
203 Int. Jnl. of Multiphysics Volume 13 · Number 2 · 2019

Comparison of Explicit Method of Solution
for CFD Euler Problems using MATLAB® and

FORTRAN 77

A. Nordli*, H. Khawaja
UiT-The Arctic University of Norway

ABSTRACT
This work presents a comparison of an explicit method of solution for an

inviscid compressible fluid mechanics problem using Euler equations for

two-dimensional internal flows. The same algorithm was implemented in

both FORTRAN 77 and MATLAB®. The algorithm includes Runge‒Kutta time

marching scheme with smoothing. Both solvers were initialized in the same

manner. In addition, it was ensured that both solvers have the exact same

values for time step, convergence criteria, boundary conditions, and the

grid. The only difference between the two solvers was the precision of

variables.

The problem solved was a two-dimensional dual bump with an accelerating

flow through a duct. The same algorithm solving the Euler equations of fluid

flow is implemented in both FORTRAN 77 and MATLAB®, and applied to

identical input. While the solutions look qualitativly the same, a 20%

difference in the stationary solution is observed. No claim is made of the

relevance of the computations to actual fluid flow, rather the key takeaway

being that two finite and deterministic computations of the same algorithm

on the same input in FORTRAN 77 and MATLAB® produce different output.

1. INTRODUCTION
FORTRAN 77 computing language has been externsively used by scientists and
mathematicians for numeric computation and scientific computing [1]. Similarly MATLAB®
is a also common software being widely used among the research commuity [2]. Though both
computing software are capable of managing complex mathematical calculations, there are
subtle difference in their implementation [3]. Complex CFD problems has been implemented
in FORTRAN and validated against experiments [4-6]. MATLAB® has also been used for
the simulations of complex mathematical problems, e.g. [7,8]. CFD is widely used to solve
engineering problems such as [9,10].

In this paper the same CFD Euler algorithm with identical input is implemented in both
FORTRAN 77 and MATLAB®, and the results are compared. It is found that there is a 20%
difference in the outputs. The algorithm solves fluid mechanics Euler equations [11] in a
planar specified bounded domain for a steady state solution. The Euler equations is a system
of partial differential equations given in Equation (1).

In this work the model and solutions in themselves are of secondary interest. The point is
to use this model to highlight that different implementations of the same algorithm in different
programming languages can result in different outputs for identical inputs. Therefore, for the

*Corresponding Author: anders.s.nordli@uit.no

204

Comparison of Explicit Method of Solution for CFD Euler Problems using

 MATLAB® and FORTRAN 77

⎩
⎪
⎨

⎪
⎧

𝜕𝜕𝑡𝑡𝜌𝜌 + ∇ ⋅ (𝜌𝜌𝒖𝒖) = 0,
𝜕𝜕𝑡𝑡(𝜌𝜌𝒖𝒖) + ∇ ⋅ (𝜌𝜌𝒖𝒖⨂𝒖𝒖) + ∇𝑝𝑝 = 0,

𝜕𝜕𝑡𝑡𝐸𝐸 + ∇ ⋅ �𝒖𝒖(𝐸𝐸 + 𝑝𝑝)� = 0,

𝐸𝐸 = 𝑝𝑝
𝛾𝛾−1

+ 1
2
𝜌𝜌|𝒖𝒖|2.

 (1)

main results of this work to be valid it is enough that the algorithm produces finite and
deterministic output from the admissible input. The selection of this model for this purpose
was that we had a FORTRAN 77 code available and wished to rewrite it into MATLAB®.
Since FORTRAN 77 does not support object-oriented programming, we wanted to rewrite
the code into MATLAB® to make it easier to maintain and adapt the code. After the
rewriting was done and we started to compare the results we discovered that the different
versions produced qualitatively similar, but quantitatively different output from the same
input. In Section 2 the algorithm details are provided, while in Section 3, the results are
presented and discussed.

2. METHOD
The main difference in the implementation of the algorithm in FORTRAN 77 and
MATLAB®, is that the MATLAB® code is object-oriented, while the FORTRAN 77 code
is not [9]. However, object-orientation is only a way of organizing the data and methods
into objects and will not in itself affect the variables and functions used. The algorithm is a
numerical solver for the time-dependent system of partial differential Equation (1), which
is used for as long as the changes from one-time step to the next is above a threshold value
given as input to the algorithm.

The time stepping algorithm is shown in Figure 1. First boundary conditions are updated,
then one-time step is performed with a Runge—Kutta method [13]. Solutions are then
smoothed, and secondary variables are computed. The primary variables are density,
momentum density, and energy density, while the secondary variables are pressure,
temperature, and velocity field. Finally, the solutions are checked for convergence, and if
convergence is obtained according to an input convergence criterion the solution is kept. For
the first time step a guess at a solution is computed, and for the algorithm to converge to the
correct solution in a feasible number of time steps it is essential that the first guess of the
solution is not too far off the true solution. If the guessed solution is far from the steady state,
the solver could potentially need a too high number of time steps. It could also tend toward a
different steady state or violate some of the assumptions for the algorithm to work such as
flow from left to right.

The computational domain and grid is shown in Figure 2 and is identical for the
MATLAB® and FORTRAN 77 as the bottom grid coordinates, top grid coordinates, and
number of grid points in each direction are part of the input to the algorithm. The minimum
step size in space is ∆𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 = 0.12.

Central differences are used to approximate fluxes at gridpoints. In Figure 3 the grid close
to grid point (𝑖𝑖, 𝑗𝑗) is shown, with the area of the grid cells indicated by 𝐴𝐴𝑖𝑖±1

2,𝑗𝑗±1
2
.

205 Int. Jnl. of Multiphysics Volume 13 · Number 2 · 2019

Figure 1: Flow chart of the algorithm.

Figure 2: The computational grid employed in the computation. It is
identical for the MATLAB® and FORTRAN 77 versions.

The lengths of grid edges are calculated as shown in Equation (2).

∆𝑙𝑙𝑖𝑖𝑖𝑖

𝑗𝑗 = 𝑥𝑥𝑖𝑖+1,𝑗𝑗 − 𝑥𝑥𝑖𝑖,𝑗𝑗, ∆𝑙𝑙𝑗𝑗𝑗𝑗𝑖𝑖 = 𝑥𝑥𝑖𝑖,𝑗𝑗+1 − 𝑥𝑥𝑖𝑖,𝑗𝑗 , ∆𝑙𝑙𝑖𝑖𝑖𝑖
𝑗𝑗 = 𝑦𝑦𝑖𝑖+1,𝑗𝑗 − 𝑦𝑦𝑖𝑖,𝑗𝑗 , ∆𝑙𝑙𝑗𝑗𝑗𝑗𝑖𝑖 = 𝑦𝑦𝑖𝑖,𝑗𝑗+1 − 𝑦𝑦𝑖𝑖,𝑗𝑗 (2)

and in vector form 𝚫𝚫𝒍𝒍𝒊𝒊

𝒋𝒋 = �∆𝑙𝑙𝑖𝑖𝑖𝑖
𝑗𝑗 ,∆𝑙𝑙𝑖𝑖𝑖𝑖

𝑗𝑗 �,𝚫𝚫𝒍𝒍𝒋𝒋𝒊𝒊 = �∆𝑙𝑙𝑗𝑗𝑗𝑗𝑖𝑖 ,∆𝑙𝑙𝑗𝑗𝑗𝑗𝑖𝑖 �. A conservation law
𝜕𝜕𝑡𝑡𝑤𝑤 + ∇ ⋅ 𝑭𝑭 = 0 with flux function 𝑭𝑭 = (𝐹𝐹1,𝐹𝐹2) can then be approximated at grid point (𝑖𝑖, 𝑗𝑗)
as follows. First define fluxes across edges as shown in Equation (3).

Update BC's

Perform time
stepping

Smoothing of
solutions

Update
secondary
variables

Check for
convergence

CFD Euler
Solution

206

Comparison of Explicit Method of Solution for CFD Euler Problems using

 MATLAB® and FORTRAN 77

Figure 3: Detail of grid close to grid point (𝑖𝑖, 𝑗𝑗). The areas of the neighboring
grid cells are labeled 𝐴𝐴𝑖𝑖±1

2,𝑗𝑗±1
2
.

Φ
𝑖𝑖,𝑗𝑗+12

1 = 1
2
�𝑭𝑭𝑖𝑖,𝑗𝑗 + 𝑭𝑭𝑖𝑖,𝑗𝑗+1� ⋅ 𝚫𝚫𝒍𝒍𝒊𝒊

𝒋𝒋,

Φ
𝑖𝑖+12,𝑗𝑗
2 = 1

2
�𝑭𝑭𝑖𝑖,𝑗𝑗 + 𝑭𝑭𝑖𝑖+1,𝑗𝑗� ⋅ 𝚫𝚫𝒍𝒍𝒋𝒋𝒊𝒊.

 (3)

The flux out of grid cell �𝑖𝑖 + 1

2
, 𝑗𝑗 + 1

2
� is then given by Equation (4).

𝐹𝐹𝑖𝑖+12,𝑗𝑗+12
= 1

𝐴𝐴
𝑖𝑖+12.𝑗𝑗+12

�Φ
𝑖𝑖+1,𝑗𝑗+12

1 − Φ
𝑖𝑖,𝑗𝑗+12

1 + Φ
𝑖𝑖+12,𝑗𝑗+1
2 − Φ

𝑖𝑖+12,𝑗𝑗
2 � (4)

and the conservation law approximated as shown in Equation (5).

𝜕𝜕𝑡𝑡𝑤𝑤𝑖𝑖,𝑗𝑗 ≈ − 1
4
�𝐹𝐹𝑖𝑖−12,𝑗𝑗−12

+ 𝐹𝐹𝑖𝑖−12,𝑗𝑗+12
+ 𝐹𝐹𝑖𝑖+12,𝑗𝑗−12

+ 𝐹𝐹𝑖𝑖+12,𝑗𝑗+12
� (5)

For the temporal discretization a four step explicit Runge—Kutta method with Butcher

tableau [14] given in Figure 3 is employed.

207 Int. Jnl. of Multiphysics Volume 13 · Number 2 · 2019

 1
4

 1
3

 1
2

 1

Figure 4: Butcher tableau for the employed Runge—Kutta method. All
off-diagonal elements are zero.

The time step is set to ∆𝑡𝑡 = 3.0 ⋅ 10−5, since the maximal characteristic speed at final

time |𝒖𝒖| + 𝑐𝑐 = 1.3 ⋅ 105. Strictly speaking the CFL-condition [15] is not fulfilled with this
time step, however the computation stays finite at all steps for both the FORTRAN 77 and
MATLAB® implementation. A reduction in ∆𝑡𝑡 so that the CFL-condition was satisfied was
attempted, but the numerical fluxes where then on the scale of round off errors. Thus, instead
of increasing accuracy it made the computations less stable and more computationally costly.
No claim is therefore made of the relevance of the computations to actual fluid flow, rather
the key takeaway being that two finite and deterministic computations of the same algorithm
on the same input in FORTRAN 77 and MATLAB® produce different output. Note that if
there are no sound waves propagating in the solution, then the time step should be small
enough since |𝒖𝒖| ≪ 𝑐𝑐 in the converged solutions.

For stability, the solution has to be smoothed at each time step. A numerical solution 𝜓𝜓 is

smoothed at (𝑖𝑖, 𝑗𝑗) and time step 𝑛𝑛 as shown in Equation (6).

𝜓𝜓𝑖𝑖,𝑗𝑗
𝑛𝑛,𝑎𝑎𝑎𝑎𝑎𝑎 =

1
4
�𝜓𝜓𝑖𝑖−1,𝑗𝑗

𝑛𝑛 + 𝜓𝜓𝑖𝑖+1,𝑗𝑗
𝑛𝑛 + 𝜓𝜓𝑖𝑖,𝑗𝑗−1𝑛𝑛 + 𝜓𝜓𝑖𝑖,𝑗𝑗+1𝑛𝑛 �,

𝜓𝜓𝑖𝑖,𝑗𝑗
𝑛𝑛,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒 = (1 − 𝜅𝜅)𝜓𝜓𝑖𝑖 ,𝑗𝑗𝑛𝑛 + 𝜅𝜅 �𝜓𝜓𝑖𝑖,𝑗𝑗

𝑛𝑛,𝑎𝑎𝑎𝑎𝑎𝑎 + 𝜆𝜆𝜓𝜓𝑖𝑖,𝑗𝑗𝑛𝑛−1 + (1 − 𝜆𝜆)𝜈𝜈�𝜓𝜓𝑖𝑖,𝑗𝑗𝑛𝑛 − 𝜓𝜓𝑖𝑖,𝑗𝑗
𝑛𝑛,𝑎𝑎𝑎𝑎𝑎𝑎�� (6)

where 𝜅𝜅 = 0.2500, 𝜆𝜆 = 0.999999, 𝜈𝜈 = 0.9000.

The solution is checked for convergence and determined to be converged if the changes
in the variables from one-time step to the next falls below a threshold given in the input. If
either the maximal difference in any of the variables exceeds the threshold, or the average
difference exceeds half of the threshold, the convergence test fails, and the next time step is
performed.

The boundary conditions used at top and bottom of the domain are solid walls, i.e. 𝒖𝒖 ⋅ 𝝂𝝂 =
0. Boundary conditions have to be applied at the right and left boundaries as well. On the right
boundary a new pressure is set to 𝑝𝑝𝑑𝑑𝑜𝑜𝑤𝑤𝑤𝑤 . On the left the inlet density 𝜌𝜌𝑖𝑖𝑖𝑖,𝑗𝑗

𝑛𝑛 at gridpoint 1, 𝑗𝑗 at
time step 𝑛𝑛 is set as shown in Equation (7).

𝜌𝜌𝑖𝑖𝑖𝑖,𝑗𝑗
𝑛𝑛 = min�0.75 ⋅ 𝜌𝜌𝑖𝑖𝑖𝑖,𝑗𝑗

𝑛𝑛−1 + 0.25 ⋅ 𝜌𝜌1,𝑗𝑗
𝑛𝑛−1, 0.9999 ⋅ 𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠� (7)

208

Comparison of Explicit Method of Solution for CFD Euler Problems using

 MATLAB® and FORTRAN 77

Note that this will not change the density at the boundary. The idea is to 𝜌𝜌𝑖𝑖𝑖𝑖 affect the inlet

fluxes and energy density and in that manner relax the left-hand boundary to the appropriate
final state in order to make the method more stable. Then the pressure at the inlet is set as
shown in Equation (8).

𝑝𝑝1,𝑗𝑗
𝑛𝑛 = 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ⋅ �

𝜌𝜌𝑖𝑖𝑖𝑖,𝑗𝑗
𝑛𝑛

𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
�
𝛾𝛾
 (8)

while (𝜌𝜌𝜌𝜌)1,𝑗𝑗

𝑛𝑛 and (𝜌𝜌𝜌𝜌)1,𝑗𝑗
𝑛𝑛 are computed using Equation (9).

(𝜌𝜌𝜌𝜌)1,𝑗𝑗
𝑛𝑛 =𝜌𝜌𝑖𝑖𝑖𝑖,𝑗𝑗

𝑛𝑛 �2𝑐𝑐𝑝𝑝𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�1−�
𝜌𝜌𝑖𝑖𝑖𝑖,𝑗𝑗
𝑛𝑛

𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
�
𝛾𝛾−1

�cos𝛼𝛼,

(𝜌𝜌𝜌𝜌)1,𝑗𝑗
𝑛𝑛 =𝜌𝜌𝑖𝑖𝑖𝑖,𝑗𝑗

𝑛𝑛 �2𝑐𝑐𝑝𝑝𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�1−�
𝜌𝜌𝑖𝑖𝑖𝑖,𝑗𝑗
𝑛𝑛

𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
�
𝛾𝛾−1

�sin 𝛼𝛼,

 (9)

and respectively velocities are computed using Equation (10).

𝑢𝑢1,𝑗𝑗
𝑛𝑛 =

(𝜌𝜌𝜌𝜌)1,𝑗𝑗
𝑛𝑛

𝜌𝜌1,𝑗𝑗
𝑛𝑛 ,

𝑣𝑣1,𝑗𝑗
𝑛𝑛 =

(𝜌𝜌𝜌𝜌)1,𝑗𝑗
𝑛𝑛

𝜌𝜌1,𝑗𝑗
𝑛𝑛 .

 (10)

The energy density is calculated using Equation (11).

(𝜌𝜌𝜌𝜌)1,𝑗𝑗
𝑛𝑛 = 𝜌𝜌𝑖𝑖𝑖𝑖,𝑗𝑗

𝑛𝑛 �𝑐𝑐𝑣𝑣𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �
𝜌𝜌𝑖𝑖𝑖𝑖,𝑗𝑗
𝑛𝑛

𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
�
𝛾𝛾−1

+ 𝑐𝑐𝑝𝑝𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �1 − �
𝜌𝜌𝑖𝑖𝑖𝑖,𝑗𝑗
𝑛𝑛

𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
�
𝛾𝛾−1

�� (11)

To avoid the problem being ill posed one must restrict the solution to the states where net

mass flow is always positive across the boundary.

209 Int. Jnl. of Multiphysics Volume 13 · Number 2 · 2019

3. RESULTS AND DISCUSSIONS
In Figure 5 the pressure field of the converged solution is shown, and in Figure 6 is the
corresponding Mach field. Note that the flow is supersonic downstream of each of the bumps.
Still the Mach number is less than 1.7. The pressure and Mach fields look reasonable, so it
seems that the algorithm is producing sensible results.

Figure 5: The final pressure field after convergence is obtained.

Figure 6: The final Mach numbers after convergence is obtained. Note that
the Mach number is lower than 1.5, but that the flow is supersonic
downstream of the bumps.

In Figure 7 the final density computed by FORTRAN 77, MATLAB®, and the relative
differences are plotted. Qualitatively the solutions look similar, but from the plot of relative
differences one can see that there is a 20% difference in the densities.

In Figure 8 the convergence plots of the estimated errors for 20000 and 100000 are
shown. One can see that the errors are quite similar for the first 5000 time steps, and then they
diverge. It looks like the FORTRAN 77 code reaches steady state after 30000 time steps,
while MATLAB® needs 100000 time steps.

On the other hand, if one looks at the inlet to outlet flow ratios in Figure 10, it is clear that
from a mass conservation perspective the MATLAB® version is superior.

Even though the errors seem similar for the first-time steps, the discrepancies are at the
same level all through the computation. This is revealed in Figure 11 where the algorithm of
the absolute differences in errors is plotted. The curious dips in the curve means that the sign
of the difference switches at that point.

It is clear that both the FORTRAN 77 and MATLAB® implementations of the algorithm
produces finite and sensible results, but that they differ in a number of ways. First of all, they

210

Comparison of Explicit Method of Solution for CFD Euler Problems using

 MATLAB® and FORTRAN 77

converge to different solutions, with the difference in density of about 20%. This is a serious
discrepancy for what is supposed to be identical algorithm. Second, the path to convergence
is different. It seems that both solvers resolve dynamical effects, and then the FORTRAN 77
solver quickly converges to a steady state, while the MATLAB® solver uses over three times
as many time steps to get to a similar level of error estimate. Third the inlet to outlet flow
ratios are different throughout the computation. For a true steady state conservation of mass
implies that it should be equal to one. In this regard the MATLAB® solver outperforms the
FORTRAN 77 solver.

The reasons for the different results are not clear. One possibility is that FORTRAN 77
uses 32-bit numbers [16], while MATLAB® uses 64-bit numbers [17]. MATLAB® is thus
more accurately represents real numbers than FORTRAN 77. This could result in more
numerical diffusion in the FORTRAN 77 solver. Another possibility is more on the level of
compilers and how binary operations are performed on a fundamental level. The complexity
of the algorithm also makes it harder to identify exactly where computations start to differ.

Figure 7: The final density after convergence is obtained. The plot shows
that there is a discrepancy between the density computed by FORTRAN
77 and MATLAB® even though both solutions have satisfied the
convergence criterion.

211 Int. Jnl. of Multiphysics Volume 13 · Number 2 · 2019

Figure 8: The logarithm of the estimate of the error in density averaged
over the spatial grid. The graph is up to 100000 time steps. The blue line
represents FORTRAN 77, while the black line represents MATLAB®. The
horizontal line is the convergence criterion. The same pattern applies to
the other variables.

Figure 9: Detail of the graph in Figure 8. The logarithm of the estimate of
the error in density averaged over the spatial grid. The graph is up to
20000 time steps. The blue line represents FORTRAN 77, while the black
line represents MATLAB®. The horizontal line is the convergence criterion.
The same pattern applies to the other variables.

212

Comparison of Explicit Method of Solution for CFD Euler Problems using

 MATLAB® and FORTRAN 77

Figure 101: The logarithm of the ratio of inflow and outflow. The blue curve
is computed by FORTRAN 77, and the black curve is computed by
MATLAB®. In a steady state the logarithm of the flow ratio equals zero.
Note that the MATLAB® solution is closer to achieving the desired flow
ratio of one.

Figure 11: Logarithm of the absolute value of the difference in estimated
error in density.

213 Int. Jnl. of Multiphysics Volume 13 · Number 2 · 2019

4. CONCLUSION
The compressible Euler equations has been solved by the same method implemented in
FORTRAN 77 and MATLAB®, and even though the solutions look qualitatively similar some
differences discovered. First of all, there was a 20% difference in final densities between the
solvers. Second the path to convergence was different with the FORTRAN 77 version
converging in one third of the time steps the MATLAB® version needed to reach the same
level of confidence. Third the inlet to outlet flow ratio differed. The MATLAB® version was
closer to one. The reasons for the discrepancies between the FORTRAN 77 and MATLAB®
solvers are unclear. One possibility is that FORTRAN 77 use 32-bit precision to represent
numbers and MATLAB® use 64-bit precision. No claim is made of the relevance of the
computations to actual fluid flow, rather the key takeaway being that two finite and
deterministic computations of the same algorithm on the same input in FORTRAN 77 and
MATLAB® produce different output.

ACKNOWLEDGEMENTS
The authors have used part of the FORTRAN 77 code provided by Prof. William Dawes and
Prof. Paul Tucker during the course CFD-4A2 – Computational Fluid Dynamics at Cambridge
University Engineering Department.

REFERENCES
[1] Press, W.H. and W.T. Vetterling, Numerical Recipes in FORTRAN: The Art of

Scientific Computing. 1992: Cambridge University Press.
[2] MATLAB®. 2015, The MathWorks Inc.: Natick, Massachusetts.
[3] Rose, L.D. and D. Padua, Techniques for the translation of MATLAB programs into

Fortran 90. ACM Trans. Program. Lang. Syst., 1999. 21(2): p. 286-323.
[4] Khawaja, H. and S. Scott, CFD-DEM Simulation of Propagation of Sound Waves in

Fluid Particles Fluidised Medium. The International Journal of Multiphysics, 2011.
5(1): p. 47-60.

[5] Khawaja, H.A., CFD-DEM and Experimental Study of Bubbling in a Fluidized Bed.
The Journal of Computational Multiphase Flows, 2015. 7(4): p. 227-240.

[6] Khawaja, H.A., Sound waves in fluidized bed using CFD–DEM simulations.
Particuology, 2018. 38: p. 126-133.

[7] Khawaja, H. and M. Moatamedi, Semi-Implicit Method for Pressure-Linked
Equations (SIMPLE) – solution in MATLAB®. The International Journal of
Multiphysics. 2018, 12(4), p. 313-326.

[8] Eidesen, H., H. Khawaja, and S. Jackson, Simulation of the HDPE Pyrolysis Process.
The International Journal of Multiphysics. 2018, 12(1), p. 79 - 88.

[9] Brunner, D., H. Khawaja, M. Moatamedi, and G. Boiger, CFD modelling of pressure
and shear rate in torsionally vibrating structures using ANSYS CFX and COMSOL
Multiphysics. The International Journal of Multiphysics. 2018, 12(4), p. 349 - 358.

[10] Myrvang, T, and H. Khawaja. Validation of air ventilation in tunnels, using
experiments and computational fluid dynamics. The International Journal of
Multiphysics. 2018, 12(3), p. 295 - 311.

214

Comparison of Explicit Method of Solution for CFD Euler Problems using

 MATLAB® and FORTRAN 77

[11] Batchelor, G.K., An Introduction to Fluid Dynamics. Cambridge Mathematical Library.
2000, Cambridge: Cambridge University Press.

[12] Warburton, R., Object-oriented Vs. Functional Programming: Bridging the Divide
Between Opposing Paradigms. 2015: O'Reilly Media.

[13] Runge, C., Ueber die numerische Auflösung von Differentialgleichungen.
Mathematische Annalen, 1895. 46(2): p. 167-178.

[14] Butcher, J.C., A stability property of implicit Runge-Kutta methods. BIT Numerical
Mathematics, 1975. 15(4): p. 358-361.

[15] Courant, R., K. Friedrichs, and H. Lewy, Über die partiellen Differenzengleichungen
der mathematischen Physik. Mathematische Annalen, 1928. 100(1): p. 32-74.

[16] Page, C.G., The Professional Programmers Guide to Fortran 77. 1988: Pitman.
[17] The MathWorks, Inc. [cited 2019; Available from:

https://se.mathworks.com/help/symbolic/digits html.

