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Abstract: Terrestrial tight oil exhibits strong diagenetic heterogeneity, and a large 

number of rock slices are required to reveal the true micro-pore throat structure 

characteristics. Traditional identification methods for tight oil rock slices suffer from long 

manual observation time, poor accuracy of machine learning method and strong 

subjectivity of manual judgment, making it difficult to meet the requirements of reservoir 

fine description and quantitative characterization. In this study, targeting the Upper 

Paleozoic in the North Subsag Basin of China and the Linxing Block of Ordos Basin, a 

deep learning-based identification method for slice features of tight oil reservoir rocks 

was proposed. Firstly, the image preprocessing technique was investigated and the 

Gaussian denoising filtering algorithm was applied to reasonably allocate Gaussian 

weight coefficients to the original images, ensuring the quality of the samples. Secondly, 

the self-labeling image data augmentation technique was constructed to address the 

problem of sparse samples. Thirdly, the RefineMask instance segmentation algorithm 

was introduced and improved to simultaneously achieve segmentation and identification 

of components in slices of tight oil reservoir rocks. Finally, the experiment demonstrates 

that the SLA-RefineMask method has significant advantages in terms of accuracy and 

execution speed compared to other methods. 

Keywords: tight oil reservoir; rock slice; feature identification; instance segmentation; 

unconventional oil and gas 

1. Introduction 

With the increasing global energy demand and rapid development of unconventional oil and gas exploration and 

extraction technologies, the importance of unconventional oil and gas production, particularly tight oil, has been 

steadily rising, and accurate evaluation of the micro-pore structure in tight sandstone is crucial for enhancing the 

accuracy of reservoir evaluation and the standard of diagenetic facies[1]. Tight sandstone reservoirs have 
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undergone complex geological processes and tectonic modifications over an extensive period, resulting in 

lithological tightness, small pore size, narrow throats, poor pore-throat connectivity and high heterogeneity[2]. 

The automatic particle segmentation of tight sandstone is to divide mineral particles into distinct regions on 

slices, which is the initial step in computer-aided mineral identification and sandstone classification. However, 

the presence of numerous mineral particles and the indistinct boundaries between neighboring quartz, feldspar 

and lithics in the microscopic image of tight sandstone pose significant challenges for particle segmentation[3]. 

Current approaches have drawbacks such as time-consuming manual observation, limited accuracy of machine 

learning method and subjective human judgment, and the deep learning-based slice identification technology of 

tight sandstone faces many challenges[4]. 

Existing methods for slice segmentation and rapid identification of tight oil reservoir rocks are susceptible to 

noise interference, inadequate algorithm design, complexity of image structures and other factors, resulting in 

low segmentation and identification accuracy. Moreover, the intricate and costly process of preparing slices of 

tight oil reservoir rocks leads to a persistent shortage of samples in these methods. To address the intelligent 

identification of slices of tight sandstone rocks, extensive research has been conducted by scholars worldwide, 

yielding significant research findings. Based on segmentation characteristics and processing granularity, deep 

learning-based image segmentation of slices of tight oil reservoir rocks can be classified into two major 

categories: superpixel segmentation method[5] and instance segmentation method[6]. The superpixel 

segmentation method can be further divided into graph theory method and pixel clustering method. While the 

graph theory normalized segmentation method proposed by Yang Dandan et al.[7] exhibits certain advantages 

over traditional segmentation methods in mineral particle segmentation, it tends to suffer from over-

segmentation. Liu Ye et al.[8] applied the K-means clustering algorithm based on simple linear iteration to rock 

image segmentation and identification. Although this method achieved basic automation of component 

identification under conditions of minimal data differences, it caused great difficulties for the subsequent 

process due to the gaps in rock slice images. Instance segmentation, which combines object detection and 

semantic segmentation algorithms, has been explored by Jiang Feng et al.[9], who utilized the idea of semantic 

segmentation to extract particle information from sandstone slice images. However, challenges remain in 

optimizing network structures, setting hyperparameters, etc. Lei Mingfeng et al.[10] employed the Mask R-CNN 

instance segmentation method based on deep learning to achieve intelligent detection and quantification of 

mineral particles in rock slices. However, the Mask R-CNN algorithm sacrifices some detail information during 

instance segmentation, leading to inaccurate identification. 

In recent years, deep learning-based object detection algorithms have developed rapidly[11] and have been 

widely applied in various fields, including vehicle detection in traffic scene[12], object detection in remote 

sensing images in the aerial and satellite image analysis[13], and automatic segmentation of brain CT images in 

the medical field[14]. However, their application to mineral detection in rock slices remains limited. Therefore, 

based on a contrastive analysis of several prevalent object detection algorithms, the RefineMask deep learning 

algorithm[15] was selected and improved, and a self-labeling augmented RefineMask method for component 
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identification of tight oil slices based on transfer learning (SLA-RefineMask) was proposed for high-quality 

object and scene instance segmentation. Firstly, the Gaussian denoising filtering algorithm was applied to 

remove image noise and unify pixel sizes, ensuring high-quality sample images. Secondly, to address the issue 

of limited sample quantity, a self-labeling image data augmentation mechanism was designed. Subsequently, the 

RefineMask algorithm was introduced and improved to achieve simultaneous segmentation and identification of 

components in tight oil rock slices. Finally, through experimental validation, the improved SLA-RefineMask 

method demonstrates significant advantages in terms of segmentation accuracy, identification effectiveness and 

running speed compared to previous methods. 

2. SLA-RefineMask Method 

The study process of this paper mainly includes the establishment of slice image data set, augmentation of slice 

images and identification of slice image components. The establishment of the slice data set involves the 

application of image preprocessing technique, while the augmentation of slice images utilizes a self-labeling 

image augmentation mechanism. The key to the identification of slice image components lies in the SLA-

RefineMask algorithm. The following sections will discuss in detail the augmentation of slice images based on 

the self-labeling mechanism to achieve the augmentation of a few labeled images. The precise segmentation and 

identification of slice image components is achieved with the SLA-RefineMask algorithm. 

2.1 Establishment of slice image data set 

To ensure sufficient training samples for slice component identification, the tight sandstone casting slice image 

data set needs to be established. In this study, two target regions in China, namely the Upper Paleozoic of 

Linxing Block in Ordos Basin (OB data set) and the North Subsag (NT data set), were used as the original data 

sets, with a total of 100 bitmap images. The OB data set is a self-made pixel data set with an original image size 

of 2560 pixels * 1920 pixels, which is a migration test data set with 50 samples; while the NT data set is a 

migration test data set with an original size of 768 pixels * 567 pixels, which consists of 50 samples. 

First, the images were preprocessed. How to effectively remove filter noise while preserving the edge and 

texture details of the images has been a vital technical issue in the field of digital image processing[16-18]. 

Since the Non-regular Area Gaussian Filtering algorithm [19] can preserve the texture features of the images 

while filtering, it was first used to achieve image denoising. This algorithm analyzes the texture autocorrelation 

characteristics and constructs local irregular autocorrelation regions to eliminate possible noise or pixels with 

low correlation, thereby improving the rationality of weight coefficient allocation based on Gaussian filtering. 

The local irregular Gaussian mask region is built based on the analysis of grayscale similarity. Therefore, by 

combining it with the traditional Gaussian filtering algorithm, the local spatial distance and texture correlation 

can be comprehensively considered, and Gaussian mask Windows of different shapes can be adaptively selected 

for different texture feature regions to allocate Gaussian weight coefficients reasonably, as shown in Equation 

(1): 
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Where, x y，W  represents the local irregular Gaussian mask region, and meets x y，W Î  x yw ， , and the 

specific implementation algorithm of Gaussian filtering based on the irregular region proposed in this paper is 

shown below. 

Algorithm 1  Gaussian filtering based on the irregular region 

Input: Input image I, similarity weight allocation x, radius r, similarity thresholdt  

Output: Filtered image Ingf 

For Ι x y（ ， ）from Ι width heightr r to Ι Ι 2 Ι rr（ ， ） （ ， ）½¤2½½¤2½ ¾½¤ ½ ¾½¤2½  

(1) Calculate the local arm length feature 
0 1 2 3

p p p ph h h h， ， ，{ } of I from the similarity reference function and 

the arm length feature of the local autocorrelation irregular region; 

(2) Construct the local irregular Gaussian mask region Wp. 

(3) Realize Gaussian convolution by Equation (1) to get Ingf. 

End For 

Image labeling aims to guide the training process to achieve the desired results. Professionals study selected 

images of tight oil reservoirs and use the Labelme software to annotate the image data set into seven types: 

Quartz, Feldspar, Lithic, Primary Pore (PP), Casting Pore (CP), Cemented Dissolution Pore (CDP), and 

Microcrack. The labeled image samples will form JSON files and be converted to the desired format. 

2.2 Augmentation of slice images 

With the deepening of model network layer in deep learning, there is a significant increase in the demand for 

network training labeled sample data sets. However, due to the high cost of data annotation, it is often 

challenging to meet this demand in many practical applications. To address the high annotation cost in 

identifying rock tight oil slices, the self-labeling image augmentation mechanism[20,21] was employed in this 

study to expand the data set size and improve network robustness and generalization. The self-labeling 

mechanism was introduced for SLA-RefineMask based on the image processing technique to augment the 

labeled image samples and their corresponding labeled files. To ensure the clarity of augmented images and the 

accuracy of labeling points, this algorithm employs four image augmentation techniques through the data 
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enhancement method of digital image processing[22], including flipping, random cropping[23], noise 

addition[24] and image blending[25]. The noise intensity was estimated to address the problem of noise 

pollution in tight sandstone slice images. Then, the adaptive median filtering was performed with an appropriate 

filter window based on the estimated noise intensity to remove stripe noise and impulse noise[26]. Furthermore, 

the weight function was modified based on the noise intensity, and most of the noise was removed by improved 

non-local mean filtering, achieving better denoising results. 

(1) Flipping: Horizontal mirror flipping, vertical mirror flipping and diagonal mirror flipping of the images. 

(2) Random cropping: Scale the short side of all images to a resolution of 224 pixels and the long side to the 

same scale, and randomly crop a 224×224 pixel region from the scaled image. The training data obtained by 

random clipping effectively improves the accuracy of rock slice classification. 

(3) Noise addition: Apply noise addition operations to the global, horizontal, vertical and diagonal directions of 

the tight sandstone slice images with noise percentages of 0.05, 0.075, 0.1 and 0.125. 

(4) Image blending: Implementing a combination of operations such as rotation (rotation angles of 45 degrees 

and 90 degrees), zooming (scaling ratios of 0.6 and 1.5) and shifting (shift amplitudes of 0.1 and 0.2) on the 

tight sandstone slice images, to generate additional 9 augmented images for each image. Then, carry out the 

combination operation by means of image blurring with different convolution kernels and an x-axis standard 

deviation of 5, to generate additional 16 augmented images for each image. 

The augmented sample size is 5000 images, which are divided into data set and test set in an 8:2 ratio to meet 

the requirements of model training. A rich and accurate data set of tight sandstone slices was successfully 

constructed using the above method, which provides a reliable basis for subsequent experiments and analysis. 

2.3 Identification of slice image components 

In general, different mineral particles in sandstone images have similar characteristics and blurry boundaries, 

and the sandstone mineral particles contain relatively complex crystal microstructure, such as cleavage, fracture 

and twin crystals, which are often misjudged as particle boundaries during the segmentation process, leading to 

erroneous results. Therefore, this study embeds the attention mechanism[27] into the feature extraction network 

of the model to improve mineral identification accuracy and segmentation precision. The channel attention 

mechanism was embedded into the improved RefineMask algorithm, which can be implemented in three steps: 

First, modifying the pre-trained network structure based on component types; Secondly, optimizing the pre-

trained network with a smaller learning rate; Finally, completing the algorithm training to realize component 

segmentation and identification. 

An Attention Based Multi-Scale Feature Fusion Module (AMFF) was designed in the middle layer of the 

network in this study. The features at each position were selectively aggregated through the weighted sum of the 

features of the first two layers and the last encoding layer, and similar features were correlated with each other. 
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In the decoder part, the attention mechanism was applied to preserve gap details for the upsampling features and 

the corresponding encoding layer features through the Fusion Optimization (FO) module designed by us, while 

expanding the receptive field with dilated convolutions, ensuring both the integrity and continuity of gap 

detection. The identification core of slice image components was applied to the RefineMask framework. The 

SLA-RefineMask algorithm consists of five parts: backbone extraction network, semantic head branch, mask 

head branch, boundary-aware refinement, training and inference. 

(1) Based on the FPN[28] object detector, RefineMask includes two small network modules: the Semantic Head 

and the Mask Head. The Semantic Head branch uses the highest-resolution feature map in the FPN as input and 

does not include spatial compression operations such as downsampling. Therefore, the output of the Semantic 

Head branch has the same size as the input, ensuring rich detailed information in the output. The output of the 

Semantic Head branch is used to assist the Mask Head branch in instance segmentation. The Mask Head branch 

completes the instance segmentation task in a “multi-stage” manner, and each stage includes the Semantic 

Fusion Module (SFM). The Mask Head branch fuses semantic features and semantic masks containing fine-

grained information, and then increases the feature map size for more fine-grained mask prediction. 

Additionally, the Mask Head branch includes the Boundary-Aware Refinement (BAR) operation to enhance the 

prediction capability of instance boundaries, as shown in Figure 1. 

Instance Features

Semantic Features

BAR

SFM

Boundary-Aware Refinement

Semantic Features Module

Instance Mask

Semantic Mask

RolAlign Conv
SFM SFM2x

14x14

28x28

SFM2x 2x

BAR

BAR

56x56
112x112

14x14 28x28 56x56

Stage1 Stage2 Stage3

RolAlign

Semantic Head

FPN

Initial Mask

Inference Only

 

Figure 1. Workflow of the SLA-RefineMask identification method 

 

(2) The Semantic Head branch consists of four convolutional layers for extracting semantic information from 

the entire input image. It also includes a binary classifier for predicting the probability of each pixel belonging 

to the foreground, and predicting the high-resolution semantic mask for the entire image under the supervision 

of the binary cross-entropy loss function. Fine-grained features are further used to supplement the details lost in 
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the mask branch and obtain high-quality mask prediction. 

(3) The main operation in the Mask Head branch is a multi-level refinement process, where each stage involves 

four inputs: (1) instance features, (2) instance mask, (3) semantic features, and (4) semantic mask. In each stage, 

the Semantic Fusion Module (SFM) fuses the four inputs and then performs upsampling to obtain larger-sized 

features. The SFM structure is illustrated in Figure 2. SFM starts with a convolution operation to fuse the 

multiple inputs and reduce the number of channels. It is followed by three parallel convolutions, each with 

different dilation parameters to extract features with different receptive fields. Finally, the instance mask, 

semantic mask and fused features are subject to concat operation to serve as the output of SFM. 

 

Instance Features

Semantic Features

Instance Mask

Semantic Mask

conv1x1

concat

conv3x3，d=1

conv3x3，d=3

conv3x3，d=5

concat

+

+

 

Figure 2. SFM structure diagram 

(4) Boundary-Aware Refinement process. 
kM  is used to represent the instance mask branch of the K-th stage, 

and the size of 
kM  is 4 2 4 2k k ´ , where k =1,2,3. 

kB  is used to represent the boundary region of kM , 

and the definition of 
kB  is shown in Equation (2): 

 kB ( ,i j )=
1,    

0,      .

ijif d d

otherwise





¢.
                                              (2)                                                                                                       

Where, ( ,i j ) represents the position of pixel ijp  in 
kM , and ijd  represents the Euclidean distance from ijp  

to kM  boundary. The mask boundary is shown in Figure 3 below. For fast calculation, the author uses 

convolution operation for approximate solution. If the boundary width is 1, the convolution kernel is shown in 
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Equation (3) : 
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Figure 3. Object boundary region 

If the boundary width is 2, the convolution kernel can be obtained by Equation (4): 

1 1 1 1 1

1 1 1 1 1

1 124 1 1

1 1 1 1 1

1 1 1 1 1

     
 
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 
    
 
     
      

                                                       (4)                                                                                                                   

The above convolution kernel is applied to kM , and the output result is denoted as kD , which has the same 

size as kM . kB  can be calculated by Equation (5): 

( , )kB i j =

k1,      if  D (i,j)

0,      otherwise





> 0
                                            (5)                                                         

The width of the boundary region is set to 2 during training and 1 during inference. 

(5) Training and inference process. Training process: In the multiple branches of the mask head, except for the 

first stage, the instance segmentation of the other stages only contains the information of the boundary region. 

Their loss functions during training are represented by Equations (6), (7) and (8): 

1 11

n

0 0 0

1
l

k kS SN
k k

nij ij

n i jn

L R
 

  

 
d

                                                  (6) 
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kR  in the loss function represents the bilinear upsampling of the union of the boundary regions of the manually 

annotated box and the predicted annotated box in the previous stage, nijL  is the binary cross entropy loss of the 

n-th instance at position ( ,i j ), N  is the number of instances, and k kS S´  is the size of the output feature in 

the k-th stage. Inference process: The final output of each stage during inference is shown in Equations (9) and 

(10): 

1M ¢
=

1M                                                                 (9) 

 
k 1 k 1 k-1( 1 ( )k k

up P up P upM f B M f B f M     ） （ ）) （¢ ¢
                          (10) 

Where,   represents pixel-level multiplication. Figure 4 shows the inference process in the second stage, 

which is trained and repeated until the best mask is obtained. 
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Figure 4. Inference process of Boundary-Aware Refinement 

3. Experimental Design 

To further verify the impact of the attention mechanism on the accuracy of the improved model to identify and 

segment quartz, feldspar, lithics and other mineral components, the data set of tight sandstone in Ordos Basin 

denoised by Gaussian denoising filtering algorithm in irregular region, consisting of 50 images, was used in this 

experiment. Accurate and precise segmentation results will affect the accuracy of component identification of 

casting slices. Therefore, two types of experiments, precision experiment and execution speed evaluation, were 
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designed to comprehensively assess the quality of instance segmentation. The contrast algorithms used in the 

experiment were YOLACT[29], Mask R-CNN[30], and PointRend[31] (with self-labeling image augmentation 

mechanism). 

The experimental design consists of two parts: accuracy & precision evaluation, and execution speed evaluation. 

The specific parameters of experimental devices are shown below: CPU: Intel Xeon Silver 4210 R, memory: 

64GB, GPU: RTX 6000/8000; operating system: Ubuntu 20.04.3; framework: Tensorflow-GPU 2.1.0. The 

algorithm used in this paper is based on multi-target instance segmentation, and its principle is similar to that of 

SLA-RefineMask. 

3.1 Accuracy & precision evaluation experiment 

To quantitatively evaluate the performance of each model, the following indicators were used for segmentation 

accuracy evaluation: Precision[32], Recall[33], F1-score[34] and Intersection over Union (IoU)[35]. The 

identification accuracy of the models was evaluated by calculating precision and recall. Precision represents the 

proportion of the actual true component in the pixels of tight oil sandstone slice component predicted by the 

model; Recall indicates the proportion of correctly predicted slice components in the overall slice components. 

F1-score takes both precision and recall into account to balance the results of precision and recall. IoU measures 

the degree of overlap between the detected results and the labels, i.e., the degree of overlap between the slice 

components detected by the model and the slice components in the label. The formulas for calculating each 

evaluation indicator are represented by Equations (10) - (13). 

   

TP
precision

TP FP


                                                (10) 

TP
Recall

TP FN


                                                     (11) 

  
2 Pr ecision Recall

1
Pr ecision+Recall

F
 

                                              (12) 

 IoU=
TP

TP FP PN 
                                                  (13) 

3.2 Execution speed evaluation experiment 

The performance of RefineMask and SLA-RefineMask models was evaluated through the execution speed 

experiment. The execution speed evaluation experiment tests the MRT of both algorithms and judges their 

execution speed in completing identification tasks. The experimental data set consists of 1600 images from the 

SZS test set of Ordos Basin. The data set selection is shown in Table 1. The execution speed experiment 

involves testing the MRT values of the algorithms in completing components identification when the data set 

consists of 200, 400, 600, 800, 1000, 1200, 1400 and 1600 images, respectively. The number of experiments 
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was 8 times, and the average value of 8 experiments was finally calculated. 

Table 1. Efficiency experiment data set selection 

The Amount 

Of Data 

Number Of 

Original Images 

Number Of 

 Amplified Images 

200 4 196 

400 8 392 

600 12 588 

800 16 784 

1000 20 980 

1200 24 1174 

1400 28 1372 

1600 32 1568 

4. Experimental Results and Discussion 

4.1 Accuracy and precision experimental results 

4.1.1 Accuracy evaluation experimental results 

The effect comparison of different models on the tight sandstone data set of Ordos Basin is shown in Table 2: 

Conclusion 1: The comparison results of various models on the tight sandstone data set of Ordos Basin show 

that SLA-RefineMask has higher Recall, F1-Score, and IoU values. The IoU and F1-Score reached 60.65% and 

85.26% respectively. The improved method achieved a 5.44% increase in F1-Score and a 1.88% increase in IoU 

compared to the RefineMask method. This phenomenon indicates that the proposed method has higher 

segmentation accuracy and better detection of slice components, reducing the false negative rate. 

Conclusion 2: Although the Mask R-CNN method has a high Precision value, it has the lowest Recall value. 

This phenomenon suggests that although Mask R-CNN detects slices, it incorrectly classifies a large number of 

slice components as other components, leading to rough segmentation recall and inaccurate identification. 

Table 2. Comparative experimental results of various models on the tight sandstone data set 

Methods Precision% Recall% F1% IoU% 

YOLACT 65.26 72.63 71.52 48.51 

Mask R-CNN 76.74 70.17 74.13 53.45 

PointRend 69.58 76.39 69.41 56.23 

RefineMask 70.39 79.64 79.82 58.77 

SLA-RefineMask 75.71 83.14 85.26 60.65 

4.1.2 Precision evaluation experimental results 

In the precision evaluation experiment, confusion matrices (as shown in Figure 5), precision and recall (as 

shown in Figure 6) were established for two models: RefineMask and SLA-RefineMask. The X-axis of the 

confusion matrix represents the predicted values, while the Y-axis represents the true values. 
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By analyzing the experimental results, the following conclusions can be drawn: 

Conclusion 1: From Figure 5, it can be observed that some quartz and lithics are misclassified as feldspar, and 

some cemented dissolution pores are misclassified as primary pores. The reasons for these results are mainly 

threefold: In slice images, (1) there are more quartz and lithics compared to feldspar, and more cemented 

dissolution pores than primary pores. (2) Under the polarized light microscope, quartz, feldspar and lithics have 

similar optical properties, as do cemented dissolution pores and primary pores. (3) There may be mislabeling 

during the data annotation process, leading to low accuracy of model identification. 

Conclusion 2: Figure 6 shows that the SLA-RefineMask model has precision and recall rates for the seven 

mineral components that are not lower than those of the RefineMask model, with the exception of a lower recall 

rate for quartz. The reasons for these results are mainly: (1) The attention mechanism is introduced into the 

feature extraction network of the model to improve the feature extraction of mineral components and enhance 

the identification precision and recall. (2) There are fewer primary pores compared to casting pores, resulting in 

more primary pores being misidentified as casting pores and a lower recall for primary pores. 

Conclusion 3: As can be seen from Figure 6, the identification accuracy of both algorithms is above 80% and 

relatively stable. However, the overall accuracy of the algorithm used in this paper is above 90%, indicating that 

the identification accuracy of the SLA-RefineMask method proposed in this paper is higher. 

 

           (a)RefineMask model confusion matrix    (b)SLA-RefineMask model confusion matrix 

Figure 5. Confusion matrix of the two models 
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(a) Identification precision of tight sandstone 

minerals 

  (b) Identification recall of tight sandstone 

minerals 

Figure 6. Comparison of identification precision and recall of the two models  
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4.2 Execution speed evaluation experiment 

The execution speed experiment results of RefineMask and the proposed algorithm (SLA-RefineMask) are 

shown in Table 3. The MRT values increase with the amount of experimental data, as shown in Figure 7. 

By analyzing the experimental results, the following conclusions can be drawn: 

Conclusion 1: From Table 3, it can be observed that the MRT values of the SLA-RefineMask algorithm are 

smaller than those of the RefineMask algorithm, indicating that the SLA-RefineMask algorithm has faster 

execution speed. Furthermore, when the experimental data set size is 1600, the MRT of the SLA-RefineMask 

algorithm is 95.34 seconds, demonstrating that the SLA-RefineMask algorithm’s runtime efficiency can meet 

the practical requirements of slice image segmentation and identification of tight oil sandstone. 

Conclusion 2: As shown in Figure 7, the RefineMask algorithm remains relatively stable with a small data set 

size. However, when the experimental data set size becomes larger (in this experiment, >600), the MRT value 

increases significantly, indicating that the algorithm is more affected by the data set size. On the other hand, the 

relationship between the SLA-RefineMask algorithm and the data set size tends to be linearly correlated, 

indicating that the execution speed of the algorithm is relatively less affected by the data set size. 

Table 3. MRT values of different data sets 

Experimental 

Algorithm 

Number of Test 

Sets(N) 

MRT(s) 

RefineMask 

100 9.08 

200 19.06 

400 40.30 

600 63.58 

800 91.03 

1000 121.32 

1200 158.15 

1400 191.64 

1600 237.41 

SLA-RefineMask 

100 9.08 

200 18.86 

400 36.68 

600 55.04 

800 74.12 

1000 95.34 

1200 124.79 

1400 157.02 

1600 189.75 
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Figure 7. MRT values for different data sets 

5. Conclusion 

The characterization of slices of tight oil reservoir rocks is a core task in analyzing the micro-pore throat 

structure, and plays a key role in reservoir sweet spot prediction and micro evaluation. In this paper, the SLA-

RefineMask method is proposed to address the problem of low accuracy due to algorithm design flaws, 

susceptibility to noise interference, sparse sample quantity, etc. Through theoretical exposition and experimental 

verification, this method can rapidly accomplish the segmentation and identification of slices of tight oil 

reservoirs with high precision and identification speed. The research conclusions of the SLA-RefineMask 

method are summarized below: 

(1) The use of Gaussian denoising filter algorithm for image preprocessing can effectively improve the image 

quality and avoid noise interference. 

(2) The self-labeling image data augmentation mechanism increases the sample quantity while ensuring sample 

availability and can increase the sample quantity of the training set. It can effectively alleviate model overfitting 

and improve model generalization ability. 

(3) The SLA-RefineMask algorithm can perform image segmentation and identification simultaneously. The 

segmentation accuracy results have an error within 10% compared to manual calculation results, and the overall 

identification accuracy is 94.15%. Therefore, it is suitable for the characterization of slices of tight oil sandstone 

reservoir rocks in practical applications. 

In future work, we will apply the Global Attention Mechanism Generative Adversarial Network (GAN) to 

optimize the rock image augmentation process of tight oil reservoirs, further ensuring the availability of 

incremental samples. Additionally, we plan to introduce the superpixel clustering algorithm into the improved 
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SLA-RefineMask algorithm to enhance the identification effect. Furthermore, we intend to apply the SLA-

RefineMask method to the analysis of pore throat features and evaluate its potential. 
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