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ABSTRACT 
In this paper, a mathematical and numerical description of the bulk viscosity 

for an equation of state that is linear in density is presented. The bulk 

viscosity is used in many academic and industrial dynamic codes, and there 

is no description concerning the smearing of the shock for engineers and 

researchers in the manuals or in published papers.  To clearly show the 

usefulness of the bulk viscosity, a simple one-dimensional problem is used, 

where a shock is developed through a pressure wave travelling inside a 

compressible fluid. By adding a viscous pressure to equilibrium equations, 

high oscillations in the front shock have been considerably attenuated, by 

thickening the shock over few element mesh sizes.  

The method is developed mathematically for one dimensional 

hydrodynamic problem but has been used successfully for more complex 

applications including high-impact problems, explosive detonation in air and 

underwater explosions. Application of the method to a complex problem is 

illustrated in calculation of the peak velocity and shape of an explosively-

formed projectile (EFP). The symmetry common to most EFPs permits their 

characterization using 2D axisymmetric analysis. Formation of an EFP entails 

volumetric expansion of the explosive and extensive plastic flow of the metal 

plate, both of which can be calculated using an Arbitrary Lagrangian Eulerian 

(ALE) method. Accordingly, a 2D axisymmetric ALE was used to calculate 

the velocity and shape of an EFP. The methodology was validated against 

EFP velocity and shape measurements published in SAND-92-1879 [Hertel 

1992]. 

The Jones-Wilkins-Lee (JWL) equation of state (EOS) were used for the LX-

14 high explosive backing the copper plate. The explosive burn was initiated 

using a high explosive material which converts the explosive charge into a 

gas at high pressure and temperature. The copper plate and steel casing 

were included using the constitutive model developed by Johnson and 

Cook. An equation of state developed by Grüneisen for high-pressure 

simulation was used for the metals. The calculated peak velocity of the EFP 

was in excellent agreement with the peak velocity published by Hertel. 

However, the calculated shape did not agree with the experimental 

shadowgraph of the plate. Specifically, the calculated shape was elongated 

compared to the measurement and continued to elongate as long as the 

calculation was continued. In other words, the shape of the copper plate did 

not reach a dynamic equilibrium. 
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The methodology for calculating the EFP peak velocity and shape is 

described. The calculated results are compared to measurements from 

Hertel. Finally, possible sources for the inaccuracy of the calculated shape 

are investigated. These include the element size and formulation, initial 

geometry of EFP, explosive equation of state and the constitutive model for 

the copper plate. 

 

 
1. INTRODUCTION  
Simulation of supersonic flows and associated Fluid Structure Interaction (FSI) increasingly 
has become a focus of computational engineering for industrial and academic applications. 
Attempts to solve these problems encounter two major challenges: high mesh distortion and 
spurious oscillations in the shock front. Shocks have a narrow thickness, on the order of a 
few mean free path collisions in the ambient gas. Thus, to maintain accuracy, the mesh size 
should be scaled until the shock is resolvable by each individual element. In practice, this 
method is not viable because the algorithm is requested to handle a massive amount of 
computational time. Furthermore, the equations of conservation of mass, momentum and 
energy across a shock require that kinetic energy be transformed into internal energy or 
heat. In the absence of physical viscosity in the immediate vicinity of the shock, an artificial, 
unphysical one is commonly added to dissipate the excess of energy. This has the effect of 
thickening the shock and smearing the discontinuity into a smooth transition zone, and thus, 
the shock is automatically captured on the computational mesh.  

Various approaches have been investigated to solve FSI problems. One of the commonly 
used approaches to solve these problems is the Arbitrary-Lagrangian-Eulerian (ALE) 
formulation [Aquelet, Souli, and Olovson (2005)], which has been used with success in the 
simulation of fluid with large motion, such as a sloshing fuel tank in the automotive industry 
and bird impact in aeronautical industry. Once the simulations are validated by experimental 
test results, it can be used as a design tool for the improvement of the structure involved.  

Several papers have been published in the literature to discuss methods for solving mesh 
distortion. Meshfree methods such as SPH (Smooth Particle Hydrodynamic) [Al-Bahkali, 
Elkanani and Souli (2015); Al-Bahkali E., Souli and Al-Bahkali T. (2015)], where the fluid 
domain is represented by particles with no connectivity. The ALE (Arbitrary Lagrangian 
Eulerian) formulation have been presented to circumvent the problem [Souli, Kultsepand Al-
bahkali et al. (2016); Souli, Al-Bahkali E. and Albahkali T. et al. (2017)].  

In this paper, we examine the ALE method and its description and implementation using 
explicit time integration method. The Lagrangian formulation, where the mesh moves with 
material, is mainly used to solve problems in solid mechanics but can be used for FSI problems 
[Moatamedi, Souli and Al-Bahkali (2014); Elkanani, Al-Bahkali and Souli (2017); Fan, Yao, 
and Yang et al. (2018)]. For small deformation, Lagrangian formulation can solve fluid 
structure interface and material boundary accurately. The main limitation of this formulation 
for large fluid deformation or a moving structure is mesh distortion, since the fluid is solved 
on a moving domain due to the structure’s motion.  

The paper concentrates on the validation of an ALE methodology that has been 
implemented in an explicit finite element structural dynamics code to be able to simulate fluid 
structure interaction problems, where the fluid mesh can be defined by an ALE or Eulerian 
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mesh. From an algorithmic point of view, a fluid element can contain more than one type of 
fluid material, for structural inflation in ambient air, an element may contain one or two 
different materials, inside structure pressurized gas and outside ambient air. During the 
simulation, state variables are computed and stored for each material in each element. An 
interface tracking algorithm based on Youngs’ method is used to capture the interface between 
the two materials inside the element. This method was used successfully to model many 
industrial and academic applications as the sloshing tank problem. 

In Section 2 of this paper we describe the ALE formulation of the equilibrium equation in 
a moving mesh and the advection algorithms used to solve mass, momentum and energy 
conservation. It is well known from previous papers that in the absence of physical viscosity, 
high nonphysical oscillations are generated in the immediate vicinity of the shock. These 
oscillations can generate high mesh distortion. To treat shock problems, and avoid high 
spurious oscillations, a viscous pressure is added to equilibrium equations. In Section 3 we 
prove in a mathematical form using a one-dimensional case that density, pressure and velocity 
of the new equilibrium equations vary rapidly but continued across the shock. The method has 
been applied to one dimensional flow but can be used for the study of more complicated flows 
and fluid structure interaction problems.  

The aim of Section 4 is to illustrate the method for a three-dimensional problem involving 
an explosively-formed projectile (EFP). The symmetry common to most EFPs permits their 
characterization using 2D axisymmetric analysis. Formation of an EFP entails volumetric 
expansion of the explosive and extensive plastic flow of the metal plate, both of which can be 
calculated using an Arbitrary Lagrangian Eulerian (ALE) finite element method. Accordingly, 
the 2D axisymmetric ALE capability is applied to calculate the velocity and shape of an EFP. 
The methodology was validated against EFP velocity and shape measurements published 
SAND-92-1879 [Hertel 1992]. 

In the example, the calculated peak velocity of the EFP was in excellent agreement with 
the peak velocity published by Hertel. However, the calculated EFP shape did not agree with 
the experimental shadowgraph. Specifically, the calculated shape was elongated compared to 
the measurement and continued to elongate as long as the calculation was continued. 

For the example, the calculated results are compared to measurements from Hertel. 
Finally, possible sources for the inaccuracy of the calculated shape are discussed. These 
include the element size and formulation, initial geometry of EFP, explosive equation of state 
and the constitutive model for the copper plate. 
 
2. EQUILIBRIUM EQUATIONS IN ALE FORMULATION 
Fluid problems, in which interfaces between different materials (gas and ambient air) are 
present, are more easily modeled by using a Lagrangian mesh. However, if for example an 
analysis of complex tank geometry is required, the distortion of the Lagrangian mesh makes 
such a method difficult to use, and many re-meshing steps are necessary for the calculation to 
continue. Another method to use is the Eulerian formulation. This change from a Lagrangian 
to an Eulerian formulation, however, introduces two problems. The first problem is the 
interface tracking [Young (1982)], and the second problem is the advection phase or the 
advection of fluid material across element boundaries.  

To solve these problems, an explicit finite element method for the Lagrangian phase and 
a finite volume method (flux method) for the advection phase are used. We can refer to several 
explicit codes; see Benson [Benson (1992)] for a full description of the explicit finite element 
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method. The advection phase has been developed for extending the range of applications 
that cannot use the Lagrangian formulation only. Current applications include sloshing 
involving a free surface and high velocity impact problems, where the target is modeled as 
a fluid material, thus providing a more realistic representation of the impact event by 
capturing large deformations. 

An ALE formulation contains both pure Lagrangian and pure Eulerian formulations. The 
pure Lagrangian description is the approach that the mesh moves with the material, making it 
easy to track interfaces and to apply boundary conditions. Using an Eulerian description, the 
mesh remains fixed while the material passes through it. Interfaces and boundary conditions 
are difficult to track using this approach; however, mesh distortion is not a problem because 
the mesh never changes. In solid mechanics, a pure Eulerian formulation is not useful, because 
it can handle only a single material in an element, while an ALE formulation is capable of 
handling more than one material in an element. 

In the ALE description, an arbitrary reference coordinate is introduced in addition to the 
Lagrangian and Eulerian coordinates. The material derivative with respect to the reference 
coordinate can be described in equation (1). Thus, substituting the relationship between the 
material time derivative and the reference configuration time derivative derives the ALE 
equations. 

 
𝜕𝜕𝜕𝜕(𝑋𝑋𝑖𝑖,𝑡𝑡)

𝜕𝜕𝜕𝜕
= 𝜕𝜕𝜕𝜕(𝑥𝑥𝑖𝑖,𝑡𝑡)

𝜕𝜕𝜕𝜕
+ 𝑤𝑤𝑖𝑖

𝜕𝜕𝜕𝜕(𝑥𝑥𝑖𝑖,𝑡𝑡)
𝜕𝜕𝑥𝑥𝑖𝑖

           (1) 

 
Where 𝑋𝑋𝑖𝑖 is the Lagrangian coordinate, xi the Eulerian coordinate, 𝑤𝑤𝑖𝑖  is the relative 

velocity. Let denote by 𝑣𝑣 the velocity of the material and by 𝑢𝑢 the velocity of the mesh. In 
order to simplify the equations we introduce the relative velocity 𝑤𝑤 =  𝑣𝑣 −  𝑢𝑢. Thus, the 
governing equations for the ALE formulation are given by the following conservation 
equations (2) to (4): 
(i) Mass equation.  

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝜌𝜌 𝜕𝜕𝑣𝑣𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

− 𝑤𝑤𝑖𝑖
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

                (2) 

 
(ii) Momentum equation.  
The strong form of the problem governing Newtonian fluid flow in a fixed domain consists 
of the governing equations and suitable initial and boundary conditions. The equations 
governing the fluid problem are the ALE description of the Navier-Stokes equations: 
 

𝜌𝜌 𝜕𝜕𝑣𝑣𝑖𝑖
𝜕𝜕𝜕𝜕

= 𝜎𝜎𝑖𝑖𝑖𝑖,𝑗𝑗 + 𝜌𝜌𝑏𝑏𝑖𝑖 − 𝜌𝜌𝑤𝑤𝑖𝑖
𝜕𝜕𝑣𝑣𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

               (3) 

 
Boundary and initial conditions need to be imposed for the problem to be well-posed. 

 
(iii) Energy equation. 

𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜎𝜎𝑖𝑖𝑖𝑖𝑣𝑣𝑖𝑖,𝑗𝑗 + 𝜌𝜌𝑏𝑏𝑖𝑖𝑣𝑣𝑖𝑖 − 𝜌𝜌𝑤𝑤𝑗𝑗
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

                               (4) 
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Note that the Eulerian equations commonly used in fluid mechanics by the computational 

fluid dynamics (CFD) community, are derived by assuming that the velocity of the reference 
configuration is zero and that the relative velocity between the material and the reference 
configuration is therefore the material velocity. The term in the relative velocity in (3) and (4) 
is usually referred to as the advective term, and accounts for the transport of the material past 
the mesh. It is the additional term in the equations that makes solving the ALE equations much 
more difficult numerically than the Lagrangian equations, where the relative velocity is zero.  

In the second phase, the advection phase, transport of mass, internal energy and 
momentum across cell boundaries are computed; this may be thought of as remapping the 
displaced mesh at the Lagrangian phase back to its original or arbitrary position. 

From a discretization point of view of (2), (3) and (4), one-point integration is used for 
efficiency and to eliminate locking. The zero energy modes are controlled with an hourglass 
viscosity [Benson (1992)]. A shock viscosity, with linear and quadratic terms, is used to 
resolve the shock wave [Von Neumann and Richtmyer (1950)]; a pressure term is added to 
the pressure in the energy equation (4). The resolution is advanced in time with the central 
difference method, which provides a second order accuracy in time using an explicit method 
in time. For each node, the velocity and displacement are updated using explicit time 
integration. 

The multi-material formulation is attractive for solving a broad range of nonlinear 
problems in fluid and solid mechanics, because it allows arbitrary large deformations and 
enables free surfaces to evolve. The Lagrangian phase of the VOF method is easily 
implemented in an explicit ALE finite element method. Before advection, special treatment 
for the partially voided element is needed. For an element that is partially filled, the volume 
fraction satisfies 𝑉𝑉𝑓𝑓 ≤ 1, and the total stress by σ is weighted by volume fraction 𝜎𝜎𝑓𝑓  =  𝜎𝜎.𝑉𝑉𝑓𝑓. 

In the second phase, the transport of mass, momentum and internal energy across the 
element boundaries is computed. This phase may be considered as a re-mapping phase. The 
displaced mesh from the Lagrangian phase is remapped into the initial mesh for an Eulerian 
formulation, or an arbitrary undistorted mesh for an ALE formulation. 

In this advection phase, we solve a hyperbolic problem, or a transport problem, where the 
variables are density, momentum and internal energy per unit volume. Details of the numerical 
method used to solve the equations are described in detail in [Von Neumann and Richtmyer 
(1950)], where the Donor Cell algorithm, a first order advection method and the Van Leer 
algorithm, a second order advection method [Young (1982)] are used. As an example, the 
equation for mass conservation is: 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝛻𝛻. (𝜌𝜌𝜌𝜌) = 0           (5) 

 
It is not the goal of this paper to describe the different algorithms used to solve equation 

(6); these algorithms have been described in detail in [Aquelet, Souli, and Olovson (2005); 
Ozdemir, Souli and Fahjan (2010)]. 
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3. ARTIFICIAL SHOCK VISCOSITY 
Mathematically, shocks are treated as discontinuities in the history variables, energy, 
pressure and velocity; but physically, shocks have a narrow thickness on the order of a few 
collisions mean free path in the ambient gas. For air at Standard Temperature and Pressure 
(STP), the mean free path is estimated to 70 nanometers, [Souli and Gabrys (2012)]. Thus, 
to keep the accuracy of the results, the mesh size should be scaled until the shock is 
resolvable by each individual element. In practice, this method is not viable because the 
algorithm is requested to handle a massive amount of processor time, and thus numerically 
the shock front cannot be represented by any mesh. 

To clearly describe shock phenomena from a mathematical and numerical point of view, 
we consider equilibrium equations described previously for a non-viscous fluid, 
hydrodynamic equations, called inviscid Navier-Stokes equations or Euler equations: 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝜌𝜌 𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣)              (6) 

 

𝜌𝜌 𝜕𝜕𝑣𝑣𝑖𝑖
𝜕𝜕𝜕𝜕

= −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

           (7) 

 

𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝑃𝑃.𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣)               (8) 

 
The system of equations (6-8) is closed by using an equation of state for pressure. An 

important phenomenon that arises with these equations is the formation of shock; 
mathematically equations (6-8) develop a shock, which lead to a discontinuity, and the 
problem is well-posed only if the shock conditions are satisfied. These conditions, called 
Rankine-Hugoniot conditions, describe the relationship between the states on both sides of 
the shock for conservation of mass, momentum and energy across the shock and are derived 
by enforcing the conservation laws in integral form over a control volume that includes the 
shock (see Fig. 1).  

In the absence of physical viscosity, high non-physical oscillations are generated in the 
immediate vicinity of the shock. To illustrate this phenomenon, we look at a problem of 
pressure wave propagating in a 10m long tube, loaded by a pressure pulse of 1 bar, applied at 
the left end of the tube. An initial pressure of 0.994 bar is applied to the air inside the tube as 
described in Fig. 2. To illustrate a one-dimensional problem, both velocities on vertical and 
normal directions are constrained. 

For an ideal gas equation of state, to treat the shock and avoid numerical oscillations at the 
front shock, Von Neumann et al. [Von Neumann and Richtmyer (1950)] proposed a viscous 
pressure term, in the equilibrium equations (6-8), called bulk viscosity. By adding an 
appropriate viscous pressure 𝑄𝑄 to the conservation equations, the full continuous physics is 
described and equations (9-11) possesses a continuous solution. 

The bulk viscosity 𝑄𝑄 is added to each element in compression, and no viscosity is added 
for element that is in tension. By adding the bulk viscosity 𝑄𝑄, equation (11), we show that the 
equations (9-11) possess a continuous solution that satisfy conservation laws as well as 
Rankine-Hugoniot conditions. 
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Figure 1. Shock development for density, velocity, pressure using equations (6-8) 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝜌𝜌 𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣)              (9) 

 

𝜌𝜌 𝜕𝜕𝑣𝑣 
𝜕𝜕𝜕𝜕

= −𝜕𝜕(𝑃𝑃+𝑄𝑄)
𝜕𝜕𝜕𝜕

            (10) 

 

𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −(𝑃𝑃 + 𝑄𝑄).𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣)          (11) 

 
 
where the viscous pressure 𝑄𝑄 is given by: 
 

𝑄𝑄 = (𝑞𝑞. 𝑙𝑙) 
2.𝜌𝜌.𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣) 

2   𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣) < 0 
        (12) 

𝑄𝑄 = 0      𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣) > 0 
 
𝑣𝑣 is the fluid velocity, 𝑙𝑙 a characteristic length of the shock smearing, and 𝑞𝑞 a scale factor 

for the thickness of the smearing.  
 
The viscous pressure irreversibly converts mechanical energy into heat; and allows 

numerical simulation of shock fronts by meeting the following conditions: 
 

1. Thickness of the shock layer is of the same order as the computational grid, independently 
of the material and the strength of the shock. 

2. Effect of Q is negligible outside the shock layer and Hugoniot conditions hold outside the 
shock layer. 

3. Mass, energy and momentum are exactly conserved across the shock front.  
4. Conservation equations (9-11) including Q must possess a continuous solution.  

  

x 

U 

ρ0, ʋ0, P0, e0 

ρ1, ʋ1, P1, e1 
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Rerunning the same problem described in Fig. 1, by using equations (9-11), with bulk 

viscosity, equation (12), Fig. 2 shows both pressures with and without the viscous pressure Q.  
It is clear from these two examples that the use of the bulk viscosity in the simulation of 

non-viscous fluid for impact problem leads to a smooth solution that solve spurious high 
oscillations in front shock.  Most industrial and academic software for dynamic explicit 
analysis refer to Von Neumann et al. [Von Neumann and Richtmyer (1950)] without giving 
any guidelines or details to users. For an equation of state that is linear in density, no paper 
has been published in the literature, showing that equations (9-11), with Q defined by equation 
(12), possess a continuous solution that satisfies conservation laws. It is the aim of this paper 
to show that for an equation of state that is linear in density, equations (9-11) possess a 
continuous solution and for the shock layer on the same order as the computational grid.  

To illustrate high oscillations generated near a shock, it is useful to plot pressure along the 
computational domain. This can be clearly described in [Souli et al. (2018)], where 
oscillations can be drastically reduced in the vicinity of the shock when bulk viscosity is added 
to the hydrodynamic equations. Using viscous pressure term or bulk viscosity to 
hydrodynamic equations of equilibrium, spurious oscillations of high frequencies can be 
damped out without loss of accuracy. This approach has been used in many nonlinear software 
simulations such as LSDYNA Hallquist [Hallquist (2013)], and known as Richtmyer and Von 
Newman viscosity or bulk viscosity. 
 

 
Figure 2: Shock loading and unloading in an element 
 
3.1. Mathematical description of Artificial Shock viscosity 
By adding a viscous pressure to equilibrium equations, we can mathematically prove that 
the solution is continuous, and the shock is smeared over a distance that is of the order of 
q.l, in equation (12) 

For clarity, we consider a one-dimensional equilibrium equation with an equation of state 
that is linear in density for the pressure. Let 𝑉𝑉 =  1/𝜌𝜌, the specific volume, from mass 
equation (9) we have: 
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𝑑𝑑𝑖𝑖𝑖𝑖(𝑣𝑣) = − 1
𝑉𝑉
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= − 𝑉̇𝑉
𝑉𝑉

        (13) 

 

𝑄𝑄 = (𝑞𝑞 . 𝑙𝑙) 
2.𝜌𝜌 

2. 𝑉𝑉 2
.

𝑉𝑉
                (14) 

 
using mass conservation 𝜌𝜌. 𝑙𝑙 =  𝜌𝜌0. 𝑙𝑙0 , we have: 
 

𝑄𝑄 = (𝑞𝑞.𝜌𝜌0𝑙𝑙0) 
2 𝑉𝑉 2

.

𝑉𝑉
               (15) 

 
Thus, we are looking for solutions where the shock front propagates with a constant 

velocity 𝑈𝑈. From a mathematical point of view, it is more convenient to use a change of 
variable with a constant shock speed 𝑈𝑈 with respect to the undisturbed medium. 

 
𝑤𝑤 = 𝑥𝑥0 − 𝑈𝑈. 𝑡𝑡             (16) 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝑈𝑈; 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥0

. 𝜕𝜕𝑥𝑥0
𝜕𝜕𝜕𝜕

= 𝜌𝜌
𝜌𝜌0

           (17) 

 
Using the change of variable (16) and (17), mass and momentum conservation equations 

(9) and (10) are now: 
 

−𝑈𝑈. 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜌𝜌 
2

𝜌𝜌0
. 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0         (18) 

 

−𝑈𝑈.𝜌𝜌. 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜌𝜌
𝜌𝜌0

. 𝜕𝜕(𝑃𝑃+𝑄𝑄)
𝜕𝜕𝜕𝜕

= 0        (19) 

 
We first combine equations (18) and (19) to get conservation of mass and momentum with 

the new variable w: 
 

𝜌𝜌02.𝑈𝑈 
2. 𝜕𝜕(1/𝜌𝜌)

𝜕𝜕𝜕𝜕
+ 𝜕𝜕(𝑃𝑃+𝑄𝑄)

𝜕𝜕𝜕𝜕
= 0                    (20) 

 
Equation (18) shows that: 
 

𝜌𝜌02.𝑈𝑈 
2. 1
𝜌𝜌

+ 𝑃𝑃 + 𝑄𝑄 = 𝐶𝐶        (21) 

 
where 𝐶𝐶 is a constant with respect to the variable w that need to be defined. Using 𝑉𝑉 =

 1/𝜌𝜌, we get the new momentum conservation equation, that leads to an ordinary equation for 
𝑉𝑉 as a function of w. The equation for 𝑉𝑉 will have a continuous solution that can be solved 
analytically. 
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𝜌𝜌02.𝑈𝑈 
2.𝑉𝑉 + 𝑃𝑃 + 𝑄𝑄 = 𝐶𝐶                  (22) 

  
Now, let us express the bulk viscosity Q in (15) as a function of the new variable 𝑤𝑤: 
 

𝑄𝑄 = (𝑞𝑞. 𝑙𝑙𝑜𝑜 .𝜌𝜌0𝑈𝑈) 
2.𝜌𝜌. (𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
) 
2               (23) 

 
To illustrate the well-functioning of the quadratic bulk viscosity, we use for the pressure 

an equation of state that is linear in density: 
 

𝑃𝑃 = 𝐾𝐾. ( 𝜌𝜌
𝜌𝜌0
− 1)                  (24) 

 
using specific volume 𝑉𝑉 =  1/𝜌𝜌, and 𝑉𝑉0  = 1

𝜌𝜌0
, equation of state (24) gives: 

 

𝑃𝑃 = −𝐾𝐾. (𝑉𝑉−𝑉𝑉0)
𝑉𝑉

                   (25) 

 
Now, the pressure term P in equation (25) can be expressed in the momentum equation 

(22): 
 

𝜌𝜌02.𝑈𝑈 
2.𝑉𝑉 − 𝐾𝐾 1

𝑉𝑉
(𝑉𝑉 − 𝑉𝑉0) + 𝑄𝑄 = 𝐶𝐶                   (26) 

 
using equation (26) away from the shock, where Q = 0: 

 
For 𝑉𝑉 =  𝑉𝑉0, we have 
 

𝐶𝐶 = 𝜌𝜌02.𝑈𝑈 
2.𝑉𝑉0                   (27) 

 
For 𝑉𝑉 =  𝑉𝑉1, we have 
 

𝜌𝜌02.𝑈𝑈 
2.𝑉𝑉1 − 𝐾𝐾 1

𝑉𝑉1
(𝑉𝑉1 − 𝑉𝑉0) = 𝐶𝐶            (28) 

 
by replacing 𝐶𝐶 defined in (27) into (28) we have: 
 

𝜌𝜌02.𝑈𝑈 
2. = 𝐾𝐾

𝑉𝑉1
          (29) 

 
Now, we replace Q from (23) and C from (27) in equation (28): 
 
 

𝜌𝜌02.𝑈𝑈 
2.𝑉𝑉 − 𝐾𝐾

1
𝑉𝑉

(𝑉𝑉 − 𝑉𝑉0) + (𝜌𝜌02.𝑈𝑈 
2. 𝑞𝑞 

2. 𝑙𝑙 2)
1
𝑉𝑉

(
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

) 
2 = 𝜌𝜌02.𝑈𝑈 

2.𝑉𝑉0 
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using equation (29) for 𝜌𝜌02.𝑈𝑈 

2, we get an ordinary differential equation (30) for 𝑉𝑉 as a 
function of 𝑤𝑤: 

 

(𝑞𝑞 
2. 𝑙𝑙 2)(𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
) 
2 = 𝑉𝑉0.𝑉𝑉 − 𝑉𝑉 

2 + (𝑉𝑉 − 𝑉𝑉0).𝑉𝑉1        (30) 

 
which can be written as: 
 

(𝑞𝑞 
2. 𝑙𝑙 2)(𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
) 
2 = (𝑉𝑉 − 𝑉𝑉0). (𝑉𝑉1 − 𝑉𝑉)    (31) 

 
Equation (31) is an ordinary differential equation that has a continuous solution for 𝑉𝑉 as 

a function of 𝑤𝑤, and can be integrated analytically to give the shape of the front shock: 
 

𝑉𝑉(𝑤𝑤) = (𝑉𝑉0+𝑉𝑉1
2

) + (𝑉𝑉0−𝑉𝑉1
2

). 𝑠𝑠𝑠𝑠𝑠𝑠( 𝑤𝑤
𝑞𝑞.𝑙𝑙

)    (32) 

 

 
Figure 3: Specific volume as a continuous function of the variable 𝑤𝑤 

 

Numerically the characteristic length 𝑙𝑙 represents the mesh size, using a dimensionless 
constant 𝑞𝑞 in Fig. 2 of the order of unity, the thickness of the shock layer can be represented 
by 3 to 5 mesh elements. From equation (31), it is obvious that the shock layer is independent 
of the strength of the shock and of the material bulk modulus 𝐾𝐾.  

By deriving twice the specific volume 𝑉𝑉 with respect to 𝑤𝑤, it is straightforward to show 
that (32) is a solution of the ordinary differential equation (31). 
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4. APPLICATION AND NUMERICAL SIMULATION. 
The ALE implementation detailed above was used to calculate the shape and peak velocity 
of an explosively formed projectile (EFP) as described in in SAND-92-1879 [Hertel 1992]. 
The results of the calculation were compared against experimental results detailed in the 
report. Measurements include the peak velocity and shape for an explosively-backed copper 
flyer plate. The plate is an OFHC (oxygen-free high thermal conductivity) copper explosive 
lens propelled by the high explosive LX-14. The casing is AISI 4340 steel. Additional 
details and the cross section of the assembly are provided in SAND-92-1879. 
 
4.1 ALE Controls and Domain 
The Eulerian domain was composed of area-weighted axisymmetric solids. The domain 
itself is shown in Figure 4. The domain element size was 0.7mm 
 

 
Figure 4. Hertel Validation - Eulerian Domain with Filled Parts 

 
A sequential filling routine was used to define the subdomains of the air, explosive and 

metals. Accordingly, the domain was first filled with air. Beam elements were used to define 
the fill volumes for the explosive, casing and flyer plate, each of which was successively filled. 
 
4.2 Constitutive Model 
The parts of the axisymmetric model, their constitutive models, and sources of material 
inputs are summarized in Table 1. The Johnson-Cook damage and fracture model that is 
included in the constitutive model was used for characterizing damage to the flyer plate and 
casing material. 
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Table 1. Constitutive Model by Part 
Part Material Keyword Input Data Source(s) 
Flyer plate OFHC Copper Johnson-Cook Material Johnson and Cook 1985 
Casing 4340 Steel Johnson-Cook Material 
Explosive LX-14 High-Explosive Material Hertel 1992, Hallquist 2013 
Air Air at STP Non-viscous Newtonian Material  
 
4.3 Equation of State 
The parts of the axisymmetric model, their equations of state, and sources of equation of state 
(EOS) inputs are summarized in Table 2.  
 
Table 2. Equations of State by Part 
Part Material Keyword Input Data Source(s) 
Flyer plate OFHC Copper Grüneisen Steinberg 1996 
Casing 4340 Steel Grüneisen 
Explosive LX-14 Jones-Wilkins-Lee Hertel 1992 

Jones-Wilkins-Lee-Baker Hallquist 2013 
Air Air at STP Ideal Gas Otsuka 2004 
 

Use of the Jones-Wilkins-Lee (JWL) EOS was the starting point for the explosive. Hertel 
reports JWL constants for the LX-14, and JWL is established for calculating explosive 
expansion. The caution in using JWL is the engineering simplifications that it employs. For 
example, Fuller et al. at the University of Sheffield (2016) report that the JWL EOS may over-
predict peak pressures and impulses for close-in detonation. Fuller et al. indicate that the 
assumption of near instantaneous energy release from detonation may cause this over-
prediction. 

Given these cautions, alternatives to the JWL EOS were considered. These included 
Jones-Wilkins-Lee-Baker (JWLB) and ignition and growth of reaction in a high explosive 
(IGRHE). JWLB was particularly promising because it is a form of the JWL developed by 
Baker et al. specifically for EFPs and shaped charges. The JWLB form is intended to refine 
the assumption of a uniformly expanding cylinder to calculate the JWL constants.  

Assumption of a uniformly expanding cylinder does not account for all the work done on 
the cylinder by the explosive. Specifically, some of the work done by explosive products (axial 
flow of cylinder, bending of cylinder, etc.) is not included in the Gurney energy/volume, a 
parameter critical to EFP calculations. The implication is that the explosive can do more work 
than the JWL constants predict. Accordingly, explosives tests would be expected to produce 
a higher velocity than calculated using the JWL EOS. 

The input constants of LX-14 are available for JWLB; in fact, these are included Hallquist 
2013. LX-14 inputs for were not available at this time of this study. 
 
4.4 Calculation Results – Peak Velocity 
As noted above, the outputs of interest from the calculation were the peak velocity and shape 
of the EFP. The calculated peak velocity was in good agreement with the velocity measured 
in the experiment. Hertel reports a peak velocity of 0.228 cm/usec. The peak velocity in the 
calculation (at ~100 usec) using JWLB was 0.228 cm/usec, whereas it was 0.225 using JWL. 
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These results are compared in Table 3 and illustrated in Figure 5. The calculated velocities 
in Figure 5 are rigid-body velocities of the EFP along the axis of symmetry.  
 

 
Figure 5. Peak Velocity – JWLB and JWL EOS vs. Experiment 
 
Table 3. Peak Velocity – Calculation vs. Experiment 
Case Plate Peak Velocity [cm/usec] % Difference vs. Experiment 
Experiment 0.228 - 
Calculation - JWLB 0.228 0.00% 
Calculation - JWL 0.225 1.32% 

 
The results summarized in Table 3 are consistent with the development of the JWLB EOS. 

Specifically, JWLB was intended as a refinement of the JWL EOS that applies all the 
explosive energy to the plate in contact. The JWLB EOS results in a slightly higher peak 
velocity compared to JWL. 

Less clear is how these results relate to work by Fuller et al. Their finding that the JWL 
EOS may over-predict peak pressures and impulses for close-in detonation would suggest 
over-prediction of peak velocity in a case like the Hertel experiment. However, the JWL peak 
velocity was below the measured velocity. Of course, a close-in detonation does not act on a 
target identically to how explosive in contact with a plate acts on it, but it is unclear how over-
prediction in the close-in detonation case can coexist with a slight under-prediction in the EFP 
velocity.   

 
4.5 Calculation Results – EFP Shape 
Hertel’s reported EFP shape is shown next to the shapes calculated with JWLB and JWL, 
respectively, in Figure 6, and the dimensions of the calculated and measured EFP shapes 
are listed in Table 4. These are the EFP shapes at the peak velocity. 
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(a) Experiment 

 

 
(b) JWLB 

 

 
(c) JWL 

Figure 6. EFP Shape Results [Hertel 1992] 
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The basic observation is that the EFP shapes calculated are less compact than the measured 

shape and the shape reported by Hertel. The calculated shapes for this paper are both longer 
and have larger diameters. The calculated diameters are particularly exaggerated such that the 
calculated aspect ratio of length/diameter is 0.8 versus 1.1 in the experiment. Another 
difficulty with the present calculation is that the length of the EFP shape increases as long as 
the calculation is continued. The length, and to lesser extent the diameter, never stabilize to a 
constant value after reaching peak velocity. Evolution of the EFP shape is shown in Figure 7. 

 
Table 4. EFP Shape – Calculation vs. Experiment 
Case Length [cm] Diameter [cm] Length/Diameter 
Experiment 5.5 5.0 1.1 
JWLB 6.2 7.7 0.8 
JWL 5.8 7.4 0.8 
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Figure 7. Shape – Fluid Density [g/cm3] vs. Time [microsec]  
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4.6 Inconsistent EFP Shape – Possible Causes 
Possible causes of the inconsistencies between the calculated EFP shape and the experiment 
were investigated. Accordingly, the sensitivities of the calculated EFP shape to the 
following conditions were examined: 
 
1. Element size and formulation 
2. Initial geometry of casing, explosive and copper plate 
3. Explosive equation of state 
4. Copper plate 

a. Constitutive model 
b. Rate effects formulation for copper 
c. Failure model 

5. Axisymmetric element formulation 
 
4.6.1. Element Size 
The results for peak velocity and shape discussed above for the present calculations were 
performed with 0.7mm square 2D shells for the Eulerian domain. Refining to a 0.35mm 
changed the peak velocity 5%, and, the EFP shape was not significantly different from the 
0.7mm case. It is noted that the calculation with the 0.35mm mesh was less stable than with 
the 0.7mm mesh and crashed before reaching the termination time of the 0.7mm calculation. 
 
4.6.2. Initial Geometry 
Differences in the early-time shape of the EFP suggested that possible differences in initial 
geometries caused the inconsistent EFP shapes. It was postulated that a difference in 
overpressure distribution at the explosive-casing junction caused the shape differences. The 
difference in overpressure distribution, in turn, was caused by differences in the geometry 
of the explosive-casing junction. Only a screen capture from the Hertel paper was available 
for developing the fill geometry for the present calculations, and imprecision in the fill 
geometry may have been a factor in the disagreement.  

Accordingly, the sensitivity of the EFP shape to fill geometries was assessed. Calculations 
were performed where explosive was in the gap between the end of the copper plate and the 
casing. Other calculations were done where the end of the copper plate was placed in contact 
with the casing. Varying the fill geometry within these bounds did not significantly affect the 
EFP shape indicating the shape appeared insensitive to fill geometry. 
 
4.6.3. Explosive Equation of State 
As noted above, options for modeling the LX-14 with an EOS other than JWL were limited 
to JWLB. Input constants could not be obtained for IGRHE. Little difference was observed 
between the peak velocity and EFP shape, regardless of whether JWL or JWLB was used.  
 
4.6.4. Copper Constitutive Model 
The Johnson-Cook constitutive model has been observed to exhibit excessive softness. To 
check this possibility at a static loading rate, a coupon test was performed using the Johnson-
Cook model with inputs for copper [Johnson & Cook 1985]. The stress and strain values 
output from the coupon test were consistent with values published in the Atlas of Stress-
Strain Curves. 
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The calculation was run with the default log-linear Johnson-Cook rate effects for copper. Input 
constants for the log-linear form were from Johnson and Cook [Johnson & Cook 1985]. To 
assess sensitivity to rate effects form, Cowper-Symonds constants calculated from data 
published by Lindholm and Bessey (1969) were used. This change in the rate effect 
formulation for the copper had negligible effect on the EFP shape. 

Also, whether the Johnson-Cook failure parameters (D1 through D5) were included in the 
calculation did not significantly affect the EFP shape. More specifically, the calculation was 
run two ways: (1) no entries for D1 through D5 for the copper and (2) D1 through D5 for 
copper as reported in [Johnson & Cook 1985], with erode=1 such that there was no erosion. 
Rather, for erode ≠ 0, deviatoric stresses are set to 0 upon failure. Again, difference in shape 
of the EFP was negligible.  
 
4.6.5. Axisymmetric Element Formulation 
Lastly, Benson (1990) has shown that volume-weighted axisymmetric element types 
underweight the nodes along the symmetry axis. The formulation is therefore not spherically 
symmetric. This condition causes non-physical jetting along the axis of symmetry; the jetting 
is a byproduct of the element formulation, not caused by the physics of the calculation. Such 
jetting may explain the elongation of the EFP observed in the present calculations. However, 
an area-weighted formulation was used for this calculation, and area-weighted formulations 
are known to preserve spherical symmetry [Benson 1990]. As a result, it is uncertain whether 
the element formulation could be a contributing factor to the error in the EFP shape. 
 
5. CONCLUSION  
In this paper, a mathematical and numerical description of the bulk viscosity for an equation 
of state that is linear in density, is presented. The bulk viscosity is used in many academic and 
industrial dynamic codes, and there is no description concerning the smearing of the shock for 
engineers and researchers in the manuals or in published papers.  To clearly show the 
usefulness of the bulk viscosity, a simple one dimensional problem is used, where a shock is 
developed through a pressure wave travelling inside a compressible fluid. By adding a viscous 
pressure to equilibrium equations, high oscillations in the front shock have been considerably 
attenuated, by thickening the shock over few element mesh sizes. The method is developed 
mathematically for one dimensional hydrodynamic problem, but has been used successfully 
for more complex applications including high impact problems, explosive detonation in air 
and underwater explosions. To solve complex three dimensional problems, a remeshing 
technique method is developed in the paper. The principle of an ALE method is based on the 
independence of the Finite Element mesh movement with respect to the material motion. In 
fact, the freedom of moving the mesh offered by the ALE formulation enables a combination 
of advantages of Lagrangian and Eulerian methods. 

The 2D axisymmetric ALE finite element implementation accurately calculates the peak 
velocity of the copper EFP. The calculated peak velocity was within 2% of the peak velocity 
measured by Hertel if JWL EOS is used. Use of the JWLB EOS gave a peak velocity identical 
to Hertel’s, within the precision of the calculation. 

The calculation of the EFP shape was less accurate. The shape of the EFP was elongated 
compared with the measured shape. In addition, plastic flow continued as long as the 
calculation was continued; i.e., the EFP shape of the plate did not reach a dynamic equilibrium. 
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The sensitivity of the EFP shape was checked for these conditions: Eulerian domain 

element size and formulation; initial geometry of casing, explosive and copper plate; explosive 
equation of state and constitutive model for the copper plate. The shape was found to be 
insensitive to these conditions, when they were varied within reasonable bounds.   

The excessive deformation of the copper plate was unexpected because the Johnson-Cook 
constitutive model is validated for multi-material ALE, though not necessarily for 2D 
axisymmetric ALE. It is possible that Johnson-Cook exhibits such excessive softness 
specifically when used with 2D axisymmetric ALE.  

Another possible source of the excessive softness is the Johnson-Cook constitutive model 
itself. A candidate explanation is that the plasticity algorithm in Johnson-Cook fails to 
converge for the tolerance implemented in the LS-DYNA® solver. Accordingly, plastic flow 
simply continues, independently of convergence. 

A limited treatment of rate effects in the Johnson-Cook constitutive model may also 
contribute to the error. It is known that strain rate effects in steels are function of deformation. 
UFC 3-340-01 (2002) Figure 4-49 has separate strength rate curves for yield and ultimate. 
Copper exhibits similar behavior, as discussed in Lindholm and Bessey (1969). The copper 
plate undergoes large deformations, and it is likely that rate effects vary over those 
deformations, a property not included in the Johnson-Cook constitutive model. 

It is observed in Lindholm and Bessey (1969) that strength rate effects depend on 
temperature, but this effect is not explicitly included in the Johnson-Cook constitutive model. 
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