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ABSTRACT 
In this article, in order to enhance the rate of convergence and scattering of 

particles at the same time, simple techniques are introduced. These 

techniques include: (1) Using the interval search to select a new particle 

candidate, (2) Replacement of three candidate particles instead to worst 

the particles in the population, (3) Using the best result of learning 

coefficients, (4) using a simple method to control the convergence of the 

algorithm in a high number of repetitions. 

In this article, the performance of Quantum-Behaved Particle Swarm 

Optimization (QPSO) algorithm has been upgraded with using the interval 

search method. The proposed method of interval search of quantum-

behaved particle swarm optimization algorithm has achieved better results 

than in the past with the use of quadratic interpolation recombination 

operator and stable deviation and interval search. 

Moreover, the results of the proposed algorithm of Interval Search with 

Quadratic Interpolation and Stable Deviation Quantum-Behaved Particle 

Swarm Optimization (IQS-QPSO) is compared with the other former 

algorithms such as Quantum-Behaved Particle Swarm Optimization (QPSO), 

Quadratic Interpolation Quantum-Behaved Particle Swarm Optimization (Q-

QPSO) and Stable Deviation Quantum-Behaved Particle Swarm 

Optimization (SD-QPSO). Then the performance improvement is reported. 

In order to compare the results of each algorithm, five famous functions are 

used and consequently the results are reported separately for each 

function. 
 

 
1. INTRODUCTION  
Optimizing is a methodical knowledge, with the ability to find out the optimal solution 
between all possible solutions for a problem.  Optimality of solutions depends on the criteria 
that are usually related to that problem or the designer. For example, in designing of an 
engineering structure, solutions will depend on basic requirements of the constraints imposed 
by designer. Constraints imposed by designers or problems intrinsically decrease the number 
of solutions. If a problem is fully constrained, feasible solutions will be achieved. Of all the 
feasible solutions, global optimization will come up with the best solution. However, this best  
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solution will not be always necessary or available. In some cases, local optimization is 
acceptable, especially on issues that the search space is complicated. Modelling of a 
problem is the first step in the optimization. At this step, the main challenge is mathematical 
modelling with respect to all existing constraints. Blocks of the structure that is candidates 
of solution are converted to numerical variables and solutions are demonstrated by 
numerical vectors. The optimum points or optimum results of an optimization problem are 
global minimum or maximum points of a function which is called the objective function. 
Every optimization problem can be considered as a minimization problem [1]. Finding the 
global minimum is the core of global optimization. By making the sign of an objective 
function negative, the optimization problem will find the maximum of the objective 
function. The objective function is the range including acceptable solutions. This range is 
determined by the constraints that must be accurately determined by use of equal or unequal 
signs mathematically. In the simplest possible form, constraints are determining the 
boundary conditions governing the problem. There will be complex relationships between 
the variables in complex problems [2]. The two main categories of optimization algorithm 
are deterministic and stochastic. Particle Swarm Optimization (PSO) is considered as a 
stochastic optimization method that is explored by many researchers. Stochastic 
optimization method is used to solve non-continues, non-convex and non-differentiable 
problems. on the other hand, the deterministic optimization method is suitable for continues, 
convex and differentiable problems [3]. 
 
2. PARTICLE SWARM OPTIMIZATION (PSO) 
Kennedy and Eberhart developed the Particle Swarm Optimization (PSO) in 1995 as a 
random optimization model on basis of social simulation models [4]. The PSO algorithm 
searches a group of particles that are randomly moving in the search space. The best position 
achieved by each particle is called personal experience, which is simultaneously recorded. 
This experience in relation with the part or the whole population will determine the 
willingness of a group to move in a specific direction. This relationship can be fixed or 
adaptive and plays an important role in determining the convergence properties of an 
algorithm. 

Development of particle swarm optimization is based on rules and concepts of organized 
societies in nature such as bird migration, movement of fish and flock of animals. In recent 
years, this method has been widely studied. 

The results show that the proposed method could be compared with other smart direct 
search algorithms such as genetic algorithm [5,6]. 
 
3. MODELING OF PARTICLE SWARM OPTIMIZATION 
The method of particle swarm optimization originated from simulating of social attribute of 
a population of birds. The main rule of finding food for each bird in the population is 
adapting with the speed and acceleration of the nearest neighbor bird based on the distance. 
After data simulation, the researchers [4] realized the ability of PSO model in optimization 
and they presented their optimization model in 1995. 

By setting this theory in the context of mathematics, 𝐴𝐴 ⊂  𝑅𝑅𝑛𝑛is considered as a search space 
and 𝑓𝑓:𝐴𝐴 → 𝑌𝑌 ⊆ 𝑅𝑅 is considered as an objective function. In order to keep the definition as 
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simple as possible, A is assumed as a feasible space of a problem on which any explicit 
constraint is not applied. Apart from search space and objective function, any other 
assumption is not required. 

The mass of the components is called population and each component is called the particle. 
Population is defined as the following set: 𝑆𝑆 =  {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑁𝑁}, where 𝑁𝑁 is number of particle 
(candidate solution) 𝑥𝑥𝑖𝑖 = (𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2 , … , 𝑥𝑥𝑖𝑖𝑖𝑖)𝑇𝑇  ∈ 𝐴𝐴 , 𝑖𝑖 = 1,2, … ,𝑁𝑁 user defines 𝑁𝑁 for algorithm.  

It is assumed that objective function 𝑓𝑓(𝑥𝑥) is available for all particles of 𝐴𝐴 so that each 
particle has a unique function value 𝑓𝑓𝑖𝑖 = 𝑓𝑓(𝑥𝑥𝑖𝑖). It is assumed that all particles of the search 
space are frequently moving. These movements can be defined with the help of velocity 
definition in the form of  𝑣𝑣𝑖𝑖 = (𝑣𝑣𝑖𝑖1, 𝑣𝑣𝑖𝑖2 , … , 𝑣𝑣𝑖𝑖𝑖𝑖)𝑇𝑇 , 𝑖𝑖 = 1,2, … ,𝑁𝑁   

Velocity is being constantly updated so that particles can meet all the areas of 𝐴𝐴. 𝑡𝑡 
represents the number of repetitions. The position of the particle and its velocity are indicated 
as 𝑥𝑥𝑖𝑖(𝑡𝑡)and 𝑣𝑣𝑖𝑖(𝑡𝑡).Velocity is updated based on the information obtained in the previous steps 
of the algorithm. This concept would be possible on basis of assigning a memory to each 
particle and save the best position of each particle. 

Beside the set of 𝑆𝑆 which includes the current positions of each particle, particle swarm 
optimization memorizes the positions of particles as 𝑃𝑃 = {𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑁𝑁} that explains the best 
position that every particle has ever met.  

The positions are in the form of 𝑝𝑝𝑖𝑖 = (𝑝𝑝𝑖𝑖1, 𝑝𝑝𝑖𝑖2, … , 𝑝𝑝𝑖𝑖𝑖𝑖)𝑇𝑇 ∈ 𝐴𝐴, 𝑖𝑖 = 1,2, … ,𝑁𝑁 and  
𝑝𝑝𝑖𝑖(𝑡𝑡) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓𝑖𝑖(𝑡𝑡)  that 𝑡𝑡 is the number of repetitions. 

Particle swarm optimization is simulated based on social behavior. Therefore, PSO needs 
a mechanism enabling every particle to exchange the information and to connect with its 
experience. 

The aim of the algorithm is to approximate the global minimum that has been observed 
by all particles during the run. Therefore, the exchange of such information is necessary. 
Considering 𝑔𝑔 as the index of best position with the lowest amount of objective function in 𝑝𝑝, 
in a certain number of repetitions 𝑡𝑡 , the formula is as below: 

 
𝑝𝑝𝑔𝑔(𝑡𝑡) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑖𝑖(𝑡𝑡)) 

 
As a result, the equation of particle swarm optimization is obtained as follows: 
 

𝑣𝑣𝑖𝑖𝑖𝑖(𝑡𝑡 + 1) = w𝑣𝑣𝑖𝑖𝑖𝑖(𝑡𝑡) + 𝑐𝑐1𝑅𝑅1 �𝑝𝑝𝑖𝑖𝑖𝑖(𝑡𝑡) − 𝑥𝑥𝑖𝑖𝑖𝑖(𝑡𝑡)� + 𝑐𝑐2𝑅𝑅2 �𝑝𝑝𝑔𝑔𝑔𝑔 − 𝑥𝑥𝑖𝑖𝑖𝑖(𝑡𝑡)�           (1) 

 
𝑥𝑥𝑖𝑖𝑖𝑖(𝑡𝑡 + 1) = 𝑥𝑥𝑖𝑖𝑖𝑖(𝑡𝑡) + 𝑣𝑣𝑖𝑖𝑖𝑖(𝑡𝑡 + 1)         ; 𝑖𝑖 = 1,2, … ,𝑁𝑁,    𝑗𝑗 = 1,2, … ,𝑛𝑛             (2) 

 
𝑡𝑡 in the above equations represents the number of repetitions, 𝑅𝑅1and 𝑅𝑅2are random values 

with the uniform distribution in the interval of [0,1] and 𝑐𝑐1and 𝑐𝑐2 are weighting factors which 
𝑐𝑐1 is a personal learning factor and 𝑐𝑐2 is a social learning factor. In the primary sample of 
particle swarm optimization, equal acceleration coefficients were applied to the equation  
 𝑐𝑐 = 𝑐𝑐1= 𝑐𝑐2 in equation (1).  
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It should be noted that the next version of this equation is affected by each of 𝑐𝑐1 and 𝑐𝑐2  
factors individually [7]. Inertia weight factor 𝑤𝑤 is embedded in order to eliminate of the effect 
of velocity 𝑣𝑣𝑖𝑖𝑖𝑖(𝑡𝑡) during the run of the algorithm. Therefore, it is desirable that the value of 𝑤𝑤 
to be decreased by time. as a common choice, the coefficient of w is taken greater than 1.0 at 
the start of running the algorithm in order to explore more particles (for example the amount 
of this coefficient is considered as 1.2), then by a linear decrease in the amount of 𝑤𝑤 to zero 
the fluctuation of particles will be reduced. Usually a positive small value for example, 0.1 is 
considered as the lowest inertia weight factor so that the effect of previous velocity is not 
omitted from the equation. 

In general, the linear reduction of factor 𝑤𝑤 to be indicated in the form of   
𝑤𝑤(𝑡𝑡) = 𝑤𝑤𝑢𝑢𝑢𝑢 − �𝑤𝑤𝑢𝑢𝑢𝑢 − 𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙�

𝑡𝑡
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

    where 𝑡𝑡 represents the number of repetitions, 𝑤𝑤𝑢𝑢𝑢𝑢 and 
𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙are lower and upper limits of 𝑤𝑤 factor and 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  factor is the total number of repetitions.  
Factors of PSO are highly important in velocity, convergence and efficiency of the algorithm. 
Weight factors in the convergence of particles play a vital role. These factors adjust the 
contrast between the capability of population in local search and global search. 

The large factors will help global search, while small amounts, make local search easy. 
Therefore, the suitable amount for inertia weight factor should maintain the balance between 
local and global search and subsequently, the optimal solution would be found at the lowest 
number of repetitions [2]. 

The effectiveness of primary method of PSO has attracted the attention of many 
researchers. Simplicity of PSO allowed the scientists of different disciplines with limited 
background in computers and programming skills to benefit from the PSO as an efficient 
optimization tool instead of previous inefficient methods. As a result, different optimization 
methods and compositions of PSO have been formed, which are generally divided into two 
major categories: 

 
• Hybrid Approaches  
• Changing Approaches, the Particle Swarm Optimization algorithm 

 
Hybrid methods have combined PSO algorithm with one of the known algorithms and will 

lead to improvement of results previously obtained. In reference [8] PSO algorithm is 
combined with Ant Colony algorithm. In reference [9] the combination of PSO algorithm and 
Ant Colony algorithm is classified and considering enzymes, the results have been very 
promising. 

In reference [10,11], combining of two different types of PSO algorithm and 
complementary differences algorithm has led to good results. In reference [12 and 13] Genetic 
Programming combined with PSO algorithm and provides the ability to train the particles.  

Some methods have maintained the nature of PSO algorithm. They have made small 
changes in the structure of Particle Swarm Optimization algorithm and have improved it. 
Unified Particle Swarm Optimization (UPSO), Memetic Particle Swarm Optimization 
(MPSO), Guaranteed Convergence Particle Swarm Optimization (GCPSO), Cooperative 
Particle Swarm Optimization (CPSO), Niching Particle Swarm Optimization (NPSO) 
Quantum Particle Swarm Optimization (QPSO) are some of these methods [ 14, 15, 16, 17, 
18, 19 and 20]. 
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4. QUANTUM PARTICLES SWARM OPTIMIZATION (QPSO) 
Quantum Particle Swarm Optimization (QPSO) was introduced by Sun et al in 2004 [20]. 
Although this method is considered as a kind of Particle Swarm Optimization, it has a different 
framework. PSO benefits from Newton's laws for the motion of the particles but QPSO 
benefits from quantum behavior of particles according to the quantum rules. Quantum 
computing are new theories, which are the result of computer science and quantum mechanics. 
The main objective is to review of all the possible answers regarding to the laws of quantum 
mechanics, and the software necessary to use over the past decade, Quantum computing are 
being paid more attention rather than classical calculations and proved an efficient tool used 
in problem solving. Quantum Particle Swarm Optimization is more convenient and less 
complex comparing with other methods. Moreover, QPSO is capable of parallel processing 
so it is appropriate for solving problems that have a wide area of solution. 

In Classic PSO, a particle is known by its position vector xijt  and velocity vector vijt  that 
defines the trajectory of the particle. A particle moves on a path predetermined by Newtonian 
mechanics. It should be noted that if Quantum mechanics is taken into account, the trajectory 
would be nonsense because xijt and vijt  of a particle cannot simultaneously be determined in 
accordance with the principle of uncertainty. So if in a system, the particles have the quantum 
behavior, the effectiveness of classic 𝑃𝑃𝑃𝑃𝑃𝑃 will be different from the classical 𝑃𝑃SO [21]. 

In quantum mechanics, time-dependent Schrödinger equation is as follows: 
 

𝑗𝑗ħ 𝜕𝜕
𝜕𝜕𝜕𝜕
𝛹𝛹(𝑟𝑟, 𝑡𝑡) = Ħ(𝑟𝑟)𝛹𝛹(𝑟𝑟, 𝑡𝑡)                                              (3) 

 
where: 
 

Ħ(𝑟𝑟) = − ħ2

2𝑚𝑚
𝛻𝛻2 + 𝑉𝑉(𝑟𝑟)                                                (4) 

 
 Where Ħ(𝑟𝑟)is a time-dependent Hamiltonian operator, ħ is Planck's constant, 𝑚𝑚 is mass 

of the particle and 𝑉𝑉(𝑟𝑟) is the potential energy distribution function. 
 Square range 𝑄𝑄 = |𝛹𝛹|2of the wave function 𝛹𝛹(𝑟𝑟, 𝑡𝑡)in equation (3) acts as much as the 

probability of particle motion in the following normalization process: 
 

�|𝛹𝛹(𝑟𝑟, 𝑡𝑡) |2 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1.0 

 
In QPSO, the population is considered as a quantum system in which each particle moves 

towards 𝑝𝑝 position based on quantum state of its wave function. 
In reference [20],the weighted average of best position of a particle 𝑥𝑥𝑖𝑖  is considered as 

the location of the particles 𝑝𝑝𝑖𝑖  and  the best position of the population, 𝑝𝑝𝑗𝑗 , is calculated as 
follows: 

𝑝𝑝𝑗𝑗 =
𝜑𝜑1𝑝𝑝𝑖𝑖𝑖𝑖 + 𝜑𝜑2𝑝𝑝𝑔𝑔𝑔𝑔

𝜑𝜑1 + 𝜑𝜑2
, 𝑗𝑗 = 1,2, … ,𝑛𝑛 
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Where 𝜑𝜑1 = 𝑐𝑐1𝑟𝑟1 and 𝜑𝜑2 = 𝑐𝑐2𝑟𝑟2 , 𝑐𝑐1 and 𝑐𝑐2 are personal and collective learning coefficients 

of 𝑝𝑝𝑝𝑝𝑝𝑝 and 𝑟𝑟1, 𝑟𝑟2 are random numbers with the uniform distribution in the interval [0,1]. To 
indicate 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 performance in the simplest case, a one-dimensional model is considered. 
Assuming the centrality of 𝑝𝑝 population in the equation (5), the ability of moving particles in 
that direction is calculated from the following formula [20]:  

 
𝑉𝑉(𝑥𝑥) = −𝛾𝛾𝛾𝛾(𝑥𝑥 − 𝑝𝑝) = −𝛾𝛾𝛾𝛾(𝑦𝑦)                                       (6) 

 
Where 𝑦𝑦 =  𝑥𝑥 − 𝑝𝑝. Through mathematical calculations, the following wave equation is 

obtained [20]: 
 

𝛹𝛹(𝑦𝑦) = 1
√𝐿𝐿
𝑒𝑒𝑒𝑒𝑒𝑒 �− |𝑦𝑦|

𝐿𝐿
�                                              (7) 

 
And it is needed to calculate the probability as follows: 
 

𝑄𝑄(𝑦𝑦) = |𝛹𝛹(𝑦𝑦)|2 =  1
𝐿𝐿
𝑒𝑒𝑒𝑒𝑒𝑒 �−2 |𝑦𝑦|

𝐿𝐿
�                                   (8) 

 
Where 𝐿𝐿 = ℎ2/𝑚𝑚𝑚𝑚. So far, a probability density of the particle position is obtained. 

Unless the exact location of the particle is obtained, the algorithm is not completely done. So, 
the position of the particle must be measured. This method is known as collapse of classical 
quantum positions. The collapse is possible through the Monte Carlo simulation. 

For more explanation, S is considered as a random number with uniform distribution in the 
interval  [0,1/𝐿𝐿] . In this case, S = 1

𝐿𝐿
u where 𝑢𝑢 is a random number with uniform distribution 

in the interval [0,1]. Replacing 𝑄𝑄(𝑦𝑦)in the left side of equation (8) with S, 𝑥𝑥 in model 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 
appears as follows:  

 
x = p ± L

2
ln �1

u
�                                                        (9) 

 
equation (9) generates two new positions for a particle that are determined by the objective 

function. Reference [20] has demonstrated that this QPSO algorithm converges. The only 
controlling parameter appeared in updating of 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 equation, was the 𝐿𝐿 coefficient.  

The study on the effects of other factors can be a fascinating field in this method. Reference 
[20] includes 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 sensitivity study on changes of the 𝐿𝐿 coefficient [2]. The basic equations 
are considered repeatable by the following forms: 

 
𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡+1 = 𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡 + 𝛽𝛽�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡 � ln �1

𝑢𝑢
�    𝑖𝑖𝑖𝑖   𝑘𝑘 ≥ 0.5                     (10) 

 
𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡+1 = 𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡 − 𝛽𝛽�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡 � ln �1

𝑢𝑢
�    𝑖𝑖𝑖𝑖   𝑘𝑘 < 0.5                     (11) 
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Where  
 

𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡 =
𝑝𝑝𝑖𝑖𝑖𝑖
𝑡𝑡 𝑐𝑐1+𝑐𝑐2𝑝𝑝𝑔𝑔𝑔𝑔

𝑡𝑡

𝑐𝑐1+ 𝑐𝑐2 
                                                  (12) 

 
𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 1

𝑀𝑀
∑ 𝑃𝑃𝑖𝑖𝑀𝑀
𝑖𝑖=1 = (1

𝑀𝑀
∑ 𝑃𝑃𝑖𝑖1𝑀𝑀
𝑖𝑖=1  , 1

𝑀𝑀
∑ 𝑃𝑃𝑖𝑖2, … ,𝑀𝑀
𝑖𝑖=1   1

𝑀𝑀
∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑀𝑀
𝑖𝑖=1  )               (13) 

 
In the original 𝑃𝑃𝑃𝑃𝑃𝑃, each particle independently converges to the global optimum position. 

But in the QPSO algorithm, in spite of the best overall position, particles cannot converge 
toward the best position without considering other particles and interaction. 

 The distance between current position and the position of 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 expressed in equations 
(10) and (11). This distance indicates scattering particles for the next iteration. 

The average of the best of a population or 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is defined as the average of best positions 
of all particles in a population. Parameters of 𝑢𝑢, 𝑘𝑘, 𝑐𝑐1 and 𝑐𝑐2  in the equations of (10) to (13) 
are the random numbers selected in the interval [0,1]. 𝛽𝛽 coefficient is considered as the 
contraction-expansion coefficient. As long as some particles are close to the total optimal 
position, the best position of several particles would be far from the total optimal position. 
Those far particles are named slow particles. The position of 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 effected by the slow 
particles will have a distance from the total optimal position. When slower particles following 
their group converge to the total optimal position, the average position or 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 will slowly 
converge to the total optimal position as well. It should be noted in this algorithm that the 
distance between the 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 position and the best position of individual particles closed to the 
total optimal point will not be reduced quickly. 

Particle’s speed convergence to the total optimal point will be reduced only in such a way 
that the search around the total optimal point accelerates so that the slower particles become 
close to the total optimal point. So, in 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 algorithm with average optimized positioning 
strategy, bad or slower particles are never removed by the aggregation of other particles. This 
is an intelligent issue with more social organism to achieve the optimal solution based on the 
fact that all particles cooperate and participate. Therefore, it should be noted that with patience 
and movement of slow particles, the ability of global search in 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 algorithm will improve 
[22]. 

 
5. IQS-QPSO METHOD 
In this paper, a simple but efficient version of 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 is presented. The main idea of this method 
is based on advanced algorithms of 𝑄𝑄˗𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 and 𝑆𝑆𝑆𝑆˗𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄. Here, besides the functions 
defined in the previous, (𝑄𝑄˗𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄) one internal search function is considered to increase the 
accuracy and performance of the algorithm in the search area. The other change in this 
algorithm is using experience of other researchers particularly applying the best coefficients. 
Similar to 𝑄𝑄˗𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 and 𝑆𝑆𝑆𝑆˗𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄, new particle swarm is generated in this algorithm. After 
comparing the results of the objective function, particles leading to better results will take the 
place of the worst particles. This process is maintained until the end of iteration. This strategy 
is repeated to view the best answer. 
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Quadratic operator is a nonlinear operator that present a new solution vector in the minimum 
point of the second-degree curve passing among the three particles selected from the 
aggregation. 

These particles based on 𝑄𝑄˗𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 here named {𝑎𝑎, 𝑏𝑏, 𝑐𝑐} are selected as follows [23]: 
 

• Choose the particle of the population which offers the minimum objective function value 
{𝑎𝑎 = 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚}. 

• Randomly choose two particles from the remaining population {𝑏𝑏, 𝑐𝑐} 
•  

It should be noted that 𝑎𝑎, 𝑏𝑏 and 𝑐𝑐 should be chosen differently. Since the variation in the 
search space for optimization algorithms is a very important indicator, the method presented 
in this paper to increase the chances of finding a new point is so effective. This is the basic 
idea of this method. Since the better objective function value is kept in this algorithm, it is 
likely to create a new vector of the solution that improve the objective function value than 
existing solutions. 

Based on 𝑄𝑄˗𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 method and quadratic interpolation recombination operator, the first 
candidate particle 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 is as follows: 

 

𝑥𝑥𝑝𝑝𝑝𝑝𝑡𝑡 = 1
2

 �𝑏𝑏𝑧𝑧
2−𝑐𝑐𝑧𝑧2�𝑓𝑓(𝑎𝑎𝑧𝑧)+�𝑐𝑐𝑧𝑧2−𝑎𝑎𝑧𝑧2�𝑓𝑓(𝑏𝑏𝑧𝑧)+�𝑎𝑎𝑧𝑧2−𝑏𝑏𝑧𝑧2�𝑓𝑓(𝑐𝑐𝑧𝑧)

(𝑏𝑏𝑧𝑧−𝑐𝑐𝑧𝑧)𝑓𝑓(𝑎𝑎𝑧𝑧)+(𝑐𝑐𝑧𝑧−𝑎𝑎𝑧𝑧)𝑓𝑓(𝑏𝑏𝑧𝑧)+(𝑎𝑎𝑧𝑧−𝑏𝑏𝑧𝑧)𝑓𝑓(𝑐𝑐𝑧𝑧)
                               (14) 

  
Moreover, a sustained deviation function in parallel to create a second particle 𝑥𝑥𝑞𝑞𝑞𝑞𝑡𝑡  

candidate is considered as recombination operator as follows [22]: 
 

𝑥𝑥𝑞𝑞𝑞𝑞𝑡𝑡 =  
(𝑏𝑏𝑧𝑧 − 𝑐𝑐𝑧𝑧)2𝑓𝑓2(𝑎𝑎𝑧𝑧)

(𝑏𝑏𝑧𝑧 − 𝑐𝑐𝑧𝑧)2𝑓𝑓2(𝑎𝑎𝑧𝑧) + 1
 tanh (�  (𝑏𝑏𝑧𝑧 − 𝑐𝑐𝑧𝑧)𝑓𝑓(𝑎𝑎𝑧𝑧)� + 

(𝑐𝑐𝑧𝑧 − 𝑎𝑎𝑧𝑧)2𝑓𝑓2(𝑏𝑏𝑧𝑧)
(𝑐𝑐𝑧𝑧 − 𝑎𝑎𝑧𝑧)2𝑓𝑓2(𝑏𝑏𝑧𝑧) + 1

tanh�(𝑐𝑐𝑧𝑧 − 𝑎𝑎𝑧𝑧)𝑓𝑓(𝑏𝑏𝑧𝑧)� +  

 
(𝑎𝑎𝑧𝑧 − 𝑏𝑏𝑧𝑧)2𝑓𝑓2(𝑐𝑐𝑧𝑧)

(𝑎𝑎𝑧𝑧 − 𝑏𝑏𝑧𝑧)2𝑓𝑓2(𝑐𝑐𝑧𝑧) + 1
tanh�(𝑎𝑎𝑧𝑧 − 𝑏𝑏𝑧𝑧)𝑓𝑓(𝑐𝑐𝑧𝑧)� 

     (15) 
 
It should be noted that the equation (15) demonstrates a function which is very smoothly 

based on the value 𝑎𝑎𝑧𝑧, 𝑏𝑏𝑧𝑧 and 𝑐𝑐𝑧𝑧. The result of this function is a numerical value in 
neighborhood of these three particles arbitrarily selected from population. 

Then, the third candidate 𝑥𝑥𝑤𝑤𝑤𝑤𝑡𝑡  achieved through the internal search using the following 
algorithm: 

 
1-Calculate the length of the search path 
 

𝐿𝐿 =∝𝑢𝑢−∝𝑙𝑙 
 
Where ∝𝑢𝑢 is a particle with maximum value and ∝𝑙𝑙  is a particle with a minimum value. 
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2- dividing the path by desired equal number of points 
 
𝐹𝐹𝐹𝐹𝐹𝐹 𝑖𝑖 = 1 ∶  𝑛𝑛 

𝑥𝑥𝑤𝑤𝑤𝑤𝑡𝑡 (𝑖𝑖) =∝𝑙𝑙+
𝑖𝑖 + 𝑙𝑙
𝑛𝑛 − 1

 

𝑒𝑒𝑒𝑒𝑒𝑒 
 
Where 𝑛𝑛 is the number of dimensions of the problem. 
 
3- Calculating the objective function for every point and comparison with the rest of the 

points with a minimum value of objective function: 
 

𝐹𝐹(𝑥𝑥𝑤𝑤𝑤𝑤𝑡𝑡 ) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥𝑤𝑤𝑤𝑤𝑡𝑡 (𝑖𝑖)) 
 
4- Introducing the point candidates 𝑥𝑥𝑤𝑤𝑤𝑤𝑡𝑡  with the lowest objective function value. In most 

cases of optimization problems using accumulation method or quantum particles, the 
convergence to the optimal answer in the beginning (early iterations of the algorithm) is more 
quickly done.  

 
But on the other hand, usually the convergence rate near solution is slow so that the 

different techniques of modified algorithms are considered to accelerate this issue. The use of 
the proposed function and modified algorithm even in the neighborhood optimal answer with 
a corresponding distortion can assist to accelerate sudden convergence speed and increase the 
possibility of approaching the optimal solution. 

The calculation in 𝐼𝐼𝐼𝐼𝐼𝐼˗𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 algorithm includes the following steps: 
 
Step 1: Input population with random numbers that are distributed uniformly in the search 
area. 
Step 2: Calculate 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 using equation (13)  
Step 3: Find the position of the particles using equations (10) and (11)  
Step 4: Obtain the value of each particle in the objective function. 
Step 5: If the current value of the objective function is better than the best value in its history, 
update the 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 using the current value. 
Step 6: Update the 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 by comparing 
Step 7: Using equation (14) to choose the first particle. 
Step 8: Using equation (15) to choose the second particle. 
Step 9: Use the internal search algorithm to choose the third particle. 
Step 10: This step is to compare the three particles with the worst three particles in the 
population and replace them if they are better 
Step 11: Repeat from step 2 until the number of iterations of the algorithm to finish or 
acceptable solution is reached. 
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5.1. Changes made in the algorithm coefficients 
Discussions on the coefficients in 𝑃𝑃𝑃𝑃𝑃𝑃 algorithm have been considered by many researchers 
and more advances obtained in this way also indebted to check these factors and their impact 
on the results.  

With the use of the quantum principle in 𝑃𝑃𝑃𝑃𝑃𝑃 and get the I𝑄𝑄𝑄𝑄˗𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 algorithm and increase 
the number of coefficients, discussing the coefficients of the algorithm is necessary. 

In 2002, Kennedy and Clerk performed extensive studies on the learning coefficients [24]. 
They were able to obtain optimum value of the coefficients (𝑐𝑐1 = 𝑐𝑐2 = 2.05). To obtain better 
results in solving problems using a weight factor can change these two coefficients as follows: 
 

phi1 = 2.05 
phi2 = 2.05 

phi = phi1 + phi2 
chi = 2/(phi − 2 + �(phi2 − 4 × phi)) 

w = chi                               
wdamp = 0.99                             
c1 = chi × phi1                         

c2 = chi × phi2 
w = w ∗ wdamp 

 
𝑐𝑐1  and 𝑐𝑐2 coefficients derived from the above, have the best performance of algorithms in 
solving problems. 𝑢𝑢 coefficient is a random number in the range of [0,1]. 𝛽𝛽 coefficient called 
expansion or contraction coefficient has a great impact on results. In fact, this factor can 
indicate the amount of allegiance of particles to its quantum algorithm. 

Small amounts of this factor decrease the features of quantum behavior and its high value 
boost the role of 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and consequently the role of slow or bad particles.  

According to quantum behavior of the 𝐼𝐼𝐼𝐼𝐼𝐼˗𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 algorithm and the results obtained, the 
amount of this coefficient is considered as 1.45. 

By examining results and comparing with each other, one strategy is to increase of 𝑢𝑢 in 
order to improve the power of converging particles, especially in high repetitions, and 
consequently it is away from the quantum properties. This increase is performed by gradual 
increase of u that starts when the number of iterations reached 35% of the total number of 
repetitions during the implementation of software. 
 
6. CHECK THE PERFORMANCE OF THE PROPOSED 
ALGORITHM IQS-QPSO 
In the last section, the proposed 𝐼𝐼𝐼𝐼𝐼𝐼˗𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 algorithm was introduced and the basis of 
applied changes was discussed. Now, the performance of 𝐼𝐼𝐼𝐼𝐼𝐼˗𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 algorithm is reviewed 
and compared to the performance of former algorithms including 𝑄𝑄˗𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄, 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 and 
𝑆𝑆𝑆𝑆˗𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄. In order to compare the results with each other, five common benchmark 
functions in optimization named Rastrigin, Griewank, Ackley, Sphere and Schwefel22 to 
be used. MATLAB code optimization algorithm has been developed to optimize the five 
function tests. In Figure 1, the five functions are illustrated. 
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Fig.1. benchmark functions: (a) Rastrigin (b) Griewank (c) Ackley (d) Sphere  
(e) Schwefel22 

 
All of these functions have a global minimum 𝑓𝑓∗ = 0 in 𝑥𝑥∗ = (0,0, … ,0)𝑇𝑇. Five functions 

equation are shown in Table 1 [25]. 
 

Table1. Numerical benchmark problems. 

optimum Function Benchmark 
name 

0 𝑓𝑓(𝑥𝑥) = ∑ [𝑥𝑥𝑖𝑖2 − 10 cos(2𝜋𝜋𝑥𝑥𝑖𝑖) + 10]𝑛𝑛
𝑖𝑖=1   Rastrigin 

0 𝑓𝑓(𝑥𝑥) = ∑ 𝑥𝑥𝑖𝑖
2

4000
𝑛𝑛
𝑖𝑖=1 − ∏ cos �𝑥𝑥𝑖𝑖

√𝑖𝑖
� + 1𝑛𝑛

𝑖𝑖=1   Griewank 

0 
𝑓𝑓(𝑥𝑥) = −20𝑒𝑒𝑒𝑒𝑒𝑒 �−0.02�∑ 𝑥𝑥𝑖𝑖

2𝑛𝑛
𝑖𝑖=1
𝑛𝑛

 � − 𝑒𝑒𝑒𝑒𝑒𝑒 �∑ cos(2𝜋𝜋𝜋𝜋)𝑛𝑛
𝑖𝑖=1

𝑛𝑛
� + 20 +

exp (1)  

Ackley 

0 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑡𝑡𝑥𝑥 = ∑ 𝑥𝑥𝑖𝑖2𝑛𝑛
𝑖𝑖=1      Sphere 

0 𝑓𝑓(𝑥𝑥) =  ∑ |𝑥𝑥𝑖𝑖|𝑛𝑛−1
𝑖𝑖=0 + ∏ 𝑥𝑥𝑖𝑖𝑛𝑛−1

𝑖𝑖=0   Schwefel22 
 
The results for each of these functions are separately shown in the following Tables 2 to 

6. 
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QPSO:    quantum-behaved particle swarm optimization;  
Q-QPSO:  quantum-behaved particle swarm optimization with quadratic 

interpolation recombination operator;  
SD-QPSO:   stable deviation quantum- behaved particle swarm optimization;  
IQS-QPSO:  interval search with quadratic interpolation and stable deviation 

quantum- behaved particle swarm optimization. 
 
 
Table 2. Comparison results of Rastrigin function (mean best). 
Pop size Number of 

dimensions 
Number of 
generations 

QPSO Q-QPSO SD-QPSO IQS-QPSO 

20 11 50 33.2951 26.0285 5.8319 1.1234 
15 200 30.6552 19.5663 1.3162 0.9960 
20 700 21.8670 18.6481 0.7118 0.0544 

40 11 50 15.8183 13.0594 4.0727 0.9967 
15 200 7.7326 8.8370 0.6661 0.0009 
20 700 11.3848 9.4721 0.4333 0.0014 

80 11 50 8.6533 7.4627 3.5186 0.9966 
15 200 6.9078 6.8225 0.2991 2.7401e-5 
20 700 9.1539 8.6241 0.1990 6.7138e-7 

 
 
Table 3. Comparison results of Griewank function (mean best). 
Pop size Number of 

dimensions 
Number of 
generations 

QPSO Q-QPSO SD-QPSO IQS-QPSO 

20 11 50 0.0315 0.0207 l.5171e-4 4.6745e-05 
15 200 0.0182 0.0081 7.4015e-15 7.5959e-07 
20 700 0.0061 0.0038 l.4433e-16 l.6031e-10 

40 11 50 0.0115 0.0087 7.3334e-5 9.7197e-08 
15 200 0.0031 0.0012 2.1464e-16 4.063e-10 
20 700 1.3142e-4 2.8498e-5 8.0338e-17 3.8136e-13 

80 11 50 0.0036 0.0022 l.0574e-5 3.2644e-10 
15 200 l.9504e-4 4.0409e-5 5.2217e-17 0 
20 700 1.3271e-7 l.0145e-7 7.9614e-18 0 
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QPSO:    quantum-behaved particle swarm optimization;  
Q-QPSO:  quantum-behaved particle swarm optimization with quadratic 

interpolation recombination operator;  
SD-QPSO:  stable deviation quantum- behaved particle swarm optimization;  
IQS-QPSO:  interval search with quadratic interpolation and stable deviation 

quantum- behaved particle swarm optimization. 
 
 
Table 4. Comparison results of Ackley function (mean best). 
Pop size Number of 

dimensions 
Number of 
generations 

QPSO Q-QPSO SD-QPSO IQS-QPSO 

20 11 50 2.2379 2.0908 0.5271 0.0883 
15 200 1.5936 0.9980 0.0851 0.0003 
20 700 0.4700 0.0600 3.6119e-15 1.5319e-09 

40 11 50 1.4122 1.2795 0.3218 0.03836 
15 200 0.5274 0.2490 0.0635 9.3169e-09 
20 700 0.3514 0.0498 2.7830e-15 6.2172e-15 

80 11 50 0.8723 0.5763 0.2681 0.0164 
15 200 0.3740 0.0697 9.0862e-8 3.7825e-11 
20 700 0.4314 0.0549 1.2633e-15 6.2172e-15 

 
 
Table 5. Comparison results of Sphere function (mean best). 
Pop size Number of 

dimensions 
Number of 
generations 

QPSO Q-QPSO SD-QPSO IQS-QPSO 

20 11 50 1.4226 1.1825 0.5241 0.0121 
15 200 1.2018 0.8737 0.1611 0.0020 
20 700 0.9192 0.6084 0.1485 0.0040 

40 11 50 0.4779 0.3298 0.1895 0.0053 
15 200 0.0960 0.0892 0.0124 4.8601e-6 
20 700 0.0142 0.0191 0.0011 3.2189e-14 

80 11 50 0.3543 0.3087 0.1860 0.0018 
15 200 0.0357 0.0191 0.0066 9.0031e-7 
20 700 0.0034 0.0015 1.4438e-4 2.5286e-17 
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QPSO:    quantum-behaved particle swarm optimization;  
Q-QPSO:  quantum-behaved particle swarm optimization with quadratic 

interpolation recombination operator;  
SD-QPSO:   stable deviation quantum- behaved particle swarm optimization;  
IQS-QPSO:  interval search with quadratic interpolation and stable deviation 

quantum- behaved particle swarm optimization. 
 
 
Table 6. Comparison results of Schwefel22 function (mean best). 
Pop size Number of 

dimensions 
Number of 
generations 

QPSO Q-QPSO SD-QPSO IQS-QPSO 

20 11 50 1.5962 1.4673 0.3471 0.0988 
15 200 0.4758 0.3832 3.2816e-118 0.0075 
20 700 0.6803 0.0392 0 0.0042 

40 11 50 0.9302 0.7725 0.1711 0.0601 
15 200 0.1518 0.1085 1.2347e-76 3.0819e-05 
20 700 0.1410 0.0017 0 0.0002 

80 11 50 0.3806 0.3631 0.1437 0.0221 
15 200 0.2665 0.1886 l.3059e-8 3.6878e-08 
20 700 0.0990 0.0238 l.1698e-214 l.4938e-05 

 
In table 2, for Rastrigin function when the population size is selected 20 and the number of 

production and dimension of problems to be respectively 50 and 11, the difference between 
results of the two optimized algorithms of QPSO and Q˗QPSO is equal to 7.2666 unit. 

Reply difference between SD˗QPSO algorithm and two algorithms of Q˗QPSO and QPSO 
is 20.1966 and 27.4632 respectively. 

Reply difference between IQS˗QPSO algorithm and QPSO, Q˗QPSO and SD˗QPSO is 
respectively, 32.1717, 24.9051 and 4.7085. On the other hand, when the population size is 80, 
number of dimension is 20 and number of production in function is 700, the difference 
between the algorithm IQS˗QPSO and QPSO, Q˗QPSO and SD˗QPSO  is 9.1539, 8.6241and 
0.1990 . 

In the latter case, increase in the performance of the algorithm up to three million times is 
also visible. This means dramatic increase in performance optimization algorithm IQS˗QPSO 
with rising population and the number of productions compared to the previous algorithms. 

By examining Table 3 in population size 20, dimension number 11 and generation number 
50, IQS˗QPSO algorithm generates the results that is 673 times better than results of QPSO. 
Same comparison for the results of IQS˗QPSO is respectively 442 times and 3 times better 
than Q˗QPSO and SD˗QPS that is due to the absolute superiority of the IQS˗QPSO algorithm 
than the other three algorithms. 

By a closer look at this table, interesting results to be revealed. Considering the size of 20, 
by increase of dimension and generation, IQS˗QPSO algorithm loses its superiority to 
SD˗QPSO algorithm. The main reason for the decline in quality is high number of repetitions. 
By the increase of the number of repetitions, particles would be very small amounts and the 
quality and speed of convergence of the algorithm has been reduced. However, by the increase 
of population, the superiority of this algorithm is proved, and better results would be obtained, 
so that considering the population size of 80, IQS˗QPSO algorithm would achieve the precise 
result of zero. 

 
  



127 Int. Jnl. of Multiphysics Volume 13 · Number 2 · 2019 

 

 
 
Table 4 shows that considering the population size 20, dimension number 11 and 

generation number 20, the results of IQS˗QPSO algorithm are improved 25, 23 and 6 times 
comparing to QPSO, Q˗QPSO and SD˗QPSO. Similar to results of Table 3, by increase of 
repetitions, IQS˗QPSO algorithm loses its superiority to SD˗QPSO. However, the study of all 
results points out that the performance of IQS˗QPSO algorithm is considerably better than 
other algorithms. 

Table 5 illustrates the better results of the proposed algorithm of IQS˗QPSO compared to 
the results of the previous algorithms of QPSO, Q˗QPSO and SD˗QPSO. For example, 
considering population of 100, dimension of 20 and generation of 250, the results of 
IQS˗QPSO algorithm compared with the results of QPSO, Q˗QPSO algorithms are 1.3446e14, 
5.9321e13 and 5.7099e12 times better. 

In Table 6, with the population size 20, dimension size 11 and generation 20, IQS˗QPSO 
algorithm is 16, 14 and 3 times better than QPSO, Q˗QPSO and SD˗QPSO respectively. 
Similar to the results extracted from table 3 and 4, by increase in number of generation and 
constant population size, IQS˗QPSO algorithm loses its absolute superiority to the SD˗QPSO 
algorithm. In this particular issue, by increase in the number of dimensions and repetitions, 
the results of the IQS˗QPSO algorithm are extremely degraded and the algorithm poorly acts. 
 
7. RESULTS AND DISCUSSIONS 
In this paper, a new version of the quantum-behaved PSO algorithm called (IQS-QPSO) is 
introduced. The main goal is to improve the performance of the algorithm using the simplest 
methods and ideas with the preservation of the quantum properties of the algorithm. 

After presenting the IQS-QPSO algorithm, it is applied on five test functions. The results 
obtained from this algorithm are compared with the former algorithms such as QPSO, 
Q˗QPSO and SD˗QPSO on basis of different population size ranging from 20 to 200, different 
generation ranging from 20 to 1500 and different dimensions ranging from 11 to 20. 

According to tables 2-6, IQS-QPSO algorithm obviously results in near optimum solution 
in all the cases. The results of simulations show the fast converging and high performance of 
IQS-QPSO algorithm. Therefore, the superiority of IQS-QPSO algorithm is proven.  The IQS-
QPSO algorithm is suggested as an advanced optimization algorithm that can solve more 
complex problem. 
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