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Abstract -In image processing, the noticeable variations of the image can be found using
the edge detection process. This edge detection process facilitates to identify placement
and edges of an object. The Sobel edge detection process is preferred since it is simple
and more noise immune. Sobel edge detection calculates gradients of a pixel in horizontal
and vertical directions concerning neighboring pixels. The gradients absolute quantities
are computed, added, and matched to a threshold for finding whether the pixel is an edge
pixel or not. In this paper, the Sobel edge detection system VLSI architecture is designed
which consumes less power by using the arithmetic blocks like Brent Kung adders. The
source image of different resolutions is taken to perform Sobel edge detection and
implemented using various FPGA devices by analyzing power dissipation, delay and
device utilization summary. Then, simulation, synthesis processes are performed and
finally, power analysis is performed using XPower Analyzer of Xilinx ISE software.
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1 Introduction

The 1Cs manufactured for several applications are developed using VLSI design flow. In the design flow, there
are various levels of design such as system level, algorithmic level, architecture level, gate level, circuit level,
layout level, etc. The architecture level is a very important step for designing different modules in the application.
The VLSI architectures are developed for obtaining high speed, low power dissipation, less area, and complexity.
Edge detection is a significant method in the computer vision field for object detection. In edge detection, the
edge pixels are extracted using the difference in the brightness level of the pixels. These edge pixels are the
boundaries for the detected object in the image.

The various edge detection methods are Prewitt, Canny, Roberts Cross, Differential, Sobel, etc. (Neoh et al. 2005)
Prewitt edge detection uses a discrete differentiation operator to perform the image gradient for detecting the
edges. Canny edge detector performs five process algorithm to detect the edges. Roberts Cross edge detection
performs the sum of squares to find the difference between neighbor pixels. Differential edge detection performs
the differential method of second-order derivative for detecting pixel edges. Sobel edge detection performs
convolution of the image pixels with a kernel matrix to compute the gradients in vertical and horizontal directions,
absolute gradients, sum of absolute gradients, and then compare with a threshold to find the pixels, which form
the edge of an object.

In this paper, the Sobel edge detector is used instead of other edge detection methods, due to its simplicity and
being less immune to noise. The edge detection system developed using hardware such as an FPGA, is more
suitable for real-time applications since it has high performance, low power dissipation, less area, etc. Nowadays,
power dissipation is considered an important factor for developing any real-time system, particularly for battery-
operated systems. Low power architecture is proposed for developing a Sobel edge detection system in this paper.

2 Literature Review
For obtaining high performance, many VLSI architectures are specified for computer vision. These architectures

are implemented using GPU, ASIC, and FPGA. The ASIC implementation offers high speed and low power but
more design time. The GPU implementation achieves high performance with greater clock speed, but consumes
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more power and is less hardware flexible. So, nowadays FPGA is preferred for the development of computer
vision devices (Lim et al. 2013). Parallel architectures are used for implementing serial algorithms for increasing
the speed and since the FPGA has lower clock frequencies, the power consumption is also less. There are a few
challenges for designing these architectures in FPGA. The hardware components such as memory, 10Bs, LUTs
are limited in FPGA, which have to be fit for computer vision applications (Bailey et al. 2011).

Nowadays, electronic gadgets operate on batteries, which require more battery charge and life. To satisfy these
requirements, power dissipation is very important parameter in the design of an Integrated Circuit (IC) in these
electronic gadgets using CMOS VLSI technology. If low power dissipation is achieved, then battery consumption
will also be reduced. Before discussing the methods of low power dissipation, the cause of power consumption in
CMOS technology have to be examined. There are three sources of power dissipation, i.e., leakage (static) power,
short-circuit power, and dynamic (switching) power (Chandrakasan et al. 1995). Whenever the system/circuit is
in idle mode, then the power dissipated is static, which depends on the leakage current that occurs due to the flow
of minority carriers in the sub-threshold region. The short circuit power occurs when current flows directly from
the supply to the ground. The dynamic power dissipation occurs whenever the system/circuit signals change.
The power optimization methods at the system level are low-frequency clocks, off-chip components like ROM,
RAM integration, etc. At the algorithm level, minimizing the no. of operations, conditions and loop iterations will
reduce the power dissipation. Parallel, pipelining, arithmetic architectures are used to minimize power dissipation
at the architecture level. To optimize the power in logic or gate level, switching activity reduction, clock, and bus
loading optimization are proposed. At the transistor level, the techniques used to minimize the power dissipation
are transistor sizing, multi-threshold voltages, etc. If the methods like device scaling, optimization in placement,
and routing are applied for device level, then low power dissipation is obtained. In this paper, architecture level
optimization of power dissipation is proposed by using low-power arithmetic blocks for implementing a Sobel
edge detection system.

Several VLSI architectures are proposed Sobel edge detection by various researchers, for improving the
performance. In Abbasi et al. 2007, Sobel edge detection was developed in FPGA, which lacks simplicity and
takes more delay to execute. Later in Girish et al. 2014, the architecture has modified, which has less delay when
compared to Abbasi et al. 2007. Stochastic computing is proposed for implementing Sobel edge detection
(Hounghun et al. 2019). Sobel edge detection has been developed using modified architecture and implemented
in FPGA, which has fewer computations, parallelism, etc. (Halder et al. 2012) The reduction of complexity in the
Sobel edge detection algorithm is based on parallel architecture in Khalid et al. 2012.

Pipeline architecture was presented in Nausheen et al. 2018, for developing Sobel edge detection. Different
FPGAs are used for implementing Sobel edge detection. (Osman et al. 2010) The pipelining architectures are
proposed to implement a Sobel edge detection algorithm and then displayed using VGA (Video Graphics Array)
(Rajesh et al. 2012). The improved processor architecture is employed in implementing Sobel edge detection
(Vanishree et al. 2013). The performance of Sobel edge detection has increased by reusing the parallel architecture
of FPGA. (Taslimi et al. 2020) The area and power dissipation are also reduced in this hardware implementation.
Most of the architectures are not optimal, since they may improve speed but not reduce power dissipation (Rao,
K. M et.al. 2024).

3 Methodology
The source image in pixel matrix form as shown in Fig. 1(a), with a given resolution, is taken and the gradient is

determined by considering the neighboring points of an image pixel and 3x3 kernel matrices in the horizontal and
vertical direction as shown in Figure 1(b) and 1(c) respectively (Vasimalla, Y et.al 2023).

PO | PI | P2 110 +1 -1[-2 -1
P3| P4 | PS5 210 +2 01010
P6 | P7 | P8 -1 10 +1 +1]+2 |+1

(a) (b) (c)
Fig. 1 (a) Source image pixel matrix, (b) Kernel matrix in the horizontal direction, (c) 3x3 kernel matrix in the
vertical direction

The gradients Gy and Gy are determined by performing convolution operation of source image pixel matrix with
the kernel matrices, which are also known as convolution masks, in the x-direction (horizontal) and y-direction
(vertical) respectively. Gy and Gy are computed using Equations (1) and (2) respectively.

Gx= ((P6 - PO) + 2(P7 - P1) + (P8 - P2)) 1)

Gy=((P2 - PO) + 2(P5 - P3) + (P8 - P6)) (2)

Where, PO, P1, P2, P3, P5, P6, P6, P7, P8 are the neighboring pixel of the image pixel P4, to which the gradient
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has to be calculated. The absolute values of the gradients Gx and Gy are obtained from the calculated gradient of
a pixel. The sum of these absolute values of the gradients, abs_Gx and abs_Gy is computed, as shown in Equation
(3).

Sum = abs_Gy + abs_Gy ?3)

Now, the sum gradient is compared with some default threshold value, by which the image pixel P4 is decided
whether it is an edge pixel or not. If the threshold value is less than the sum gradient, then the image pixel P4 is
an edge pixel and if it is more, then image pixel P4 is not an edge pixel (Ramaiah, V. S et. al 2021).
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Fig. 2 Gradient calculation architecture using Brent Kung Adders
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Fig. 3 Edge Pixel detection architecture

In this paper, the low power VLSI architecture of Sobel architecture is presented, which calculates the gradient
values, Gy in X-direction, Gy in Y-direction, using the input source image pixels PO to P8, 2°s compliments, 1-bit
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shifters and Brent-Kung adders, as shown in Fig. 2.

The intermediate signals d2, dO, d3, d6, d1 are generated by performing 2’s compliment of source image pixels
P2, PO, P3, P6, and P1 respectively. The intermediate signals S1 to S6 are the sum outputs of the six Brent—Kung
adders (Vadlamudi, M. N et.al 2024). Then, S2 and S5 signals are shifted 1-bit left to obtain the signals LS2 and
LS5 respectively (Saikumar, K et.al 2023).

Finally, the gradient value Gy is computed by adding the signals S4, LS5, S6 and gradient value Gy is computed
by adding the signals S1, LS2, S3 respectively. Fig. 3 shows the Edge Pixel detection architecture, in which the
absolute values abs_Gy, abs_Gy of horizontal and vertical gradients, are obtained using 2:1 Multiplexer blocks
and then “sum” signal is obtained by adding abs Gy and abs_Gy. Finally, the “sum” signal is compared with
threshold (hexadecimal value FF) using multiplexer to find whether it is an edge pixel or not and 8-bit “out” edge
detected signal is generated.

The low power arithmetic block such as Brent—Kung adder is presented to implement Sobel edge detection. The
Brent—Kung adder can be derived from Parallel Prefix Adders (PPA), where switching activity is minimized by
parallel computation of carry signals using generate and propagate signals (Brent et al. 1982), which is shown in
Fig. 4.

§1.1) A1)
| Hoo1_

Fig. 4 8-bit Brent—Kung adder

The entire process given in Fig. 5 shows the implementation flow chart of Sobel edge detection. Source images
with different resolutions are taken, and the pixels are extracted as hexadecimal values, which are given as an
input text file to Xilinx ISE Software.

In this software, Verilog HDL is used for describing the Sobel edge detection algorithm, whose steps are given
below.

Step 1: Initialize the module with pixel values PO to P8, clock signals as inputs, and “out” signal as output.

Step 2: Declare the reg variables G, Gy, abs_Gy, abs_ Gy, Sum.

Step 3: Declare the sum and carry signals for Brent-Kung Adder as S1, S2, S3, S4, S5, S6.

Step 4: Calculate the sum and carry signals for Brent-Kung Adder using the standard expressions.

Step 5: Now, the clock signal is used for synchronizing the further steps.

Step 6: The sum and carry signals obtained in Brent-Kung Adders are used to calculate Sobel mask Gy (horizontal
direction gradient) and Gy (vertical direction gradient).

Step 7: Find absolute values of Gx and Gy, i.e. abs_Gy and abs_Gy.

Step 8: After adding abs_Gx and abs_Gy, the Sum signal is obtained, which is tested for an edge pixel.

Step 9: The sum signal is compared with a threshold, if it is greater, then that pixel is an edge and else it is not an
edge pixel.

The simulation process is performed after the development of Verilog HDL code. The edge and non-edge pixels
generated during the simulation is converted into text file and converted to edge detected image using MATLAB.
FPGA device utilization summary, delay is analyzed during the synthesis process. The power dissipated is
analyzed for various clock frequencies and source image resolutions using XPower tool of Xilinx ISE.
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Fig. 5 Sobel edge detection implementation flow chart

Power Analysis

4, Results and Discussions

The pixels PO to P8 represented in hexadecimal values are taken from a source image of different resolutions and
are given as input to the Verilog HDL code, described from the algorithm steps given above. After that, the
simulation process is performed and resultant waveforms are shown in Fig. 6. “out” signal value determines
whether it is edge pixel or not.

Fig. 6 Simulation waveforms of Sobel edge detection

1315



International Journal of Multiphysics
Volume 18, No. 3, 2024
ISSN: 1750-9548

pO(7:0) | |__out(7:0)
p1T:0)_|
p2(7:0) |
p3(7:0) |
pS(7:0) |
pe(7:0) |
pPr(7:0) |
pB(T:0) |
clk |

h 4
Fig. 7 Schematic of Sobel edge detection

Next, synthesis process is performed using the FPGA device 6VLX240TL, in which the RTL (Register Transfer
Level) schematic information is shown in Fig. 7.

Also, power analysis, delay and device utilization are performed for the Sobel edge detection implemented using
different FPGASs, which is shown in Table 1. The power dissipated using Spartan6é FPGA is less when compared
to other FPGAs since it has typical supply

voltage of 1.0V. The delay is minimum for ZynQ-7000 and Kintex7 FPGASs since the architecture consists of
fastest logic fabric. The device utilization of the FPGAs is almost same, when implemented sobel edge detection,
as shown in Table 1.

Table 1 Comparison of power dissipation, delay and device utilization for FPGAs implementing Sobel edge
detection

LUT

Name of . . Power
the :::II(')p ElI_;EI:'es D((ra]lsa;y Consumption
FPGA op (MW)
pairs
Virtex6 167 167 5.93 79
Virtex6
low 167 167 7.206 68
power
Virtex4 224 127 10.342 62
Virtex5 151 151 9.6 48
Spartan
3A 234 132 17.721 39
ZynQ-
2000 167 167 5.791 31
Kintex7 167 167 5.791 31
Spartan6 167 167 13.017 6
Spartan6
low 167 167 20.484 8.21
power

Table 2 Comparison of power dissipation results

Clock | Power
References Frequency m;%e Dissipation
(MHz) (mW)
Rajesh et
al. (2012) 148.133 103.13
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Khalid et
al. (2012)

Taslimi et
al. (2020)

300 640x480 27.31

129 512x512 8.45

Brent

Kung

Adder
(Proposed)

129 512x512 8.21

Table 2 shows the comparison results of power dissipation, in which the proposed architecture of the Sobel edge
detection consumes less power (8.21mW) when compared to other architectures of Sobel edge detection with
clock frequency 129MHz due to the usage of brent kung adders in the proposed architecture of Sobel edge
detection for the source image resolution of 512x512.
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Fig. 8 Comparison between power dissipation and clock frequency for different image resolutions

Figure 9: (a) Source image (b) Sobel gradient image (c) Edge detected image
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Sobel edge detection is implemented for source images with different resolutions such as 10x40, 128x128,
320x240, 512x512 etc. and graphs are obtained comparing input clock frequency and output power dissipation as
shown in Fig. 8 (a), (b), (c), (d).

From the graphs given Fig. 8, it is observed that the power dissipation increases as the clock frequency increases
for different resolutions of source images. The power dissipation of 512x512 image resolutions slightly high when
compared to other image resolution due to processing of more no. of pixels and hence increased operations.

The image shown in Fig. 9(a) below represents the original image. After applying gradients in horizontal and
vertical directions, the original image changes to Sobel gradient image as shown in Fig. 9(b). Finally, the edge
detected image shown in Fig. 9(c) is obtained after performing Sobel edge detection by finding the absolute
gradient and comparing with the given threshold value to obtain edge detection pixels.

5 Conclusion

Low-power architecture is presented for developing and implementing the Sobel edge detection system in this
paper. Brent Kung adders are used in the hardware architecture, which reduces the humber of carry calculations
in consecutive stages, thereby reducing the switching activity and power dissipation. The Sobel edge detection
system was developed in MATLAB, Xilinx Software and in which a power of 8.21mW was dissipated. Future
work will include, incorporating low power design along with high-speed techniques and comparing the Sobel
edge detection with other edge techniques like Canny, Robert Cross, Prewitt Edge detection.
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