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Abstract 

This work aims to investigate the characteristics of a suction-driven flow of a curved fluid 

layer using the Navier-Stokes equations. The examined fluid flow characteristics include 

the azimuthal velocity, the normal velocity, pressure gradients, and streamlines under 

different values of the Reynolds number. The results show that the problem provides 

symmetric solutions when the fluid keeps its primary direction of motion near the two 

porous boundaries of the thin fluid layer. The asymmetric solutions found highlight flow 

reversal near each porous boundary. The change of the direction of motion due to flow 

reversal manifests itself as a curvature of the streamlines, and in this case the normal 

pressure gradient presents an oscillatory behavior. 

Keywords: Suction-driven flow, Curved fluid layer, Navier-Stokes equations, Two-point 
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1. Introduction 

The Navier-Stokes equations [1-5] constitute an open set of differential equations giving rise to a multitude of 

solutions, especially when they are not associated with the constraints of time and space. Many problems 

encountered in nature, engineering and industries arise when considering the geometric diversity of the flow 

domains and the possible boundary conditions. Rectangular and circular conduits are the most encountered 

ducts. Consequently, by focusing attention on the fluid flow within rectangular and cylindrical channels, the 

boundary of the flow domain can be fixed, mobile, and porous. 

The movement of a fluid in a rectangular or cylindrical domain having fixed and impermeable boundaries is a 

Poiseuille-type flow [6-8]. More precisely, the century-old Poiseuille flow has previously been used to estimate 

the mean velocity of a liquid confined in a pipe by taking into account the flow rate and the constant viscosity of 

the fluid, as well as the pressure difference at the longitudinal ends of the pipe. In addition, the plane Couette 

flow [9, 10], an important flow configuration primordial in rheology, is studied between two infinitely long 

rectangular plates, having longitudinal motions of different velocities in order to highlight the coexistence of 

laminar and turbulent zones in a flow. Moreover, a Taylor Couette flow [11, 12] is obtained by inserting a fluid 

between two coaxial cylinders having dissimilar rotational angular speeds such that the viscosity enables the 

transfer of momentum between adjacent fluid layers thus setting in motion the fluid domain, owing to cylinder 

walls rotation in contact with the sample fluid. Further, other types of interesting phenomena are observed when 

the flow boundaries are porous. Therefore, we can have boundaries that are fixed and porous, as well as 

dynamic and porous. The fluid flow in channels or tubes possessing two fixed porous walls [13-18] is the 

subject of much attention, considering the growing number of studies relating to this topic. 

In the present study, the principles of conservation of mass and momentum are used to model a fluid flow in a 

new geometrical configuration. It is first important to point out that the mass is conserved in a fluid flow only in 

the absence of a sink or a source. It follows that when the fluid flows; nothing is lost nor gained in terms of the 
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amount of matter. The flow is often driven by suction or injection [19-25] in the cases where the fluid moves 

inside a porous geometrical domain. In most of these works, the mass is assumed to be conserved primarily in 

the case where the amount of matter entering the flow domain is the same as that leaving it [19-25, 26]. In the 

second case [27], the entry of matter into the flow domain or the exit of matter from the space containing the 

fluid is taken into account and well described, but the mass which leaves or enters through the boundaries of the 

flow domain is negligible compared to the total mass of the studied fluid.  

The principles of conservation of mass and momentum are used in the current study which aims to examine the 

motion of a viscous fluid in a particular geometry that is novel and rare in the literature. Indeed, it is the flow of 

a fluid layer in the form of a ring having two permeable borders where the phenomenon of suction occurs. More 

precisely, the suction represents the mass withdrawal during the flow process. From the geometric point of view, 

the flow consists of a linear velocity of rotation also known as the azimuthal velocity deduced from the circular 

movement of the fluid and a normal velocity which results from the phenomenon of suction that takes place 

across the porous borders of the flow domain. Ultimately, the analysis of the fluid motion is based on 

determining the flow field components that directly intervene in the fundamental relationship of dynamics, 

notably the velocity and the pressure gradient. In addition, mindful of the steadiness of the flow, the streamlines 

representing the trajectories for the steady flow under study are plotted in order to better understand the 

displacement of fluid particles in the flow field. 

2. Model Equations 

A cylindrical polar coordinate system (r*,  , z*) is used to model a thin fluid layer in a curved motion induced 

by suction as shown in Fig. 1. 

 

Figure 1: Sketch of the curved thin fluid layer with seepage at the two porous boundaries 

The velocity field consists of the linear velocity of rotation u* and the normal or the axial component w*. On the 

other hand, the variable describing the pressure in the flow field is p*. Due to the thinness of the fluid layer; 

gravity terms do not influence the flow under study. The flow is driven by suction such that V represents the 

absolute fluid withdrawal speed at the two porous boundaries situated at z* = -a and z* = a, respectively. 

z 

R 
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Consequently, a denotes the half-width of the flow field such that 2a is the total distance between the two 

permeable borders. The physical properties of the working fluid are considered constant, notably the specific 

mass and the kinematic viscosity . It follows that, in the current geometry, the equations of motion of the 

incompressible viscous fluid are given by: 
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where the continuity Eq. (1) describes mass conservation owing to the fact that the suction phenomenon is 

considered and described, but the quantity of matter extracted when the flow occurs is negligible compared to 

the total mass of the fluid inside the flow domain. On the other hand, the momentum conservation is expressed 

by the Navier-Stokes Eqs. (2) and (3). It appears that these equations are written in an unusual manner, as the 

radial coordinate r* = R* is assumed to be constant, because of the thinness of the curved fluid layer. The 

boundary conditions are given by: 

  u* = 0, w* = -V for z* = -a 

  u* = 0, w* = V  for z* = +a       (4) 

More precisely, the boundary conditions u* = 0 for z* = ± a, express the no-slip condition where we have 

enforced that the two flow borders are fixed. In addition, the boundary conditions w*= ± V derive from equal 

suction flow rates at boundaries. 

 As the reference data of the problem are presented, it is relevant at this stage to state the problem in a 

nondimensional formulation enabling the control numbers that govern the dynamics of the fluid under study to 

be highlighted. To reach this objective, using the scale provided by the geometry of the flow domain, the lengths 

are normalized by the half-width a of the fluid layer as follows: 

  
a

R
Rr

*
 ,  

a

z
z

*
        (5) 

Moreover, the linear velocity of rotation and the normal velocity can be measured in units of the absolute 

suction speed at boundaries V in light of the formulas: 
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Finally, the reference pressure )( 2V  is used to normalize the pressure within the flow field as in the 

following: 
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By considering Eqs. (5)-(7), the nondimensional differential equations of the problem are derived: 
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where the Reynolds number Re = aV/  is derived. The nondimensional Eqs. (8)-(10) are associated with the 

following boundary conditions: 

  u = 0,  w = -1  for z = -1 

  u = 0,  w = 1  for z = +1      (11) 

The governing equations show that the flow is described by two velocity components. Upon closely examining 

Eqs. (8)-(10), we determine that the system can be solved by defining and introducing a stream function 

related to velocity components as follows: 
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Consequently, using the stream function as defined in Eq. 12, ensures that Eq. (8) is self-satisfied. It follows that 

the introduction of the stream function in the governing equations is a shortcut since it enables a transformation 

from three differential Eqs. (8)-(10) to only a single differential equation governing the lone dependent variable, 

the stream function, for the same problem. In fact, by taking the curl of the vector form of the two Navier-Stokes 

Eqs. (9) and (10), the vorticity equation satisfied by the stream function is obtained and given by: 
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determined by imposing the following boundary conditions: 
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As the flow is a steady one, the mass transfer per unit length of the circumference of the thin fluid layer is useful 

and a similarity transformation is also derived: 

  )(),( zFz            (15) 

where denotes a variable derived from the curved form of the thin fluid layer. By considering Eq. 

(15), the final form of the equation governing the problem to solve is obtained as follows: 

  0)Re(
1 )2()1()3()2(

2

)4(  FFFFF
R

F       (16) 

where
)()()( / iii dzFdF  . Further, due to the transformation (15), the boundary conditions of the problem 

become: 



 R



International Journal of Multiphysics 

Volume 18, No. 2, 2024 

ISSN: 1750-9548 

 

514 

  F(-1) = 1,  F
(1)

(-1) = 0 

  F(1) = -1,  F
(1)

( 1) = 0       (17) 

It is interesting to note that Eq. (16) associated with the boundary conditions (17) represent a two-point 

boundary-value problem which differs in form from the well-known previous mathematical formulation of a 

two-dimensional flow in a channel with two fixed porous walls [28, 29]. This difference is due to the presence 

of the term  of Eq. (16) related to the curved form of the flow domain. In fact, the nondimensional 

radius of the curved fluid layer R is a measure of the aspect ratio that expresses the comparison between the 

dimensional radius R* and the half-width a of the curved flow domain. In other words, the nondimensional 

geometric parameter R is also the ratio between the diameter of the thin curved fluid layer 2R* and the total 

width 2a of the flow field.  

The expressions of the nondimensional azimuthal velocity u and the normal velocity w in terms of function F 

are deduced from Eqs. (12) and (15) such that: 

  )()1( zFu  ,  )(zFw         (18) 

On the other hand, the azimuthal pressure gradient per unit length of the circumference of the curved fluid layer 

is defined by: 
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In light of Eq. (19), at a given Reynolds number Re, the azimuthal pressure gradient per unit length of the 

circumference of the flow field is constant, since it is equivalent to the integral of the fluid distribution Eq. (16). 

On the other hand, the normal pressure gradient is derived from the formula: 
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It is relevant to note that the normal pressure gradient as defined in Eq. (20) plays an important role in this 

investigation and deserves much attention because it governs the withdrawal process of the fluid as the flow 

under study is induced by suction.  

3. Results and Discussions 

The numerical results in terms of the stream function per unit length of the circumference of the flow field F are 

obtained by solving the two-point boundary-value problem (16)-(17) using the shooting method associated with 

a fourth-order Runge-Kutta scheme [30]. Then the flow characteristics in terms of velocity components, 

pressure gradients, and streamlines are determined by using their respective relationships with function F and its 

derivatives. These flow characteristics are eventually determined as symmetric and asymmetric solutions. More 

precisely, the analysis is focalized on three kinds of symmetric solutions and two kinds of asymmetric solutions 

that are highlighted by increasing the Reynolds number in the case where the width of the flow domain and the 

diameter of the curved fluid layer are of equal importance, such that R =1. 

3.1. PROFILES OF THE AZIMUTHAL VELOCITY 

The azimuthal velocity per unit length of the circumference of the curved fluid layer is presented in Figs. 2-6. In 

particular, the symmetric solutions of the first kind that exist for low and high values of the Reynolds number as 

shown in Fig. 2 present parabolic curves resulting from the fact that the flow keeps its primary direction of 

motion, that is the direction derived from the boundary conditions of the problem at low values of the Reynolds 

number. However, the curves of Fig. 2 become flat when the Reynolds number increases due to the appearance 

of a boundary layer type flow which manifests itself as a same constant profile for different high values of Re. 
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In other words, from low to high values of the Reynolds number relative to the symmetric solutions of the first 

kind, the dynamics of the fluid begins with a creeping type flow to a boundary layer type flow, respectively; 

such that the function u/ increases with Re in the neighborhood of the middle region of the flow, while a 

decrease occurs near the boundaries. More precisely, the middle region of the flow is the central circle of the 

thin curved fluid layer. As the Reynolds number increases above the value of 6.413, the symmetric solutions of 

the first kind persist, but two new asymmetric solutions of the first and second kinds which are respectively 

depicted in Figs. 3 and 4 also arise.  

 
Figure 2: Linear velocity of rotation per unit length of the circumference relative to symmetric  solutions of the 

first kind 

 
Figure 3: Linear velocity of rotation per unit length of the circumference relative to asymmetric solutions of the 

first kind 

It appears that the asymmetric flow prevents the manifestation of the boundary layer, but the backward motion 

takes place near the boundaries, with the difference that, this backward motion also known as flow reversal 

occurs in the neighborhood of the border z = -1 relative to the asymmetric solutions of the first kind plotted in 

Fig. 3. On the other hand, from Fig. 4, it is seen that flow reversal moves from the vicinity of the border z = -1 to 

the neighborhood of the boundary z = 1 with respect to the asymmetric solutions of the second kind. It is 

relevant in this study to note that, for the primary direction of motion, the flow velocity is such that u < 0, and 

flow reversal occurs when u > 0. The dynamics of the fluid exhibited in Figs. 3 and 4 leads to the conclusion 

that the asymmetric solutions of the first and second kinds behave as mirror images of each other. More 
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precisely, the backward flow occurs when the fluid moves in the opposite direction to the primary motion as the 

Reynolds number increases. This growth of the Reynolds number increases the linear velocity of rotation per 

unit length of the circumference near the border z = -1, but decreases this velocity in the neighborhood of the 

border z = 1 relative to the asymmetric solutions of the first kind as plotted in Fig. 3. On the other hand, the 

linear velocity of rotation per unit length of the circumference corresponding to the asymmetric solutions of the 

second kind decreases with the increasing Reynolds number close to the boundary z = -1, while an increase is 

observed near the boundary z = 1.  

As the Reynolds number grows above the value of 12.614, the symmetric solutions of the first kind and the 

asymmetric solutions persist, but two new symmetric solutions appear, that is the symmetric solutions of the 

second and third kinds as shown in Figs. 5 and 6, respectively. As the flow reverses near one border with respect 

to each asymmetric solution; about the symmetric solutions of the second kind, this flow reversal moves from 

the borders to the middle domain of the flow in light of Fig. 5 which presents positive values for function u/

around the region z = 0. For added clarity, the data obtained from the numerical integration show that the 

backward flow develops near the middle region of the flow relative to the symmetric solutions of the second 

kind if the Reynolds number satisfies Re < 13.828. However, the values of the Reynolds number superior to 

13.828 destroy the reverse flow as illustrated by Fig. 5. On the other hand, the fluid motion is totally reversed 

near the middle area of the flow field for all the values of the Reynolds number with respect to symmetric 

solutions of the third kind according to Fig. 6 which also shows that the linear velocity of rotation per unit 

length of the circumference increases with the Reynolds number near the middle region of the thin fluid layer, 

but decreases close to the porous boundaries. 

 
Figure 4: Linear velocity of rotation per unit length of the circumference relative to asymmetric solutions of the 

second kind 

 
Figure 5: Linear velocity of rotation per unit length of the circumference corresponding to symmetric 
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solutions of the second kind 

 
Figure 6: Linear velocity of rotation per unit length of the circumference corresponding to symmetric solutions 

of the third kind 

3.2. PROFILES OF THE NORMAL VELOCITY 

The normal velocity presented in Figs. 7-11 vanishes in the middle of the flow domain due to the symmetry 

highlighted in the problem under study, precisely for the symmetric solutions of the first, second and third kinds 

as shown in Figs. 7, 10 and 11; with the difference that the profiles of function w tend to satisfy a linear law of 

the form w = z [31, 32] by increasing the Reynolds number because of the development of the boundary layer by 

focusing the attention on Fig. 7. The advent of the asymmetric solutions causes the magnitude of the normal 

velocity to exceed its value established at boundaries, especially when the Reynolds number increases according 

to Figs. 8 and 9. More precisely, these values of the normal velocity exceeding its magnitude at boundaries are 

located near the border z = -1with respect to the asymmetric solutions of the first kind, and close to the border z 

= 1 relative to the asymmetric solutions of the second kind. Indeed, the normal velocity overshoots due to flow 

reversal that is highlighted through the asymmetric solutions. The behavior of the normal velocity within the 

flow domain as a function of Re is well depicted by referring to Figs. 8 and 9, such that with the growth of the 

Reynolds number, it decreases in Fig. 8 about the asymmetric solutions of the first kind, while it increases in 

Fig. 9 concerning the asymmetric solutions of the second kind.  

 

Figure 7: Normal velocity related to symmetric solutions of the first kind 
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Figure 8: Normal velocity related to asymmetric solutions of the first kind 

 

Figure 9: Normal velocity related to asymmetric solutions of the second kind 

The curves of Fig. 10 exhibit an inflection highlighting flow reversal in the middle region of the flow for Re < 

13.828 relative to symmetric solutions of the second kind, while other curves in the same figure obtained for Re 

> 13.828 show the disappearance of the inflection. The coexistence of flow reversal in the middle domain of the 

flow field and the primary direction of motion near the boundaries involves the oscillatory profile of the normal 

velocity pertaining to the symmetric solutions of the third kind plotted in Fig. 11. Among the hydrodynamic 

structures revealed in this work, it appears that the symmetric solutions of the second kind represent a flow 

regime where the increase in Reynolds number is more favorable to the development of the flow following the 

primary direction of motion around the middle domain of the fluid layer. However, concerning the symmetric 

solutions of the first kind, the growth in Reynolds number tends to oppose the maintenance of the primary 

direction of motion around the middle region of the flow field, although the azimuthal velocity remains negative 

everywhere inside the space occupied by the fluid. On the other hand, the total disappearance of the primary 

direction of motion near the central circle of the curved fluid layer is met in the case of symmetric solutions of 

the third kind. 
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Figure 10: Normal velocity corresponding to symmetric solutions of the second kind 

 
Figure 11: Normal velocity corresponding to symmetric solutions of the third kind 

3.3. PRESSURE GRADIENT 

As the flow regime pertaining to symmetric solutions of the first kind reveals an important suction flux for a low 

Reynolds number, the normal pressure gradient presents large variations inside the flow field compared to its 

variations corresponding to high values of the control parameter Re in light of Fig. 12. Indeed, the growth of the 

Reynolds number tends to reduce the magnitude of the suction at boundaries; that is why the corresponding 

values of the normal pressure gradients do not show enough difference and seem to be presented as a same 

constant curve. Indeed, the phenomenon of the normal pressure gradients plotted under different high Reynolds 

numbers tending to a same constant curve is due to the boundary layer. On the other hand, as the flow occurs by 

changing the direction near the boundaries, the normal pressure gradient presents large variations through the 

asymmetric solutions plotted in Figs. 13 and 14. Due to the symmetry, Fig. 12 shows that the normal pressure 

gradient vanishes for all the Reynolds numbers in the middle region of the flow field known as the central circle 

of the thin fluid layer, while this pressure gradient presents its maxima and its minima near the middle region of 

the fluid layer relative to asymmetric solutions of the first and second kinds, especially for high values of the 

Reynolds number by referring to Figs. 13 and 14, respectively. Indeed, the large positive and negative normal 

pressure gradients obtained near the central circle of the curved fluid layer are in accordance with the behavior 

of the normal velocity component that overshoots by exceeding its magnitude at boundaries. Around the central 

circle of the curved fluid layer, the described maxima are great as the Reynolds number increases according to 

asymmetric solutions of the first kind; on the other hand, the minima are low as the Reynolds number increases 

about the asymmetric solutions of the second kind. However, the asymmetric solution kind that admits a 
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maximum in terms of the normal pressure gradient near the central circle of the curved fluid layer provides a 

minimum corresponding to the same value of the Reynolds number close to the border z = 1. Moreover, the 

asymmetric solution kind that exhibits a minimum in terms of the normal pressure gradient around the central 

circle of the curved fluid layer presents a maximum  corresponding to the same value of the Reynolds number 

close to the border z = -1. 

 
Figure 12: Normal pressure gradient relative to symmetric solutions of the first kind 

 

Figure 13: Normal pressure gradient relative to asymmetric solutions of the first kind 
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Figure 14: Normal pressure gradient relative to asymmetric solutions of the second kind 

The normal pressure gradient decreases inside the flow field from the border z = -1 to the border z = 1 for each 

value of the Reynolds number according to the symmetric solutions of the second kind presented in Fig. 15 

which shows two types of curves, notably those which correspond to the values of the Reynolds number 

satisfying Re < 13.828; and those related to the Reynolds numbers satisfying Re > 13.828. More precisely, as 

the flow reverses in the case Re < 13.828, the normal pressure gradient presents great variations inside the flow 

domain, while other curves obtained for Re > 13.828 do not present enough variations because the flow keeps 

its primary direction of motion. On the other hand, the existence of the alternating regions of flow reversal and 

those of the flow occurring in the primary direction of motion relative to the symmetric solutions of the third 

kind gives rise to the oscillations of the normal pressure gradient with not constant amplitude as shown in Fig. 

16.  

 
Figure 15: Normal pressure gradient relative to symmetric solutions of the second kind 

 
Figure 16: Normal pressure gradient relative to symmetric solutions of the third kind 

3.4. STREAMLINES 

Since the streamlines are tangent at any point of the flow domain to the velocity vector of the steady problem 

under study, they enable to apprehend the behavior of the velocity field of the fluid. The flow patterns related to 

symmetric solutions of the first kind highlighted in Fig. 17 show how the fluid keeps the same direction of 

motion from the core of the space occupied by the fluid to the porous borders where the suction process takes 

place. In other words, the flow process exhibited in Fig. 17 begins parallel to the central circle of the thin fluid 

layer and becomes orthogonal to the porous boundaries due to suction. On the other hand, the curvature of the 



International Journal of Multiphysics 

Volume 18, No. 2, 2024 

ISSN: 1750-9548 

 

522 

streamlines in Fig. 18 near the border z = -1 demonstrates the development of flow reversal with respect to 

asymmetric solutions of the first kind, while this flow reversal moves from the boundary z = -1 to the boundary 

z = 1 about the asymmetric solutions of the second kind plotted in Fig. 19. At this stage, it is important to note 

that the plot of the streamlines enables to show how the fluid is equally distributed on both sides of the central 

circle of the flow domain concerning the symmetric solutions in Figs. 17 and 20-22, as well as how this 

symmetry is destroyed by the appearance of the asymmetric solutions in Figs. 18 and 19. 

 
Figure 17: Top view of the flow pattern corresponding to symmetric solutions of the first kind for Re = 10 

 
Figure 18: Top view of the flow pattern corresponding to asymmetric solutions of the first kind for Re = 10. 
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Figure 19: Top view of the flow pattern corresponding to asymmetric solutions of the second kind for Re = 10 

Near the core of the space occupied by the fluid, the flow can reverse or it can move in the primary direction 

depending on the values of the Reynolds number, that is why Fig. 20 is devoted to presenting the curvature of 

the streamlines close to the middle region of the flow field for Re < 13.828 relative to symmetric solutions of 

the second kind. Moreover, although the flow patterns obtained in Fig. 20 are far from the borders but close to 

the core of the fluid layer, the streamlines reveal that the flow keeps its primary direction when the suction 

occurs near the borders. On the other hand, for Re > 13.828, the symmetric solutions of the second kind in the 

absence of flow reversal reveal the disappearance of the curvature of the streamlines in Fig. 21 which shows the 

same direction of motion of the whole fluid layer. Figure 21 also shows the set of streamlines close to the core 

of the flow domain but far from the porous borders. The behavior of the flow described in Fig. 20 for Re < 

13.828 about the symmetric solutions of the second kind, is generalized for all the values of the Reynolds 

number concerning the streamlines achieved for symmetric solutions of the third kind through Fig. 22; with the 

difference that the streamlines in this last figure occupy the whole flow domain. More precisely, with respect to 

symmetric solutions of the third kind, the curvature of the streamlines takes place around the middle of space 

occupied by the fluid layer as the flow is totally reversed in this region for all the values of the main control 

parameter of the problem.  

 

Figure 20: Top view of the flow pattern corresponding to symmetric solutions of the second kind in the case of 

flow reversal for Re = 12.8 
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Figure 21: Top view of the flow pattern corresponding to symmetric solutions of the second kind 

in the absence of flow reversal for Re = 20 

 

Figure 22: Top view of the flow pattern corresponding to symmetric solutions of the third kind 

for Re = 20 

4. Conclusion 

The azimuthal velocity per unit length of the circumference of the thin curved fluid layer increases with the 

Reynolds number near the middle area of the flow field relative to symmetric solutions of the first and third 

kinds, while it decreases with respect to symmetric solutions of the second kind. This difference in the 

description of the behavior of the symmetric solutions found in this study is due to the fact that, symmetric 

solutions of the second kind are the only solutions that reveal flow reversal around the middle of the flow 

domain by decreasing the Reynolds number from the value of 13.828. This behavior of the symmetric solutions 

of the second kind inspired the realization of two figures, notably Figs. 20 and 21 in order to properly describe 

the flow patterns corresponding to Re < 13.828 when the flow reverses and Re > 13.828 in the absence of the 

backward flow in the neighborhood of the middle area of the space occupied by the fluid layer. Moreover, the 

assumption that the direction of the flow near the porous boundaries remains the same for all the symmetric 

solutions is well exhibited by the streamlines plotted in Figs. 17, 20-22. On the other hand, as this direction of 

motion is not kept about the asymmetric solutions near the two porous boundaries, a curvature of the streamlines 
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is observed close to the border z = -1 in the case of asymmetric solutions of the first kind plotted in Fig. 18, 

while this curvature of the streamlines moves from the border z = -1 to the border z = 1 in Fig. 19 highlighting 

the flow patterns about the asymmetric solutions of the second kind. It appears that the streamlines are equally 

distributed on both sides of the central circle of the fluid layer in the case of symmetric solutions, while this 

central circle does not divide into two equal parts the set of the streamlines corresponding to asymmetric 

solutions. In this work, the plots of the streamlines are used to confirm the flow structures revealed from the 

analysis of the behavior of the velocity components.  

The interesting behavior of the pressure gradient bears a strong correlation to that of the velocity field. This can 

be explained by the momentum conservation which is assumed in the present study, such that the normal 

pressure gradient tends to undergo oscillatory variations resulting from the coexistence of flow reversal and the 

primary direction of motion within the space occupied by the fluid, especially concerning the symmetric 

solutions of the third kind. 

Finally, in comparison with previous results [28, 29], the new geometry investigated in this study dealing with 

the porous curved fluid layer reveals quantitative changes in the hydrodynamic structures that characterize fluid 

flows between two porous walls due to the modification of the Navier-Stokes equations by the presence of the 

term –F
(2)

/R
2
. However, the hydrodynamic structures found in the present study do not show qualitative changes 

in comparison with the previous literature about fluid flows between two porous boundaries. 
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