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Abstract 

As an integral part of the civil aviation network, the freight network is an indispensable and 

important channel in the logistics and transportation. As the construction of the cargo 

network continues to increase, the environment has become more complex. The 

challenges posed by its risks place higher demands on the robustness of the freight 

network. The improvement of network robustness, the establishment of preventive 

measures, and the stabilization of transportation network are the basis for health 

management and construction of aviation network. Therefore, in this paper, the 

robustness of the civil aviation air cargo network was deeply studied by combining the 

SCARA robot dynamics model. On the basis of the general situation of the development 

of the freight network, a basic understanding of the complex characteristics of the network 

structure was obtained. Then the robustness analysis provided support for the 

subsequent network optimization, and a robust controller was constructed using the 

dynamic model. Finally, the network state changes under random attack and selection 

attack were observed through simulation experiments. The simulation data has showed 

that the degree of change in the outer freight network after re-identification and 

optimization is very significant. The growth rates of the number of routes, average degree, 

network efficiency and clustering coefficient were 12.16%, 10.07%, 13.14% and 5.47%, 

respectively, the average path length also decreased by 4.63% due to the increase of 

isolated nodes. This shows that the optimal control under the SCARA robot dynamics 

model improves the overall robustness of the civil aviation air cargo network, which has 

important practical value for planning and improving the structure of the air cargo network, 

maintaining stable cargo transportation capacity, and improving logistics efficiency. 

Keywords: Network Robustness, SCARA Robot Dynamics Model, Air Cargo, Civil 

Aviation 

 

Introduction 

With the continuous expansion of the transportation industry and the rapid development of e-commerce, the 

status of civil aviation air freight in logistics and transportation is becoming more and more important. The 

cargo network can not only meet the growing demand for air transport, but also promote the in-depth 

development of civil aviation companies in the market, which plays an important role in the development of the 

huge development potential of air cargo. However, with the continuous construction of the transportation 

network, the radiation range of the air cargo network is becoming wider and wider, and the structure is 
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becoming more and more complex, and the corresponding risks also follow. It has seriously hindered the safe 

operation and healthy development of the freight system. Therefore, it is very urgent to improve the robustness 

of the civil aviation air cargo network and improve the network performance and operation status. At present, 

with the mature development of robot technology, the industrial robot market is constantly being developed. In 

practical applications, in addition to ensuring production efficiency, there are also other requirements for the 

accuracy of the robot. Among them, the SCARA robot can not only meet the high-efficiency requirements, but 

also have the advantages of flexibility, speed, and high repeatability. Therefore, it has developed in many fields 

of production. For example, it can be seen in professional fields such as medicine, computer control, and 

satellite navigation. On its basis, a dynamic model is established, which can effectively avoid external 

interference factors and reduce the uncertainty in the operation of the air cargo network. It is of great 

significance to ensure the normal and healthy development of cargo transportation. 

Air cargo occupies an important position in the transportation industry, and its network robustness research has 

always attracted the attention of many scholars. Malighetti P conducted an analysis of the robustness of the 

Asian aviation network and its configuration through graphical analysis and complex network metrics [1]. In 

order to improve the decision support capability of freight planning, Peng P evaluated the robustness of the 

global freight network in the latest automatic identification system data [2]. Gong Q identified the key drivers of 

China's civil aviation air cargo international trade through an augmented gravity model, and investigated its air 

freight network robustness using complex network analysis methods [3]. Chao C C, based on the air cargo LCL 

model, studied the impact of cargo network robustness and other factors on airline revenue, and effectively 

combined the types of air cargo to improve airline revenue [4]. Fu C divided the aviation network structure into 

self-healing structure and coupling structure, and abstractly analyzed and modeled the three growth mechanisms 

of aviation network robustness [5]. Donnet T identified and explained different governance models of the global 

aviation network from a resource perspective, and analyzed its network robustness and resources [6]. The 

development of civil aviation air cargo puts forward higher requirements for network robustness. Previous 

studies have not conducted in-depth research on control performance, and there are still some limitations in 

actual operation. The SCARA robot dynamics model can play a unique dynamic advantage in it.  

As an important product of the intelligent era, the SCARA robot dynamics model has extremely high research 

value. Anh H proposed a novel adaptive dynamics model control system for a highly nonlinear SCARA serial 

robot using PAM actuators, and demonstrated its performance advantages through experiments [7]. Izadbakhsh 

A used a SCARA dynamic model driven by a permanent magnet DC motor to reduce tracking errors and 

improve the stability of the network [8]. Popov V proposed a dynamic model for controlling a SCARA robot 

using body poses and in this way created a more efficient interface with the controlled robot [9]. In order to 

reduce the end position error when the robot performs repetitive motion tasks, Zhang T obtained the dynamic 

model of the SCARA robot through the Lagrangian equation, and designed an iterative algorithm for controlling 

the torque [10]. Luan F built the SCARA robot dynamics model by defining a set of auxiliary variables to avoid 

the use of joint acceleration signals due to slow convergence [11]. Liu H proposed an accurate and efficient 

SCARA robot kinematics calibration model for serial robot kinematics calibration of any combination of 

revolute and prismatic joints [12]. At present, the application direction of SCARA robot dynamics model in 

research is continuously expanded. However, the research on combining it with the construction of civil aviation 

air cargo network is not in-depth. In order to improve the robustness of the air cargo network, it is urgent to 

study the robustness of the civil aviation air cargo network based on the SCARA robot dynamics model.  

Based on the SCARA robot dynamics model, this paper deeply studied the robustness of the civil aviation air 

cargo network and conducted simulation experiments. Experimental data showed that with the increase of node 
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removal rate, the average path of the freight network was continuing to increase. When the node removal rate 

reached 35%, the average path length growth rate under random attack was 3.8%, and the growth rate under 

selective attack was 9.1%. In the core layer network optimization, the average path length under the dynamic 

model method was reduced by 3.44% and the average degree was increased by 7.76%. The clustering 

coefficient increased by 5.13%, and the route also increased by 8.11%. However, under the traditional method, 

the route and average degree only increased by 2.17% and 2.03%, the average path length decreased by 1.01%, 

and the network efficiency and clustering coefficient changed by only 4.49% and 2.62%. In the outer network 

optimization, the variation degree of the number of routes, average degree and network efficiency under the 

control method in this paper reached 12.16%, 10.07% and 13.14% respectively. Its average path length was 

reduced by 4.63%, and the clustering coefficient was improved by 5.47%. It can be seen that the freight network 

under the dynamic model control method was more robust.  

 

Air Cargo Network Robustness 

Overview of the Development of Civil Aviation Air Cargo Network 

The air cargo network is mainly composed of air cargo airports and cargo routes [13]. A functioning freight 

network can not only transport goods efficiently and conveniently, but also bring huge economic benefits. Under 

the background of consumption transformation and industrial structure upgrading, the rapid growth of 

e-commerce and express delivery industry has promoted the vigorous development of air cargo industry, which 

enables air cargo to better meet the cargo transportation needs of cargo owners. From the perspective of the 

capacity structure, air cargo is mostly transported by passenger aircraft in the form of cargo carried in the belly 

hold. Except for the decline in 2020 due to the impact of the epidemic, the overall trend of its cargo 

transportation volume is developing well, as shown in Table 1. 

 

Table 1. 2017-2021 civil aviation air cargo traffic 

Particular year 
Volume of transport(10,000 

tons) 
Growth rate(％) 

2017 708 4.8 

2018 741 4.6 

2019 764 3.1 

2020 682 -10.7 

2021 713 4.5 

 

Air cargo has a good development momentum, but there is also the problem of poor anti-risk ability. The 

network is easily interfered by a variety of factors, including weather, airport facilities and equipment failures, 

terrorist attacks, etc., and the airport after the interference is in a state of failure. The air route connected to the 

airport cannot operate normally, and the cargo cannot be transported. At the same time, it affects the normal 

operation of many adjacent airports, which causes a large amount of cargo in the cargo system to accumulate in 

the airport cargo area, reducing the efficiency and quality of cargo transportation. 

With the development of science and technology and the needs of society, the current air transportation network 

has developed from the round-trip and intercommunication of each node between independent cities to the 

overall high degree of sharing. It forms a complex network structure integrating openness, economy and society. 

The manifestations of its complex features are also diverse. This article summarizes it into four major aspects. 
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(1) Structural complexity 

There are various cargo nodes with different functions and different levels in the air cargo network [14]. This 

enables a large-scale, statistical network representation of the air cargo network. Hierarchical development is 

also a feature of the air cargo network. Cargo nodes and systems with different functions make the overall air 

cargo network show structural complexity, as shown in Figure 1. 

 

 

Figure 1. Network structure form legend 

 

(2) Node complexity 

The cargo functions carried by each node city in the air cargo network are different. The importance of the 

freight system varies from node to node, for example, belonging to different agencies or city groups, forming 

subgroups of various air freight systems that are differentiated and interconnected, with different freight 

volumes and different freight plans. This is manifested in the node complexity of the air cargo system, and the 

simple node topology model is shown in Figure 2. 
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Figure 2. Node simple topology model 

 

(3) Evolutionary complexity 

In the development process of the air cargo network, the linear increase of new nodes must be accompanied by 

the geometric multiple increase of routes, which makes the scale and density of the air cargo system expand 

rapidly. Whether it is the interconnection between local areas or the connection across areas, the development of 

the system presents dynamic complexity. It seems very random and disordered, but after careful analysis, it is 

found that the development of air cargo system has certain complex network characteristics. 
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(4) Operational complexity 

The operational status of each node in the air cargo network is uncertain. It may be due to internal system failure 

or external interference, the occurrence of large and small accidents is unavoidable, which first evolves into 

partial air cargo function failure. If the danger spreads along the complex network, it is more likely to cause the 

whole system to fail, which makes the freight balance, a state determined by the network security, showing 

dynamic complexity. 

Due to the nonlinear superposition of the manifestations of these complex factors, the air cargo network with 

complex characteristics has become increasingly difficult to control. 

 

Network Robustness 

The robustness of the freight network is an important part of analyzing whether the network can operate 

normally. How to analyze, optimize and improve the network has become an important work goal of many 

researchers. Robustness analysis of air cargo system network structure is mainly based on changing network 

nodes and introducing emergencies. For example, a navigable city is paralyzed due to human or non-human 

factors, the network is overwhelmed due to the huge freight volume, and so on. These contingencies determine 

to some extent the overall performance of the transportation network. 

When the element components that make up the network are accidentally attacked, the network state changes 

accordingly. The functional rupture of the network is caused, which can be seen intuitively from the network 

structure diagram, as shown in Figure 3. 

 

Attack

 

Figure 3. Comparison of network nodes before and after attack 

 

From Figure 3, it can be seen intuitively that the state of the system network changes due to the failure, and the 

affected nodes exit the normal operating system. In real life, the situation that the air cargo network is interfered 

and destroyed and affects its operation status is divided into random attack and selective attack. 

 

(1) Random attack 

Factors such as the operating conditions of internal and external facilities and weather in the air cargo system 

can easily affect the normal operation of the system, which in turn affects the normal transportation of the entire 

cargo network. The random damage caused by such non-subjective factors to the network is called a random 

attack, such as bad weather, etc. This kind of fault is generally less harmful, and many important nodes escaped 

this wave of obstacles because they were not affected. The network of systems can also recover quickly due to 

its lesser impact [15]. 
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(2) Select attack 

In addition to weather, facilities and equipment, air cargo can also be disturbed by subjective factors. Such 

attacks usually target critical nodes with high importance as the preferred targets. The more important the node 

is, the weaker the freight network's ability to complete cargo transportation after being attacked. This attack 

method is a selective attack. Because it is too late to prepare, it is suddenly affected. Moreover, it is often a 

global obstacle that occurs when important nodes are affected, as shown in Figure 4. 
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aircraft 3

Attack

Before After

 

Figure 4. Global barrier legend 

 

The air cargo network is scale-free and layered. In scale-free networks, there are often a few nodes that play an 

important role. Attacks on these key nodes seriously affect the robustness of the network. 

 

Network Robustness Based on Scara Robot Dynamics Model 

From the research on the complex characteristics and robustness of the civil aviation air cargo network, it can be 

seen that in the actual operation process, the development of civil aviation air cargo is indeed facing many 

difficulties and challenges. In order to ensure the safety of freight and the operation of stable network, this paper 

studies it on the basis of establishing the dynamic model of SCARA robot. 

In order to achieve high accuracy and a highly robust freight network, accurate dynamic models need to be 

established. The robot dynamics modeling methods mainly include Lagrange method, Newton-Euler method, 

Gauss method, etc. In order to better stimulate all the dynamic characteristics of the robot, the optimal excitation 

trajectory should be designed according to certain constraints and optimization methods. The identification 

results largely depend on the design of the identification trajectory. The estimated parameters obtained from the 

identification need to be tested with other trajectories. Comparing the theoretical torque obtained by the 

dynamic equation with the estimated torque obtained from the identification parameters, the correctness of the 

parameter identification is verified, and the dynamic model of the robot in actual work is obtained, which lays 

the groundwork for the subsequent design of the network robust controller. 

According to the dynamic model with 𝑛 links, the dynamic equation of the SCARA robot is established as [16]: 

 𝜏 = 𝐻(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝐺(𝑞)  (1) 

Among them [17]: 

 𝐻(𝑞) = [ℎ𝑖𝑗], ℎ𝑖𝑗 = ∑ 𝑡𝑟 (
𝜕0𝑇𝑖

𝜕𝑞𝑗
𝐼𝑖

𝜕0(𝑇𝑖)𝑇

𝜕𝑞𝑘
)𝑛

𝑖=𝑚𝑎𝑥(𝑗,𝑘)   (2) 
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𝐶(𝑞, 𝑞̇) = [𝑐𝑖𝑗], 𝑐𝑖𝑗 = ∑
1

2
(

𝜕ℎ𝑖𝑗

𝜕𝑞𝑘
+

𝜕ℎ𝑖𝑘

𝜕𝑞𝑗
−

𝜕ℎ𝑗𝑘

𝜕𝑞𝑗
) 𝑞̇𝑘

𝑛
𝑘=1   (3) 

𝐺(𝑞) = [𝑔1, 𝑔2, 𝑔3]𝑇 , 𝑔𝑖 = − ∑ 𝑚𝑗𝑔̅𝑇 𝜕0𝑇𝑖

𝜕𝑞𝑗
𝑟̃𝐶𝑗

𝑛
𝑗=1   (4) 

When the model error is within a certain range during transportation, the tracking trajectory of the air cargo 

network robust controller designed based on the SCARA robot dynamics model can be controlled within a 

certain range and is bounded. When it is not affected by the error, it can ensure that the trajectory is completely 

tracked, that is, the trajectory error is zero. 

 

The parameters are set as shown in Table 2. 

Table 2. Interpretation of each parameter of equation 2 

Scoping Sequence Parameter Paraphrase 

Ideal trajectory 

1 𝑞𝑑(𝑡) Location 

2 𝑞̇𝑑(𝑡) Speed 

3 𝑞̈𝑑(𝑡) Acceleration 

Actual trajectory 

1 𝑞(𝑡) Location 

2 𝑞̇(𝑡) Speed 

3 𝑞̈(𝑡) Acceleration 

 

Then the position error and velocity error are expressed as: 

 {
𝑒(𝑡) = 𝑞(𝑡) − 𝑞𝑑(𝑡)

𝑒̇(𝑡) = 𝑞̇(𝑡) − 𝑞̇𝑑(𝑡)
  (5) 

Due to the need to establish control equations with position error and velocity error as state variables, control 

variables 𝑒(𝑡) and 𝑒̇(𝑡) are introduced in the design of the controller. From the inverse solution of the 

dynamic equation, when the trajectory of the node coordinates 𝑞 of the civil aviation cargo network is known, 

the moment 𝜏 that should be applied can be solved according to the dynamic equation. Based on this 

consideration, an auxiliary control signal 𝑢 is added to the original kinetic equation as nonlinear compensation. 

The joint torque is obtained as [18]: 

𝜏 = 𝑢 + 𝐻(𝑞)𝑞̈𝑑 + 𝐶(𝑞, 𝑞̇)𝑞̇𝑑  (6) 

Equation (6) is substituted into the kinetic equation to obtain [19]: 

 𝐻(𝑞)𝑒̈ + 𝐶(𝑞, 𝑞̇)𝑒̇ + ∆(𝑞, 𝑞̇) = 𝑢  (7) 

Auxiliary signals are defined as: 

  η = 𝑒̇ + 𝛼𝑒  (8) 

Among them, 𝛼 is an arbitrary constant and 𝛼 > 0. The auxiliary signal is substituted into the equation to get: 

 𝐻(𝑞)η̇ = 𝐻(𝑞)𝛼𝑒̇ − 𝐶(𝑞, 𝑞̇)η + C(𝑞, 𝑞̇)𝛼𝑒 − ∆ + 𝑢  (9) 

Taking ω(q, q̇, e, ė) = H(q)αė + C(𝑞, 𝑞̇)𝛼𝑒, Equation (9) can be expressed as: 

 𝐻(𝑞)η̇ = −𝐶(𝑞, 𝑞̇)η + ω − ∆ + 𝑢  (10) 

Assuming that there is a positive definite function 𝜌(𝑒, 𝑒̇), for any ∆(𝑞, 𝑞̇), then [20]: 

‖∆(𝑞, 𝑞̇)‖ ≤ 𝜌(𝑒, 𝑒̇)  (11) 

Therefore, according to the dynamic model and specific requirements of this paper, the feedback control law is 

designed as: 

 𝑢 = −𝐾η − ω − v  (12) 

Among them: 
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{
𝑣 =

ηρ2(𝑒,𝑒̇)

‖η‖𝜌(𝑒,𝑒̇)+𝜀
 , 𝜀 > 0

𝐾 = {
𝑘1 0
0 𝑘2

} 𝑘1 > 0, 𝑘2 > 0
  (13) 

Then for any initial tracking error 𝑒(0), 𝑒(𝑡) is uniformly bounded. Among them, there are constants A, B, C 

such that for any satisfying ∆(𝑞, 𝑞̇) in Equation (11), then: 

 ‖𝑒(𝑡)‖ ≤ 𝐴(‖𝑒(0)‖)−𝑎𝑡 + 𝐵𝑒−
𝜆

2
𝑡 + 𝐶, ∀𝑡  (14) 

If the above design results are accurate, it can be shown that when the controller gains 𝑘1, 𝑘2 and parameter 

𝛼, 𝜀 are taken as appropriate values, the trajectory error 𝑒(𝑡) of the freight network node is controlled within a 

range. At the same time, if the controller gain is adjusted, the convergence speed of the error can also be 

controlled. When the freight system has an uncertainty error of ∆(𝑞, 𝑞̇), the controller can effectively improve 

the path length, which greatly improves the performance of trajectory tracking, so as to meet the efficiency 

requirements of network operation. 

 

Robustness Simulation Experiment 

In order to test the effect of the robust controller under the dynamic model of this paper in the civil aviation air 

cargo network, this paper uses TOPSIS modeling to conduct simulation experiments. Taking the civil aviation 

air cargo network node in a certain place as the basic data set, the fault interference is set, and this is used as the 

attack basis to conduct random attack and selection attack simulation. The changes of the average path length of 

the freight network and the network efficiency index after the network is attacked are analyzed. Then, the 

control method designed in this paper and the traditional method are used to optimize the network after fault 

disturbance. The robustness changes of the core layer network and the outer layer network are compared and 

analyzed. In order to have a deeper understanding of the structural characteristics of the air cargo network in this 

region, this paper understands the average clustering coefficient of all airport nodes with degree values in the 

network, as shown in Table 3. 

 

Table 3. Average clustering coefficient of network nodes 

𝒌 𝑪(𝒌) 𝒌 𝑪(𝒌) 

14 0.36 8 0.53 

13 0.41 5 0.67 

12 0.37 4 0.79 

11 0.39 3 0.74 

10 0.47 2 0.62 

 

From Table 3, the current air cargo industry in this area is still showing a development trend. However, there is a 

certain hierarchical structure, and a hub-and-spoke air cargo network structure centered on the airport with a 

large degree value has been initially formed. It can be seen that this article uses this area as an experimental data 

set to be representative. 

 

(1) Fault interference 

In the simulation process of fault interference, the random attack is set to select nodes equal to the number of all 

nodes in the entire network to attack in different networks, and the number of attacks increases gradually. In 

order to effectively compare the two, in the selection attack setting, the number of nodes selected each time 
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must match the number of nodes in the random attack. Figure 5 shows the change in the average path length of 

the freight network and the change in network efficiency under the two fault disturbances. 

 

 

Figure 5. Variation of network robustness under different fault disturbances 

 

Figure 5A shows the average path length variation. 

Figure 5B shows network efficiency changes. 

It can be clearly seen from Figure 5 that compared to random attacks, selected attacks have a greater impact on 

the air cargo network. No matter the average path length or network efficiency, the variation range is larger, 

showing strong vulnerability. In the two attack modes in Figure 5A, as the node removal rate increases, the more 

routes are broken in the network, and the average path of the entire network increases accordingly. It can be seen 

from the data that when the node removal rate reaches 35%, the average path length of the local freight network 

increases by 3.8% in random attack mode and 9.1% in selected attack mode. As can be seen from Figure 5A, the 

curve declines relatively quickly in the selective attack mode, and its decline rate reaches a maximum of 14.62%. 

It shows that when the airport node with high degree value in the network is attacked, the local network 

becomes more vulnerable, and the degree of vulnerability gradually increases with the number of nodes 

removed, which makes the robustness of the network worse. In the random attack mode, the change of the 

average path length is not very large, and the impact on the network is small. In Figure 5B, the global initial 

value of network efficiency is 0.5. As the removal rate of nodes increases, the network efficiency plummets, and 

when the removal rate reaches 20%, the network begins to disintegrate substantially. In general, after suffering 

an attack of the same scale, the network efficiency under selective attack is always smaller than that under 

random attack, and the reduction speed is faster than that under random attack. Therefore, the robustness of the 

network under random attack is better than that under selective attack. 
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(2) Robustness changes 

This paper uses a robust control method based on the SCARA robot dynamics model as well as traditional 

methods to optimize the freight core network and outer network. The key nodes of the optimized freight 

network are re-identified, and selected attacks and random attacks are carried out. The number of routes, 

average degree, average path length, network efficiency, and clustering coefficient of the freight network in its 

initial and optimized states are recorded. The initial network state is shown in Table 4. Figure 6 and Figure 7 

show the degree of change between the core layer and the outer layer after optimization. 

 

Table 4. Initial state of the network 

Sequence Network parameters Initial state 

1 Number of routes 1634 

2 Average degree 15.11 

3 Average path length 2.04 

4 Network efficiency 0.37 

5 Clustering coefficient 0.612 

 

 

Figure 6. Changes in the core layer of the freight network 

 

Figure 6A shows the degree of change under the control method. 

Figure 6B shows the degree of change under the conventional method. 

The core layer network is the core part of the entire freight network. It mainly includes the basic route nodes and 

key route nodes in the entire network structure, and its network operation status has a significant impact on the 

progress of the entire freight system. From Figure 6, the network robustness under the two optimization methods 

exhibits varying degrees of change. Compared with the traditional method, the network state under the control 

method in this paper has obvious advantages. In the data in Figure 6A, after the optimization of the dynamic 

model controller, the average path length of the core layer network is reduced by 3.44% when the number of 
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nodes remains the same. That is to say, only one transfer is needed on average, and the goods can be transported 

between any airports. The average degree increases by 7.76%, that is, there are feasible freight routes between 

each node and the rest nodes on average. The clustering coefficient increases by 5.13%, the connection between 

network nodes is more closely, and the network efficiency increases by 11.78% compared with the past. On the 

whole, after adding 8.11% routes, the structure of the air cargo network has been optimized. However, under the 

traditional method in Figure 6B, the route and average degree only increases by 2.17% and 2.03%, and the 

average route decreases by 1.01%, and the robustness change is not obvious. The improvement of network 

efficiency and clustering coefficient is far less than that of the control method under the dynamic model in this 

paper.  

 

 

Figure 7. Changes in the outer layers of the freight network 

 

Figure 7A shows the degree of change under the control method. 

Figure 7B shows the degree of change under the conventional method. 

The outer layer network is an extension of the core layer network. Its robustness is also of great significance to 

ensure the safe and efficient operation of air cargo transportation. It can play the role of shunting when the core 

layer network nodes are subjected to selected attacks and random attacks, which becomes a temporary transfer 

field, so that the network is not paralyzed, and can minimize various losses after node removal. In Figure 7A, 

the changes in the number of routes, average degree and network efficiency after the control of the SCARA 

robot dynamics model are very significant. Its growth rates are 12.16%, 10.07% and 13.14%. Even after being 

attacked, airports that have lost their connection with the network and established isolated nodes can maintain 

their connection with the network through new routes to realize cargo transportation. Due to the increase of 

isolated nodes, the average path length is reduced by 4.63%, and the clustering coefficient is improved by 5.47%. 

Under the dynamic model, the trajectory error is greatly reduced, thus meeting the robustness requirement for 

the operation of the freight network. In the traditional method in Figure 7B, except for the obvious improvement 

of network efficiency, the degree of change of other parameters is not obvious. The growth rates of the number 
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of routes, average degree and clustering coefficient are only 5.33%, 4.17% and 3.84%, respectively, and the 

decrease in path length is only 2.26%, which shows that the control method in this paper is more feasible. 

 

Conclusion 

The civil aviation air cargo network is an important hub in the transportation system. Driven by the market 

economy, the scale of the freight industry is expanding, and the network structure tends to be complex, which 

also poses a daunting challenge to the robustness of the network. In this paper, combined with the dynamic 

model of SCARA robot, aiming at its unstable characteristics, a controller is designed to effectively control the 

running state of the freight network. The network under selective attack and random attack had been optimized. 

The average degree and clustering coefficient of nodes has improved, the average path length has reduced to a 

certain extent, and high network efficiency and robustness have been guaranteed. While the research in this 

paper has achieved certain results, there are also some problems. In the research on the robustness of the air 

cargo network, this paper only considers the impact of two forms of attacks on the air cargo network from the 

network itself. However, in reality, factors such as geographical environment and economic needs all affect the 

network. In terms of experimental data collection, this paper only selects the cargo route data of a certain region, 

and does not consider the route data of other regions. In order to enrich the content of the researched air cargo 

network and provide more valuable research in this field in terms of depth and breadth, in the follow-up research, 

it is necessary to further improve the robustness of the air cargo network from the perspective of these issues. 
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