X as a homomorphic image of a free semi-module

say F, (which is projective) and f: $F \rightarrow X$ is a surjective hom then,

 $F=\overline{X}+\ker(f)$, put $\overline{X}=\mathcal{M}$ and $\ker(f)=K$, $X=f(F)=f(\mathcal{M})+f(K)=f(\mathcal{M})+0=f(\mathcal{M})$ then, X e-piequivalent to \mathcal{M} . On the other hand $F/\ker(f)\cong X$, so \mathcal{M} e-piequivalent to F/K.

Volume 18, No. 3, 2024

ISSN: 1750-9548

(2) \Longrightarrow (3): Assume (2) holds, assume $F = \mathcal{M} + K$, where F is projective, \mathcal{M} is e-piequivalent of X and X epiequivalent of F/K. Take γ : $F \to F/K$ the natural map,

 α : F/K $\rightarrow \mathcal{M}$ a surjective hom (since \mathcal{M} e-piequivalent F/K).

Assume $g = \alpha \gamma$: $F \rightarrow \mathcal{M} \leq F$, then $g \in End(F)$.

Now, $g(F)=g(\mathcal{M})+g(K)$, where $g(K)=\alpha(\gamma(K))=\alpha(\overline{0})=0$.

So, $g(F)=g(\mathcal{M})=\mathcal{M}$, hence $g^2(F)=g(\mathcal{M})=g(F)$.

(3) \Longrightarrow (4): Put f=g in (3) and h=1_F.

Theorem 3.4: Assume X is a semi-module, then the following are equivalent:

- (1) \exists a projective semi-module F and hom, f:F \rightarrow X, h:X \rightarrow F s.t fh(X)=X
- (2) \exists a projective semi-module F and f, $g \in End(F)$ s.t $f^2h=f$ and X is e-piequivalent to f(F).
- (1) \Rightarrow (2): Assume F is projective semi-module and g:F \rightarrow X, k:X \rightarrow F

Be hom s.t g(k(X))=X...(*)

Note that gk is onto, so g is onto take $\alpha = gkg: F \rightarrow X$

which is surjective.

Consider the diagram, since F is projective

$$\exists h: F \rightarrow F \text{ s.t } \alpha h = g \dots (**)$$

Take $f=kg\in End(F)$, then:

$$f^2h = kgkgh = k\alpha h = kg = f by(***)$$

Also, f(F)=k(g(F))=k(X), then

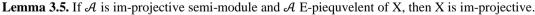
 $k:X \to k(X) = f(F)$ is surjective and g(f(F))=g(k(X))=X by(*)

So $g:f(F) \rightarrow X$ is surjective, then

X is e-piequivalent to f(F).

(2) \Rightarrow (1): Assume k:X \rightarrow f(F) and g: f(F) \rightarrow X be surjective hom.

Assume j=gf:
$$F \rightarrow X$$
, then $j(k(X))=gf(f(F))=gf^2(F)=gf(F)=j(F)=X$.

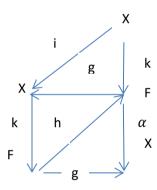


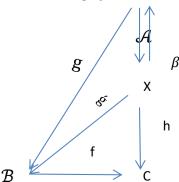
By assumption, there exists

 $\alpha: \mathcal{A} \longrightarrow X$ and $\beta: X \longrightarrow \mathcal{A}$ are surjective

Where \mathcal{B} , C are any two semi-modules,

f a surjective map and h is a hom.





Volume 18, No. 3, 2024

ISSN: 1750-9548

Since \mathcal{A} is im-projective, \exists

$$g: \mathcal{A} \to \mathcal{B} \text{ s.t } f(g(\mathcal{A})) \supseteq h(\alpha(\mathcal{A})) = h(X).$$

Assume $\acute{g}=g\beta$. Then $f(\acute{g}(X))=f(g(\beta(X)))=f(g(\mathcal{A}))\supseteq h(X)$. Therefore

X is im-projective.

Theorem 3.6:

Assume X is a semi-module. If for every projective semi-module Y and

surjective hom, f: $Y \rightarrow X$, we have $Y = \overline{X} + \ker(f)$ where

 $\overline{X} \equiv X$, then X im-projective semi-module.

Proof: Consider the diagram. By assumption

 $Y = \overline{X} + \ker(f)$ where $\overline{X} \equiv X$, since Y projective

semi-module then, then $\exists h: Y \rightarrow \mathcal{A}$

hom s.t fh= gk but α =hi, then

$$f(\alpha(\overline{X})) = f(h(\overline{X})) = g(k(\overline{X}) + k(\ker(k)) = g(\overline{X} + \ker(f)) = g(Y) \supseteq_{\mathfrak{S}(X)}.$$

Therefore \overline{X} is im-projective, since $\overline{X} \equiv X$ by (Lemma 3.5.)

X is im-projective.

<u>Proposition.3.7.</u> If X is an im-projective cancellative semi-module, then there exist elements $\{x_i: i \in I\}$ in X and homs $\{q_i: i \in I\}$ in Hom(X, \mathcal{R}) s.t for each $y \in X \exists s \in X$, depending on y, s.t $y = \sum x_i q_i(s)$ and $q_i(s) = 0 \forall$ but finitely many $i \in I$.

Proof: Since X is im-projective, then by (Theorem.3.1.(2)), take F free(projective) semi-module with f: $F \rightarrow X$ surjective and h: $X \rightarrow F$ hom, then fh(X)=X......(1). Assume y in X from(Theorem.3.1.(3)) $\exists s$ in X s.t fh(s)=y. Then h(s) in F, then $h(s)=\sum r_it_i$ where $\{t_i: i \in I\}$ is a basis for F and r_i In the semi-ring \mathcal{R} .

Then $y=fh(s)=f(\sum r_it_i)=\sum r_if(t_i)=\sum q_i(s)\ x_i$, (take $f(t_i)=x_i$) where $\{x_i:i\in I\}$ } is a set of generators for X, $r_i=q_i(s)$ where $q_i:X\to\mathcal{R}$ and defined by $q_i(x)=c_i\ \forall\ x\ in\ X$ where $h(x)=\sum c_it_i$ and c_i in \mathcal{R} .

Lemma 3.8. assume \mathcal{R} be a semi-ring , $x \in \mathcal{R}$, then

- 1) If $\mathcal{R} = \mathcal{R}x + \operatorname{ann}_{\mathbb{R}}(x)$, then $\mathcal{R}x = \mathcal{R}x^2$
- 2) If \mathcal{R} is cancellative, semi-subtractive, and $\operatorname{ann}_R(x) \subseteq V(\mathcal{R})$ with $\mathcal{R}x = Rx^2$ then $\mathcal{R} = \mathcal{R}x + \operatorname{ann}_R(x)$.

Proof(1): Clear

Proof(2):

 $\mathcal{R}x = \mathcal{R}x^2$ implies $x=tx^2$ for some $t \in \mathcal{R}$, since \mathcal{R} is semisubtractive, then $\exists h \in \mathcal{R}$ s.t 1=tx+h or 1+h=tx. Multiplying by x from right, and using cancellation property by cased ring $x=tx^2$, we get $t \in ann_R(x) \subseteq V(\mathcal{R})$.

Hence, we can write $1=tx \mp h \in \Re x + ann_{\mathbb{R}}(x)$.

Therefor $\mathcal{R} = \mathcal{R}x + \operatorname{ann}_{\mathcal{R}}(x)$.

Volume 18, No. 3, 2024

ISSN: 1750-9548

Proposition 3.9. Assume X is a cyclic \mathcal{R} -semi-module. Then X is im-projective if and only if X is epiequivalent to a principal left ideal \mathcal{R}_X for some $x \in \mathcal{R}$ such that

 $\Re x = \Re x^2$.

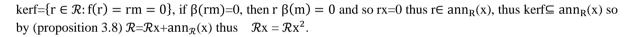
Proof: Assume that $X=\mathcal{R}m$ be im-projective, $f:\mathcal{R}\to X$ define as f(r)=rm. Then f is surjective, hence $f\beta(X)\supseteq X$ and $f\beta(X)=X$, then

$$\beta(X) = \Re x [x = \beta(m)]$$
 and $f\beta(X) = X$, then $f(\beta(Rm)) = \Re (f(\beta(m)))$

= $\Re x$ m, So $\Re m$ = $\Re x$ m on the other hand $\beta(X)$ is a homomorphic

image of X. Therefore, X is e-piequivalent to $\beta(X)$

which is an ideal of \mathcal{R} . $\beta(X) = \beta(\mathcal{R}m) = \mathcal{R}\beta(m)$ if $\beta(m) = x$, then $\beta(X) = \mathcal{R}x$.



Conversely, Assume that X is e-piequivalent to $\Re x$ where $\Re x = \Re x^2$.

Assume $g: \mathcal{R} \to \mathcal{R}$ define as g(r) = rx, then $g \in \operatorname{End}_{\mathcal{R}}(\mathcal{R}_{\mathcal{R}})$ and $g^2(\mathcal{R}) = \mathcal{R}x^2$ that is $g(\mathcal{R}) = g^2(\mathcal{R})$, where $\mathcal{R}_{\mathcal{R}}$ projective semi-module, and X is e-piequivalent to

 $g(\mathcal{R})=\mathcal{R}x$, then by(Lemma 3.5), (Theorem 3.4) and (Theorem 3.1)

X is im-projective.

<u>Corollary .3.10.</u> Assume \mathcal{R} be a semi-ring with $x \in \mathcal{R}$ s.t $\mathcal{R}x$ is a maximal left ideal. If $\operatorname{ann}_{R}(x) \nsubseteq \mathcal{R}x$, then $\mathcal{R}x$ is im-projective.

Proof: by assumption, we have $\mathcal{R} = \mathcal{R}x + \operatorname{ann}_{R}(x)$. By 3.10(1) $\mathcal{R}x = \mathcal{R}x^{2}$. By 3.9 $\mathcal{R}x$ is im-projective.

Corollary .3.11.

If R is a p.p. semi-ring (every principal left ideal is projective), then every cyclic im-projective semi-module is e-piequivalent to a direct summand of \mathcal{R} .

<u>Proof:</u> Assume X be cyclic \mathcal{R} .semi-module and im-projective, then by 3.9 X is e-piequivalent to \mathcal{R} x for some $x \in \mathcal{R}$ with $\mathcal{R}x = \mathcal{R}x^2$.

By assumption $\mathcal{R}x$ is a projective; hence $\mathcal{R}x$ is a direct summand of \mathcal{R} (since

 $\mathcal{R} \to \mathcal{R}x$; r \mapsto rx is surjective implies kerf \leq^{\oplus} R[3].

 $\mathcal{R}/\ker f \cong \mathcal{R}x$ and $\mathcal{R}=I \oplus \ker f$ for some $I \leq \mathcal{R}$ implies $\mathcal{R}/\ker f \cong I$ implies $\mathcal{R}x \cong I$ implies $X \equiv I \leq^{\oplus} \mathcal{R}$.

References

- 1- R. P. Deore, A Note on Projective Semi-modules, Int. J. Contemp. Math. Sciences, Vol. 3, 2008, no. 26, 1269-1272.
- 2- Tsiba JR, Sow D. On Generators and Projective Semi-modules, Int J Algebra. 2010Sep;4(24):1153-1167.

Volume 18, No. 3, 2024

ISSN: 1750-9548

- 3- J. S.Golan, The Theory of Semi-ring s with Applications in Mathematics and Theoretical Computer Science, Pitman Monographs and Surveys in Pure and Applied Mathematics No. 54, Essex, England, 1992.
- 4- Kareem A.L.Alghurabi, Asaad M.A.Alhossaini, Radical Projective Semi-module, has been sent to publication.
- 5- George Nadareishvili, On Projective Semi-modules, Iv. Javakhishvili Tbilisi State University faculty of exact and natural sciences, master degree thesis mathematics, Tbilisi -2011
- 6- S. N. Il'in Kazan, Direct Sums of Injective Semi-modules and Direct Products of Projective Semi-modules Over Semi-ring s, December 30, 2008.
- 7- Huda Mohammed J. Al-Thani, Projective semi-modules, Department of Mathematics and Physics, Faculty of Arts and Sciences, University of Qatar, Doha Qatar, 16 May, 2011.
- 8- G. F. Birkenmeier, Modules which are E-piequivalent to Projective Modules, act a Universities Carolina mathematical physical, 30 March 1983.