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Abstract 

Consensus measures are commonly used in research and typically rely on Likert 

scales, focusing on the 5-point Likert scale. One of the main attributes of this scale is that it 

is designed to work for any size. However, many of the researchers used the 5-point Likert 

scale. While some researchers have attempted to generalize consensus measures to work 

in two-dimensional space, this approach remains complex and challenging. In this work, we 

generalize the measure of consensus to work for seven Likert scales using the 

computational geometry of four-dimensional concepts. A numerical example and some 

related concepts are provided. 

Keywords: Optimization, consensus measure, Likert scale, 4 – 4-dimensions, probability.   

 

1. Introduction 

The fact that in many cases, it is not advantageous for the society at large if the decision is imposed by a subset 

of people—even if this subset includes more than half of the collective—as there may be other options that the 

other members more accept and that increases the level of satisfaction overall—means that consensus-based 

decision-making is crucial for achieving good group performance and, as a result, great individual satisfaction  [4].  

There are two main challenges in measuring the consensus within the seven Likert scales. Firstly, as in many 

other fields of study, the measure of consensus depends on opinions, feelings, or beliefs. That means we do not 

have the correct answer that can be "exact" to get or to compare with. Secondly, the difficulties of working in more 

than two dimensions are directly proportional to higher dimensions [11]. In other words, there are more challenges 

when the work depends on opinions and is in the 4-D space [5, 7]. Various researchers many years ago worked to 

overlap the way of turning opinion and human thought into numbers [6]. Scales are the most common methods or 

approaches for changing the ideas feeling to numbers. Likert, Guttman, and Borg scales were developed for this 

purpose [2, 10]. Initially, the Likert scale data was used in two different ways: interval and ordinal [17].  

This work depends on collecting the data on the ordinal Likert scale. Even though the five-Likert scale is the 

most used, the seven-Likert scale is also used frequently in many studies. Seven-point Likert scale is more efficient 

than the five-point scale [14]. More than one researcher believes that the more freedom you give the users in the 

survey, the more accurate results you can get [1]. 
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Although finding an accurate measure in two or three-dimensional space has some difficulties, there are several 

works on measuring consensus in two or three-dimensional space [16]. One of the most common methods is based 

on clustering algorithms, where the data points representing the group members are clustered together based on 

their similarity in a two or three-dimensional space [8]. For instance, in social network analysis, consensus can be 

measured by analyzing the clustering of nodes within a network [3]. Network nodes can be visualized in two-

dimensional or three-dimensional space to show their connection. The level of clustering within the network can 

be assessed using techniques like modularity, which gauges how nodes are organized into communities  [9]. 

Consensus-based decision-making is better for achieving group satisfaction than decisions imposed by a 

majority. However, measuring consensus can be challenging, especially when dealing with subjective data like 

opinions on a 7-point Likert scale. While there are established methods for measuring consensus in 2 or 3 

dimensions, these methods become more complex in higher dimensions. The paper then explores existing 

techniques for measuring consensus in different fields, including social network analysis, geographical information 

systems, and game theory. These techniques examine how data points representing individuals or groups are 

clustered or distributed in their respective spaces[18]. 

Another way to gauge agreement in two or three spaces involves examining data. For instance, consensus can 

be assessed in geographical information systems by studying how data points from regions are distributed [12]. 

One method is to calculate autocorrelation, which determines the similarity between data points. Moreover, in game 

theory, consensus can be evaluated by studying the equilibrium positions of games played in two or three spaces  

[13]. These equilibrium points signify the stage where all players reach an understanding regarding the game's 

outcome. 

 

2. Mathematical Base 

For n =  7, it is recalled that the set D(μ, σ2) can be defined by: 

∑ ij ∙ pi
7
i=1 = j2−j ∙ μj + j2−j(k − 1)σ2  , k = 0,1,2 

 

Without losing generalizing, we replace p4 = x, p5 = y, p6 = z, and p7 = w, then we can determine the three 

equations above for pi Where i = 1,2,3 in terms of x, y, z, and w.  .  

[
2p1

p2

2p3

] = [
1 1 −5

−1 −1 4
1 1 −3

] [
σ2

μ2

μ
] + [

−2 −6 −12 −20
3 8 15 24

−6 −12 −20 −30
] [

x
y
z
w

] + [
6
3
2

]           (2) 

Since all the probabilities p
1

, p
2

, and p
3
, are positive and limitations of the subspace D(μ, σ2) can be specified 

by: 

[

x
y
z
w

] [
2 6 12 20
3 8 15 24
6 12 20 30

] [
≤
≥
≤

] [
1 1 −5

−1 −1 4
1 1 −3

] [
σ2

μ2

μ
] + [

6
3
2

]          (3) 

To simplify (3), let us define t, u, and r as below: 

 t = hm(σ2) =
σ2+μ2−3μ+2

2
 

u = u(μ) =
(μ−1)

2
             (4) 

r = r(μ) = max{2μ − 5, μ − 2, 0} 
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In the notation of (4), we can rewrite (3) as: 

x, y, z, w ≥  0. 

[

x
y
z
w

] [
2 6 12 20
3 8 15 24
6 12 20 30

] [
≤
≥
≤

] [
1 −1 2
2 −1 1
1 0 0

] [
t
u
r

]         (5) 

Consequently, D(μ, σ2) can be reduced to the set of all pairs (x, y, z, w) in the 4 −Dimensions space that 

satisfy (5). Depending on the symmetry of the means concerning the midpoint μ =  4, in the subsequent 

discussions, we will restrict the range of the mean to 1 ≤ μ ≤ 4. The leftover interval  (4 ≤ μ ≤  7) can be 

preserved as the symmetric reflection of 1 ≤ μ ≤  4. 

Since 1 ≤ μ ≤  4 and by using the statement of the variance boundaries for each given mean, see [1], we 

can calculate the boundaries of t (the minimum and the maximum) by substituting each end of variance of t =

h(σ2). In our case, for n = 7, to find max t (maxt) we have: 

maxt =  h(Uμ) 

            =  h((μ −  1)(7 − μ)) 

            =
−μ2 + 8μ − 7 + μ2 − 3μ + 2

2
 

=
5μ − 5

2
 

            = 5 (
μ − 1

2
) 

            = 5u 

Then, the minimum t can be obtained by substitute L1(μ), L2(μ), and L3(μ) only due to the similarity we 

mentioned above. So we have  mint = max{2m − 5, m − 2, 0} 

That will imply maxt =  hμ(Uμ) = 5u, and mint = hμ(Lμ) = r. Therefore, t = hμ(σ2) is a linear (one-to-

one) mapping of the interval [Lμ , Uμ] onto [r, 5u]. The inverse of t = hμ(σ2) is also a linear mapping of [r, 5u] 

onto [Lμ , Uμ] given by σ2 = hμ
−1(t) =  2t − μ2 + 3μ − 2. 

To find the area D(μ, σ2), solve (6) for w as follows: 

g1(x, y, z) =
1

10
([

1
−1
2

] [
t
μ

] − [
1
3
6

] [
x
y
z

]) , g2(x, y, z) =
1

24
([

2
−1
1

] [
t
μ

] − [
3
8

15
] [

x
y
z

]) , and g3(x, y, z) =

1

15
([

1
0
0

] [
t
μ

] − [
3
6

10
] [

x
y
z

])   

Since 1 ≤ μ ≤  4 by assumption, we have x ≥  0, and t ≥ r ≥ 2m − 5. These conditions imply. 

g2(x, y, z) − g1(x, y, z) =
1

120
([

−2
7

−19
] [

t
μ

] − [
3
4
3

] [
x
y
z

]) 

                                                    ≤
m − 4

20
≤ 0 

and that means we get g2(x, y, z) ≤ g1(x, y, z). Hence, we get the following set relationship. 

D(μ, σ2) =  D1(μ, σ2) − D2(μ, σ2) 

where  

D1(μ, σ2) = {(x, y, z, w)| g2(x, y, z) ≤ w ≤ g3(x, y, z), 0 ≤ x, y, z ≤ 1} 
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and 

 D2(μ, σ2) = {(x, y, z, w)| g1(x, y, z) ≤ w ≤ g3(x, y, z), 0 ≤ x, y, z ≤ 1} 

In other words, the volume between two hyperplanes D1(μ, σ2) and D2(μ, σ2) In 4 - dimensions space has been 

determined.  

 

3. The intersection in Four Dimension  

The work in four-dimensional space is more complicated and not straightforward to visualize than in two and 

three dimensions. However, to understand the way of working in four dimensions, one must first know exactly 

how it works in one, two, and three dimensions. The figures below are the shortest way to see how we can visualize 

the graph in all these dimensions. 

 

 

 

    (b)     (c) 

 zero dimension  one dimension   two dimensions 

 

 

 

 

 

 

    (d)      (e) 

   three dimension    four dimensions 

Figure (1) 

The graph in zero to four dimensions  

 

Theoretically, the four-dimensional space ℝ4  is the set of ordered quadruples of real numbers: 

ℝ4 = {(x, y, z, w): x, y, z, w ∈ ℝ} 

One of the new objects we need to know in four dimensions is a Hyperplane. A hyperplane in ℝ4 is the set of 

vectors s =  (x, y, z, w) that satisfy an equation of the form: 

ax + by + cz + dw = 0 

Where a, b, c, and d are not all zero fixed real numbers. Note that the general hyperplane is composed of vectors. 

v1, v2, v3, not lying in a common plane, orthogonal to the average vector n =  (a, b, c, d), which must be nonzero. 

The intersection of two hyperplanes: 

a1x +  b1y +  c1z +  d1w =  a2x + b2y +  c2z +  d2w =  0 

with non-symmetric normal vectors n1  =  (a1, b1, c1, d1)and n2 = (a2, b2, c2, d2) is a plane. For 

instance, 

(x =  0)  ∩ (z =  0) = {(0, y, 0, w):  y, w ∈  R} 

It is the yw − plane. 
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The intersection of any two planes in three dimensions is a line or plane, but the problem is different in four 

dimensions. The intersection of two planes in four dimensions usually, is a point 0. Imagine that, say, for example, 

a point on the yz − plane has x =  w =  0, while a point in the xw − plane has y =  z =  0, and that's mean the 

only mutual point is (0, 0, 0, 0).  

If we want to understand how all the points represent and work in four dimensions, let go now with more 

details using matrix concepts. Any point (x, y, z, w) in the intersection satisfies all equations in (4). In matrix 

languages, any point in the intersection should satisfy the matrix equation. 

Av =  0 

In other words, the intersection of four hyperplanes is the kernel of the matrix A, where. 

kerA = {v ∈ ℝ4 ∶  Av =  0} 

By using the definition of the kernel, we can now say the intersection of two planes, or four hyperplanes, is 

exactly one point when the kernel is trivial, i.e., kerA =  0. To be clearer, there are five possible dimensions for 

any intersection, for general 4 × 4 matrix A, of kerA =  0: 

kerA =  0    dim kerA =  0 

kerA =  a line      dim kerA =  1 

kerA =  a plane     dim kerA =  2 

kerA =  a hyperplane  dim kerA =  3 

 kerA = ℝ4         dim kerA =  4 

4. Computing Index of Agreement 

Once we determine the area of D(μ; σ2), the rest of the work is the numerical integration to get the measure 

of consensus. In [1], the consensus measure is stated as follows: 

Φ(σ2|μ) =  
∫ g(t)dt

τ
r

∫ g(t)dt
τmax 

r

    (*) 

Where: 

τ =  
1

2
 2 (σ2  + μ2 −  3m +  2), and    τmax  =  5u is the max t. 

Mushtaq and Darrah presented a new algorithm to find the index of disagreement [2]—the index's integrations 

determined using Simpson's method. Any numerical integration method can be used to get the integration value. 

This algorithm still works for any dimensions since, in the end, we only have the "hyper-volume" values 

representing a function in three dimensions. w =  f(x, y, z). Indeed, you can store all the volume (or hyper-

volume) values and then determine the curve fitting to this data using any curve fitting methods or software 

packages. Once you have the function that best fits with the data, take the integration from zero to one of your 

functions. Now, as we are done with the problem of how to play with our hyper–volume values, the rest of the 

work is to get the consensus by writing the algorithm steps of finding the index of disagreement. 

For a given mean μ and variance σ2, the following algorithm is used to determine the consensus values. 

Algorithm 

The inputs of this algorithm are mean μ and variance σ2. While the output is: the index of disagreement 

and the consensus value. 

i. If μ >  4, then μ =  8 − μ. 

ii. Set N. {N is any large number}. 
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iii. Determined 𝑡;  𝑢 𝑎𝑛𝑑 𝑟. 

iv.  Determined equation (*) using and numerical integration method, say 𝑃ℎ𝑖. 

v. 𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 = 1 − 𝑃ℎ𝑖. 

Note that the accurate result of the integration method plays an essential role in the result of the consensus measure. 

Moreover, it would help if you noticed that the technique should work with multi-dimension space. 

 

5. Numerical Example 

To ensure that all the theoretical steps work fine, we examined them using a real numerical example. The 

data used from random mean and variance values that could cover all cases of the mean and variance. All the 

results of the measure of consensus are for 𝑛 = 7. 

Table (1) shows the measure of consensus with selected values of mean 𝜇 close to the left end. At the same 

time, the variances are close to the minimum and maximum variance concerning this mean. Depending on the 

statement in [1], the minimum variance when 𝜇 = 1.1 is 0.19, while the maximum is 0.39. 

 

Mean 𝜇 Variance 𝜎2 Consensus 

1.1 0.09 1 

1.1 0.34 0.5 

1.1 0.59 0 

𝑇𝑎𝑏𝑙𝑒 1: 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑠 𝑤𝑖𝑡ℎ 𝑙𝑒𝑓𝑡 𝑒𝑛𝑑 𝑚𝑒𝑎𝑛 

 

Notice that these results are precisely the same when you have the mean 𝜇 = 6.9 due to the similarity of the 

mean and the variances.   

Table (2) offers the measure of consensus when the mean 𝜇 = 4, which is the mean in the middle of the mean 

range. The variances are the same as in case one, close to the minimum and maximum variance concerning this 

mean (𝜎2 = 0, 𝑎𝑛𝑑 𝜎2 = 9). 

Mean 𝜇 Variance 𝜎2 Consensus 

4 0.00 1 

4 4.50 0.52 

4 9.00 0 

𝑇𝑎𝑏𝑙𝑒 2: 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑠 𝑤𝑖𝑡ℎ 𝑚𝑖𝑑 𝑜𝑓 𝑚𝑒𝑎𝑛 

In the third table, we choose different random values to make sure that it will work in any number for mean 

form 𝜇 = 1 𝑡𝑜 𝜇 = 7 and any depends on variance values. 

Mean 𝜇 Variance 𝜎2 Consensus 

2.25 2.75 0.308 

4 2.25 0.875 

5.5 4.58 0.17 

𝑇𝑎𝑏𝑙𝑒 3: 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑚𝑒𝑎𝑛 𝑤𝑖𝑡ℎ 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑠 𝑣𝑎𝑙𝑢𝑒𝑠 
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Notice that all the results above are reasonable and acceptable, specifically if we compare these results with similar 

cases for 𝑛 =  5 in [2]. However, the comparison should be with consideration that for bigger 𝑛, the maximum 

value of the variance will not be the same. That means a different range of differences in each case. 

6. Conclusion 

The proposed four-dimensional approach offers a more flexible and adaptable method for measuring 

consensus across a range of Likert scales, which could have important implications for future research. Although 

working in more than three dimensions is problematic because it is more complicated, this paper applied the new 

consensus measure in four dimensions. Even though the base of the equations looks like the theoretical 

foundations in [19], it's so hard to try to generate the work to make it work for the seven Likert scales. 

Consequently, this work used a different approach to determine all the data in the above examples. To make sure 

that the results are accurate, two other programs were used. The first is in MATLAB, and the second is Visual 

Basic (VB).    
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