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Abstract 

Schrödinger equation is developed starting with position-dependent mass considering 

the quantum interacting potentials in quantum mechanics, that such called a modified 

Hylleraas-Hulthén potential where its developed using the Nikiforov-Uvarov approach. 

The wave functions are investigated and the energy eigenvalues and the related 

eigenfunctions are also  determined 
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1. Introduction 

    The Schrödinger equation with a position-dependent mass (PDM) is a variation of the standard Schrödinger 

equation in quantum physics. Although the Schrödinger equation is believed to have a constant mass for every 

particle, but in some physical systems, particularly in condensed and nanoscale physics, a particle's mass can 

alter its position. The main interesting idea is to provide a clear impression and description about Schrödinger 

equation that depends on altering mass position. 

      Numerous studies on quantum systems with PDM have been achieved [1-3]. Very valuable models in many 

practical fields, including current physics, are the Schrödinger equations with a PDM. PDM have spread over 

various applications in condensed physics include the study of semiconductor electronic characteristics [4-5], 

quantum wells and quantum dots [6–8], graded alloys and semiconductor heterostructures [9], quantum liquids 

[10], etc.  

Otherwise, several analytical methods, including the factorization approach [11], Darboux transformation [12], 

Nikiforov-Uvarov method (NU) [13], point canonical transformation [14], and supersymmetry, shape invariance 

[15–16], have been used to solve the Schrodinger equation  using several potential models, such as Kratzer 

potential, Poschl-Teller potential, Morse potential, Coulomb potential, and Hulthén potential. [17–18] . 

But the most exceptional thing in this study that we indicate a new interaction between two quantum potentials, 

which is the Modified Hylleraas Potential [19–20] and the Hulthén Potential [21–23]; to deal with more 

complex systems with three particles. The first potential is applied to simulate the interaction of three charged 

particles in a quantum system that concerned mostly in the molecular physics. The original Hylleraas potential, 

is that express the electron-electron interaction in helium atoms But to deal with more complex systems with 

three particles, the Modified Hylleraas Potential provides more words. It is fortunately applied to the study 

triatomic molecules or systems involving the interaction of three charged particles, like electrons or nuclei, 

while the second potential is applied to express the interaction of two particles in quantum physics.  This 

potential fortunately, in atomic and molecular physics, is applied to simulate the interaction of a charged particle 
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(such as an electron) with a nucleus. In quantum physics, this potential is frequently applied to examine 

confined states and scattering processes. This interesting model is helpful for many analytical and computational 

applications because it is spread to cover some important aspects of the interaction among particles with charge. 

That is concerned as an essential step in demonstrating the position-dependent mass Schrödinger equation 

(PDMSE) for such systems to determining the potential energy function, that acts the forces between these 

particles. 

We seek to investigate the Schrödinger equation with PDM  operating the Nikiforov-Uvarov (NU) method 

concerning modified Hylleraas-Hulthén potential determining the energy level and associated wave function. 

Now, This paper constructed as follows: Section 2 provides the Schrödinger equation with PDM. The review of 

the NU method is the focus of Section 3. Section 4 provides the analytical solution to the PDM Schrödinger 

equation for modified Hylleraas- Hulthén potential using NU method. Lastly, Section 5, the conclusion and final 

statement. 

 

2. Position-dependent mass Schrödinger equation 

The general PDM Hamiltonian proposed by Von Roos with         is 
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The dimensionless form of the function  ( )     ( ) is  ( ), and its parameters are         . Von 

Roos settled the limitation       and     , which are introduced as the ambiguity parameters.   

Concerning the above parameters in equation (1), the one-dimensional effective mass Hamiltonian is as follows:   
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Then the PDM Schrödinger equation assumes the form: 
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After employing the transformation [24]  ( )    ( ) ( ) and using equation (4) into (3) we get 
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The PDM Schrödinger equation is identified as the preceding equation. 

In the next section, we're going to provide a detailed overview about Nikiforov-Uvarov (NU) method. 

 

3. NU Method  

The rules of the (NU) approach [25] are the managing of specific orthogonal functions to solve second-order 

differential equations of the hypergeometric type. The Schrödinger or PDM Schrödinger equation can be settled 

systematically to provide the precise or specific solutions for a given potential by reducing them to a generalized 

equation of hypergeometric type with the suitable coordinate transformation. The following displays the main 

equation that is strongly allied to the methodology. 
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Where  ̃( ) is a polynomial of first degree,  ( ) and  ̃( ) are polynomials of degree at most two,  ( ) is a 

hypergeometric type function.  

The common form of Schrodinger equation is expressed for any potential as 
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Equation (6) can be solved specifically by multiplying two different components of the wave function, which 

are as follows, once the variables have been separated: 

 ( )     ( ) ( ) (8) 

 Where  ( ) is defined as a logarithmic derivative: 
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  ( ) is a polynomial with one degree or less. 

If we consider the preceding transformation equation (6) as a hypergeometric equation: 
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Where  

 ( )    ( )   ̃( ) (11) 

Suppose    ( )   , this condition assist  to produce physical solutions. 

Rodrigues relation gives the solution of the hypergeometric-type function   ( ) of (8) as: 
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Where   is a fixed integer,  ( ) is the weight function, and    is the normalization constant. 

The following differential equation is determined by the weight function. 
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Therefore, for the computation of  ( ), the most crucial step is to find   by setting the discriminant of the 

square root in (15) to zero. Additionally, the equation for the eigenvalue provided in (16) well be declared as: 
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Here, the prime represents the first-degree differentials. 

 

4. Results and Discussion 

The modified Hylleraas potential is given by  
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Where   is the inverse of the potential's range and   , the potential well's depths, are the Hylleraas parameters   

and  . 

 

 

 

 

 

 

 

 

 

Fig. 1. Modified Hylleraas potential with          and     . 
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Where  , is the potential depth. 

One of the recognizable short-range potentials is the Hulthén potential, which displays an exponential drop for 

high values of   and a Coulomb potential behavior for small values of  . In its most essential form, the Hulthén 

potential is expressed as: 

 

 

 

 

 

 

 

 

 

Fig. 2. Hulthén potential with      . 

Our newly interesting interacting potential, which is provided by combining equations, is called the Modified 

Hylleraas- Hulthén Potential (MHHP). (18) as well as (19): 
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And this the (MHHP) plotting 

 Obtaining the mass altering 
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 Figure (3) displays the mass function's behavior.        
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Fig. 3. MHHP with            . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Variation of the PDM function of different value of   and     . 

The derivatives:  
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After that, we get these parameters 
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Demonstrating equations (20), (21), (24), and (25) into equation (5) 
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Now, changing variable.  
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Equation (26) is transport to the Nikiforov-Uvarov equation by changing this variable. After this change, (24) 

and (25) becomes  

  ( )

 ( )
   (   ) (28) 

And 

   ( )

 ( )
     (   )(    ) (29) 

After using the transformation in (26), it becomes 

*
  

    
   (    ) 

 (   )

 

  
 *    (

 

 
(   )   ) (   )(    )     ( (   )   (    

 )  (   ))(   )  
 

(       )
 (

           

            
     

         )++     

(30) 

In order to simplify (30), we set 
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Expanding (34) 
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Then  
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Rearranging the terms enclosed in brackets Equation (36) can be transport to the generalized hypergeometric-

type equation, which is the parametric generalization of the NU method. 
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Where  
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Now equation (37) displayed as  
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 ̃( )     (    ) 

 ( )   (   )

 ̃( )      
        

 (40) 

Using these polynomials in equation (15), we have 
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Now, using equation (11) to calculate the polynomial  ( )  
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We have 
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The derivative is expressed as: 
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Now, we can provide the numerical analysis of   , for different values of the parameters   and  . 

Table.1. Numerical outcomes of energy spectra for a=20, b=0.5, α=0, β=-1, V0=50, and V1=100  

  

     

                

                

               

               

 

And it’s displayed as:  

                             

 

 

 

 

 

 

 

Fig. 5. MHH energy levels for                                       
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Table.2. Numerical outcomes of energy spectra for a=9, b=0.1, α=0, β=-1, V0=50, and V1=100 

       

                

                

                

               

 

And its displayed as:  

 

 
Fig. 6. MHH energy levels for                                      

From the above analysis, we can notice that as the values of the parameters are low, the energy states decrease.  

Now the weight function obtaining using (11), (14), and (46). 
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Using equation (52), the solution of   defined from (12) can expressed as: 
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From (9), (40), (43) and (54), we have 
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And now from these properties of Jacobi polynomial's [3]  
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Where the Jacobi polynomial is   
(   )( )  (          ). Thus we have: 
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Lastly, we highly represent the wave functions   ( ), using (8), (12), (53), and (54) 
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Where    is the normalization constant. We can find it by this normalizing condition. 
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5. Conclusion 

The PDM Schrodinger equation in this research, is managed with MHHP  involving NU approach to 

demonstrate the valuable system's energy and wave function, successfully. The effects of the potential and the 

parameters on the system's energy spectra are demonstrated and displayed explicitly by a numerical and graphic 

analysis of the energy spectra. This integrated model proves precisely the wave function, energy spectra, and the 

eigen values concerning triatoms potentials, altering position mass dependent merging between quantum and 

molecular principle. These system-specific ideas would offer a far more comprehensive and examine to 

understand molecular interactions. 
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