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ABSTRACT 
Although computational power is increasingly available, high-fidelity 

simulation based aerodynamic shape optimization is still challenging for 

industrial applications. To make the simulation based optimization 

acceptable in the practice of engineering design, a technique combining 

mesh morphing and reduced order modeling is proposed for efficient 

aerodynamic optimization based on CFD simulations. The former technique 

avoids the time-consuming procedure of geometry discretization. And the 

latter speeds up the procedure of field solution by combining pre-computed 

solution snapshots. To test the efficiency of the proposed method, the 

windshield of a motorbike is analyzed and optimized. It is shown that even 

the total number of cells of the mesh is around 0.4 million, the CFD 

computation and the post processing of the results can be completed in 

less than 10 seconds if the reduced order model is adopted. Running on a 

personal computer, the generic algorithm is applied to optimize the profile 

of the windshield. A 8% reduction of the drag coefficient is achieved after 

800 queries of the reduced order CFD model and the total CPU time is only 

around 2 hours. 
 

 
1. INTRODUCTION  
High-fidelity modeling and simulation has been widely used in nowadays engineering design. 
In vehicle engineering, for example, detailed computational fluid dynamics (CFD) simulation 
is routinely applied to evaluate the aerodynamic performance of the vehicles. However, 
simulation based shape optimization is still a challenging task even the computational power 
is increasingly available because more complex and accurate models quickly use up the 
computational resources. 

High-fidelity modeling techniques such as the finite element method and the finite volume 
method adopts finely resolved meshes which inevitably form big-sized algebra equations. 
Preparation of the detailed meshes as well as formation and solution of the algebra equations 
are the most time consuming steps in a simulation. For a non-trial industrial case, preparation 
of the mesh may take several or tens of hours even automatic mesh generation techniques are 
applied. Formation and solution of the algebra equations may take O(10-102) CPU-hours. As  
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a consequence, the total computation cost of the simulation-based optimization is 
prohibitively high considering O(102-103) simulations have to be run in the optimization 
procedure. 

To make the simulation-based optimization acceptable in the practice of engineering 
design, new methodologies should be developed to overcome the bottleneck of mesh 
generation and field solution. It is interesting to note that in typical shape optimization 
problems, the geometric configurations often change smoothly and can be adequately 
described by geometry morphing which in fact is driven by parameters. By applying the same 
morphing technique, the meshes can be directly generated from a mesh template (Fig.1), 
skipping out the time-consuming and error-prone process of geometry discretization. Efficient 
methodologies can also be developed to speed up the procedure of field solution (more 
specifically, formation and solution of the algebra equations) by combining pre-computed 
solution snapshots defined on well-chosen geometric configurations, thus avoiding the heavy 
computation of the algebra equations and enabling to perform simulations of complex 
phenomena almost in real time. This is the basic idea of reduced order modeling (ROM) [1]. 
Although construction of the pre-computed solutions is time-consuming, this step needs to be 
performed only once. The reduced order model built on top of the high-fidelity solution is 
fast-running and repeated calls to the ROM within the optimization procedure is acceptable. 
 

 
Figure 1 Schematic of mesh morphing of a two-dimension airfoil. The left is the 
original mesh and the right is the morphed mesh. The white hollow circles denote 
the control lattice. 

 
In the present paper, we propose to combine the two techniques, i.e., the mesh morphing 

and the reduced order modeling, to formulate an automatic procedure for efficient 
aerodynamic shape optimization based on CFD simulations. The mesh morphing algorithm 
and a non-intrusive method for constructing reduced order CFD models is explained in Section 
3. This nonintrusive choice allows us to apply the method to different shape optimization 
problems, changing only the high fidelity solver or the parametrization technique. In Section 
3, implementation of the two technical ingredients is presented. Then the optimization of a 
motorbike by using the present method is illustrated in Section 4.  

 
2. FREE FORM MESH MORPHING  
Free form deformation (FFD) is a morphing technique widely used both in academia and in 
industry. The basic idea of FFD is to embed the part of the mesh (or the geometry) to be 
morphed in a control lattice and to deform it using a trivariate tensor-product of Bézier or B-
spline functions[2]. By controlling the lattice points, a continuous and smooth deformation  
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can be achieved (Figure 1). A typical FFD procedure usually consists of three steps. First, the 
physical domain Ω is mapped to the reference domain Ω� through the map ψ. Then, some 
control points P of the lattice are moved to achieve the desired deformation using the map T�. 
The displacements of such points which drive the deformation can be represented by a 
parameter vector µ. Finally the back mapping from the deformed reference domain is applied 
to deform the physical domain Ω(𝝁𝝁) by the map ψ−1. 

A FFD-based morphing actually changes only the coordinates of the vertices located in 
the control box. It is independent from the topology of the object and extremely versatile and 
suitable to parametrize very complex geometries, including volume meshes, surface 
triangulations and CAD representations. In the present study, it is applied directly to deform 
the volumetric mesh by changing the positions of the influenced vertices. The elemental 
connectivity and the other properties of the mesh are left untouched. To avoid the deformed 
elements overlap the undeformed ones, it is suggested to move only the internal control points 
of the lattice. In the case of shape optimization, FFD on mesh allows to skip the time-
consuming procedure of geometry discretization for every new geometric configuration, 
contributing to a significant time saving.   

 
3. REDUCED ORDER CFD MODELING  
The present study focuses on the aerodynamic performance of vehicles and the full order 
model is represented by the resolution of the well-known Navier-Stokes (NS) equations, i.e., 
a system of coupling differential equations which govern the dynamics of fluids. The Navier-
Stokes equations are the most accurate continuum-based approximation for viscous flows 
where both convective and diffusive effects contribute, and they are known to accurately 
reproduce many interesting physical phenomena observed in fluids, such as the onset of 
turbulence. In vehicle engineering, the velocity of vehicles is high and turbulent flow often 
occurs which is characterized by significant and irregular variations in space and time. This 
brings further difficulties to high-fidelity CFD modeling. Large Eddy Simulation (LES) and 
Direct Numerical Simulation (DNS) are very accurate for turbulence modeling. However, they 
are computationally expensive and as an alternative, the Reynolds-averaged Navier–Stokes 
(RANS) equations are sufficient to describe the main time-averaged properties of the flow  for 
most engineering applications. The general idea behind the RANS approach is to decompose 
velocity U and pressure p into ensemble-averaged and fluctuating components (Reynolds 
decomposition), obtaining approximate solutions to the NS equations. A turbulence model 
(e.g., Spalart–Allmaras, k-ε, k-ω)[3] is required to provide closure to the system of equations 
and to compute the Reynolds stress, the unknown term which accounts for fluctuations 
contribution.  

The full order model can be solved by several standard discretization techniques such as 
the finite element (FE) method, the finite volume (FV) method and the finite difference (FD) 
method. Even if the FE method can be more accurate, the FV method is most widely chosen 
for industrial applications since it is easily applicable to realistic and physical context. 
Nowadays, the most majority CFD codes used in the industry, both commercial (CFX, 
FLUENT, STARCD) [4] (Iaccarino, 2001) and open-sourced (OpenFOAM) [5], are based on 
FV discretization. Non-trivial industrial applications may contain millions of even billions of 
computational cells, making high-fidelity CFD simulation unaffordable to many-query or real 
time control applications. Reduced Order Models (ROMs) have been proposed as a way of 
overcoming the computational burden required to obtain high fidelity solutions in large-scale 
systems.   
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3.1. Proper orthogonal decomposition 
The main assumption of reduced order modeling is that the behavior of the system with respect 
to the physical or the geometric parameters can be represented by a small number of dominant 
modes. Among the several reduced order techniques, the Proper Orthogonal Decomposition 
(POD) with the snapshot technique[6,7] is probably the most widespread in the complex fluid 
flow computation. The POD technique was first introduced to study the coherent structures in 
experimental turbulent flows [8-10] but it has recently become a valuable option in the ROM 
framework [11-14] due to the capability to select the most energetic modes representing the 
most significant features of the system.   

POD in the context of CFD modeling usually is based on snapshots which are state 
solutions computed at different instants in time and/or different parameter values. Consider a 
set of ns snapshots, u1, u2,…, uns. Here 𝒖𝒖𝑗𝑗 = 𝒖𝒖�𝑡𝑡𝑗𝑗;𝝁𝝁𝑗𝑗� ∈ ℛ𝑛𝑛 denotes the jth snapshot, where 
tj and µj are respectively the time and the parameter values for the jth snapshot. Define the 
snapshot matrix 𝐔𝐔 ∈ ℛ𝑛𝑛×𝑛𝑛𝑠𝑠, which contains the snapshot uj as its jth column. The left singular 
value decomposition of U is written as, 

 
𝑈𝑈 = 𝑋𝑋ΣY𝑇𝑇                                                            (1) 

 
where the columns of the matrices 𝐗𝐗 ∈ ℛ𝑛𝑛×𝑛𝑛𝑠𝑠  and 𝐘𝐘 ∈ ℛ𝑛𝑛𝑠𝑠×𝑛𝑛𝑠𝑠 are the left and right singular 
vectors of U, respectively. 𝚺𝚺 ∈ ℛ𝑛𝑛𝑠𝑠×𝑛𝑛𝑠𝑠 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜎𝜎1,𝜎𝜎2, … ,𝜎𝜎𝑛𝑛𝑛𝑛) where 𝜎𝜎1 ≥ 𝜎𝜎2 ≥ ⋯ ≥ 𝜎𝜎𝑛𝑛𝑛𝑛, 
are the singular values of U, referred to as the POD singular values. The POD basis, 𝝍𝝍 =
[𝜓𝜓1,𝜓𝜓2, … ,𝜓𝜓𝑁𝑁] is then defined as the N left singular vectors of U that correspond to the N 
largest POD singular values. This yields an orthonormal basis. The POD provides an efficient 
low-dimensional representation of the snapshot data: among all the orthonormal bases of size 
N, the POD basis minimizes the least squares error of snapshot reconstruction.  

The square of the error in snapshot representation is given by the sum of the squares of the 
singular values corresponding to those singular vectors not included in the POD basis. Thus, 
the singular values provide a quantitative guidance for choosing the size of the POD basis. 
Since the POD basis is constructed from the sampled solutions, the POD method makes no 
assumptions about the form of the full model, i.e., POD applies to both linear and nonlinear 
systems, as well as to parametrically-varying systems. 
 
3.2. POD with interpolation 
Exploiting the new basis, the full order solution can be expressed as a linear combination of 
the POD basis, 
 

𝒖𝒖𝑛𝑛 = ∑ 𝛼𝛼𝑖𝑖𝜓𝜓𝑖𝑖𝑁𝑁
𝑖𝑖=0                                                        (2) 

 
For each new value of the parameter, the solution can be quickly sought if the value of the 

coefficients αi can be determined by some efficient techniques, for example, by interpolation.  
Proper Orthogonal Decomposition with Interpolation (PODI) was first introduced by Bui-

Thann [15] and has been used recently in aerodynamic application [16]. The basic idea behind 
PODI is very simple, i.e., evaluation of the new coefficients by interpolation of the already 
computed coefficients for the parameter samples 𝝁𝝁𝑘𝑘 ∈ 𝚵𝚵. For these parameter samples, the 
full order solutions have been obtained and through POD, the POD coefficients for each of 
the parameter can be constructed by projecting the full order solution onto the low order POD 
space, 
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∀𝝁𝝁𝑘𝑘 ∈ 𝚵𝚵:𝒖𝒖(𝝁𝝁𝑘𝑘) = 𝒖𝒖𝑵𝑵(𝝁𝝁𝑘𝑘) = ∑ 𝛼𝛼𝑖𝑖(𝝁𝝁𝑘𝑘)𝜓𝜓𝑖𝑖𝑁𝑁
𝑖𝑖=0                             (3) 

 
For each new value of the parameter 𝝁𝝁𝑛𝑛𝑛𝑛𝑛𝑛, the new coefficients 𝛼𝛼𝑖𝑖(𝝁𝝁𝑛𝑛𝑛𝑛𝑛𝑛) can be obtained 

by interpolating the coefficients of the parameter samples, i,e., 𝛼𝛼𝑖𝑖(𝝁𝝁𝑘𝑘). Once the new 
coefficients are knowns, the reduced order solution can be readily constructed by using the 
POD basis, 

 
𝒖𝒖𝑛𝑛𝑛𝑛𝑛𝑛𝑁𝑁 = ∑ 𝛼𝛼𝑖𝑖(𝝁𝝁𝑛𝑛𝑛𝑛𝑛𝑛)𝜓𝜓𝑖𝑖𝑁𝑁

𝑖𝑖=0                                               (4) 
 
An efficient and robust technique for N-th dimensional interpolation is based on the radial 

basis function (RBF) [17]. The RBF interpolation is well suitable for data points irregularly 
distributed in space (Fig. 2). In its basic form, RBF interpolation is in the form, 

 
y(𝑥⃗𝑥) = ∑𝑤𝑤𝑖𝑖𝜑𝜑(|𝑥⃗𝑥 − 𝑥⃗𝑥𝑖𝑖|)                                               (5) 

 
where the approximating function y(𝑥⃗𝑥) is represented as a sum of N radial basis functions φ, 
each associated with a different center 𝑥⃗𝑥𝑖𝑖, and weighted by an appropriate coefficient wi. 
denotes the distance between any point 𝑥⃗𝑥 and the center 𝑥⃗𝑥𝑖𝑖. For distance, one usually chooses 
the Euclidean distance. The weights wi can be estimated using the matrix methods of linear 
least squares, because the approximating function is linear in the weights. Note that the centers 
𝑥⃗𝑥𝑖𝑖 can be located at arbitrary points in the domain, and do not require a grid. There are many 
forms of radial basis functions and in the present study, the Gaussian form is chosen, 
 

𝜑𝜑(𝑟𝑟) = 𝑒𝑒𝑒𝑒𝑒𝑒 �− 1
2
𝑟𝑟2

𝑟𝑟0
2�                                                  (6) 

 
where 𝑟𝑟0 controls the size of the influence domain. 
 

 
Figure 2 Schematic of RBF interpolation 
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To limit the error induced by the low-order projection, the POD basis can be enriched by 
adding more full order solution snapshots to the snapshot matrix. The new parameter to 
generate the enriched solution is estimated by interpolating the existing parameter samples 
with weights indicating the approximation quality of each snapshot. The weights are evaluated 
by computing the error between the full order solution and the reconstructed reduced order 
solution of which the POD basis is generated with the snapshot matrix excluding the full order 
solution snapshot [18]. 

 
4. IMPLEMENTATION   
In the present study, the open-sourced CFD solver, i.e., OpenFOAM, is chosen to generate the 
full order solution snapshots. OpenFOAM solves the NS equations using the finite volume 
discretization of which the coordinates of the vertices, the elemental connectivity as well as 
other information of the mesh are respectively defined by files. Considering the mesh 
morphing operates on vertices, only the file defining the  vertices (i.e., the file named ‘points’) 
is parsed during the free form mesh morphing. A python script is developed to read the 
coordinates of the vertices and do the free form deformation morphing according to the user 
defined control lattice. The file defining the vertices is then overwritten with the new vertices. 

The key step of the proposed method is to build the ROM parameterized with the external 
shape of the vehicle. With free form morphing, the parametric external shape is in fact defined 
in terms of the displacements of the control points within the lattice. To evaluate the drag 
force, the velocity, the pressure as well as the eddy viscosity should be constructed. Therefore, 
it is necessary to build the POD basis for the velocity (in fact, the components of the velocity), 
the pressure as well as the turbulence viscosity. In the present study, the two-equations k-ω 
model is chosen for the turbulence modeling. All the POD basis for each of the solution fields 
are computed on the same snapshot matrix which are enriched until a specified error tolerance 
is reached. Once the solution fields are constructed, the drag and the lift coefficients can be 
computed by calling the post-processing utility of OpenFOAM.  

A python package, i.e., pyOpt, is used to minimize the objective function which accepts 
the displacements of the control points as inputs and returns the drag coefficient as output.  
 
5. NUMERICAL TESTS 
In the present study, the aerodynamic performance of a motorbike (Fig.3) is analyzed and 
optimized. The length, the width and the height of the motorbike are 2.0m, 0.6m and 1.35m, 
respectively. The box of the control lattice encloses the windshield which has a noticeable 
influence on the aerodynamic performance. To avoid any overlapping of the elements in the 
deformed mesh, only the eight internal points (hollow dots as shown in Fig.3) are free to move. 
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Figure 3 Schematic of the motorbike and the box of the control lattice. 
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Figure 4 Illustration of the mesh of the computational domain. 

 
The mesh of the whole computation domain is illustrated in Fig.4. The mesh is refined 

around the motorbike and a boundary layers is defined. Totally around 0.4 million points, 0.35 
million cells and 1.1 million faces are generated. The inlet velocity is fixed at 20m/s. 

The steady-state solver for incompressible, turbulent flow, i.e., the ‘simpleFoam’ solver, is 
chosen for the full order solutions. The time step is set to be 1s and the total steps are 500. The 
residual tolerance for all the solutions is set to be 10-8. It is checked that a steady state solution 
is ensured.  

 
5.1. Construction of the ROM 
Considering the symmetry of the model, the control points are also symmetrically positioned. 
Only one half of the internal points are needed to be considered. The width of the windshield 
(i.e., the size in the Y direction) is keep fixed and there are totally 8 parameters which control 
the shape of the windshield (Table 1). The Latin hypercube sampling method is used to 
generate the initial 16 parameter vectors.  
 
Table 1 Parameters of the model 
Index of the control point Scope of displacements (unit: m) 
(2,2,2) ∆X1:(-0.1,0.1), ∆Z1:(-0.1,0.1) 
(3,2,2) ∆X2:(-0.1,0.1), ∆Z2:(-0.1,0.1) 
(2,3,2) ∆X3:(-0.1,0.1), ∆Z3:(-0.1,0.1) 
(3,3,2) ∆X4:(-0.1,0.1), ∆Z4:(-0.1,0.1) 

 
  



335 Int. Jnl. of Multiphysics Volume 13 · Number 4 · 2019 

 

 
 
For each of the parameter vector, the solutions at the final time step are collected. All the 

computations are performed in parallel on a HP Z400 workstation with 12 CPU cores. The 
error limit for enriching the sample is set to be 10-3 and finally additional 13 full order 
solutions are supplemented to the snapshot matrix. It takes around 4 hours to complete one 
full order solution and the total CPU time for constructing the ROM is 121 hours which 
include the solution of the 29 snapshots, the POD and the PODI.   

 
5.2. Optimization by exploiting the ROM 
Considering the fields of the velocity, the pressure, the turbulent kinetic energy and the 
turbulence frequency can be reconstructed in nearly real time, the genetic algorithm (GA) is 
chosen to do the optimization although it is not the most efficient method. The size of 
population of GA is set to be 20 and 40 generations of evolution are performed. It takes around 
10s to complete one evaluation and totally it takes around 2 hours to complete the optimization 
procedure thanks to the fast-running ROM. The change of the drag coefficient during the 
evolution is shown in Fig.5. It is seen that 40 generations of evolution is enough to achieve 
the stabilization. An 8% reduction of the drag coefficient is achieved, and the optimized shape 
is shown in Fig.6.   
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Figure 5 Decrease of the drag coefficient with the number of evolutions 
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Figure 6 Optimized profile of the windshield compared with the original profile. 
 
6. SUMMARY 
The present proposes a chain of techniques for aerodynamic shape optimization by integrating 
free form mesh morphing, POD and PODI. The method is tested on a non-trivial industrial 
model. The key of the method is reconstruction of the solution fields with acceptable errors 
and a considerable speed-up by using the ROM. Another advantage is that the method does 
not rely on a particular discretization method. In fact, the PODI approach treats the high-
fidelity solver completely as a black box. This feature allows to exploit the user preferred 
software, even commercial ones. Therefore, the method is also applicable to other industrial 
fields. One improvement to be made is to replace the conventional POD with the incremental 
POD in order to lower the memory usage of building ROM. 
  
DISCLOSURE STATEMENT 
No potential conflict of interest was reported by the authors. 
 
ACKNOWLEDGEMENT 
This work was supported by the Guangdong Provincial Science and Technology Project 
(Industry-University-Research Collaboration), grant number 2015B090901051.  
 
REFERENCES 
[1] Lassila T., A. Manzoni, A. Quarteroni and G. Rozza.Model Order Reduction in Fluid 

Dynamics: Challenges and Perspectives.Reduced Order Methods for Modeling and 
Computational Reduction, edited by Alfio Quarteroni and Gianluigi Rozza. 2014, pp.235-
273. Springer. 

[2] Sederberg T. W., and S. R. Parry.. Free-form Deformation of Solid Geometric Models. 
ACM SIGGRAPH computer graphics 20(1986),pp.151-160. 
 

  

Optimized Windshield 



337 Int. Jnl. of Multiphysics Volume 13 · Number 4 · 2019 

 

 
 

[3] Versteeg H.K., W. Malalasekera, An Introduction to Computational Fluid Dynamics, the 
Finite Volume Method,  Pearson Education Limited, 2007. 

[4] Iaccarino G., Predictions of a Turbulent Separated Flow Using Commercial CFD Codes, J. 
Fluids Eng. 123(2001), pp.819–828. 

[5] Weller H.G., G. Tabor, H. Jasak, C. Fureby,. A Tensorial Approach to Computational 
Continuum Mechanics using Object-oriented Techniques, Comput. Phys. 12(1998), 
pp.620–631. 

[6] Holmes P., J.L. Lumley, G. Berkooz,. Turbulence, Coherent Structures, Dynamical Systems 
and Symmetry, 1996, Cambridge. 

[7] Sirovich L.,. Turbulence and the Dynamics of Coherent Structures. Parts I–III, Quart. Appl. 
Math. 45(1987), pp.561–590.  

[8] Aubry N., P. Holmes, J. Lumley, E. Stone, The Dynamics of Coherent Structures in the 
Wall Region of a Turbulent Boundary Layer, J. Fluid Mech. 192(1988), pp.115–173. 

[9] Berkooz G., P. Holmes, J.L. Lumley,. The Proper Orthogonal Decomposition in the 
Analysis of Turbulent Flows,  Annu. Rev. Fluid Mech. 25(1993), pp.539–575. 

[10] Lumley J.L., 1967. The Structure of Inhomogeneous Turbulent Flows, in: Atmospheric 
Turbulence and Radio Wave Propagation 1967, pp. 166–178. 

[11] Cazemier W., R.W.C.P. Verstappen, A.E.P. Veldman, Proper Orthogonal Decomposition 
and Low-dimensional Models for Driven Cavity Flows, Phys. Fluids 10(1998), pp.1685–
1699. 

[12] Kunisch K., S. Volkwein, Galerkin Proper Orthogonal Decomposition Methods for a 
General Equation in Fuid Dynamics, SIAM J. Numer. Anal. 40(2003), pp.492–515. 

[13] Weller J., E. Lombardi, M. Bergmann, A. Iollo, Numerical Methods for Low-order 
Modeling of Fuid Flows Based on POD, Internat. J. Numer. Methods Fluids 63(2010),pp. 
249–268. 

[14] Wang Z., I. Akhtar, J. Borggaard, T. Iliescu, Proper Orthogonal Decomposition Closure 
Models for Turbulent Fows: a Numerical Comparison, Comput. Methods Appl. Mech. 
Engrg. 237–240(2012.), pp.10–26. 

[15] Bui-Thanh, T., Proper Orthogonal Decomposition Extensions and Their Applications in 
Steady Aerodynamics, Ph.D. thesis. 2003. Singapore-MIT Alliance. 

[16] Dolci, V., and R. Arina. Proper Orthogonal Decomposition as Surrogate Model for 
Aerodynamic Optimization", Int. J. Aerospace Eng. 3(2016), pp.1-15.   

[17] Broomhead D.S. and D. Lowe. Multivariable Functional Interpolation and Adaptive 
Networks, Complex Systems 2(1988), pp. 321–355. 

[18] Salmoiraghi F., A. Scardigli, H. Telib and G. Rozza,. Free-form Deformation, Mesh 
Morphing and Reduced-order Methods: Enablers for Efficient Aerodynamic Shape 
Optimization,  Int. J. Comput. Fluid D. 32(2018), pp.233-247. 

 
 

 



338 


