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ABSTRACT 
The convection-diffusion type of PDEs is numerically solved by four 

numerical methods in this work. These four comparatively young numerical 

approaches are categorized as ‘domain-meshfree’ as they require no 

internal meshing but rely only on the collocation process amongst nodes via. 

the inverse-quadratic radial basis function (IQ-RBF). They are; the well-

known Kansa Collocation Method (KCM), the Hermite Collocation Method 

(HCM), the Radial Point Interpolation Method (RPIM), and the Dual 

Reciprocity Boundary Element Method (DRBEM). The work aims to 

demonstrate the use of IQ-RBF as well as to compare the practical use of 

the methods. Moreover, engineering senses of criteria judging the quality of 

the methods are considered. It is found in this work that while KCM is the 

simplest to construct and deploys, it is highly sensitive to the number of 

nodes and the IQ-RBF shape parameter. The asymmetric and populated 

matrix problem are alleviated when HCM or DRBEM are in use yet more 

CPU-time and storage seem to be the price to pay, particularly HCM.  

However, it is actually RPIM that has appeared to be an optimal choice under 

all the criteria imposed.  

 

 
1. INTRODUCTION  
Convection diffusion problems are known to be  governed PDE mathematical models and they 
are found to appear in many branches of sciences and engineering such as biological, physical 
chemical, physical in fluid mechanics, astrophysics, meteorology, and multiphase flow in oil 
reservoirs, polymer flow and many other areas [1]  .  The unsteady-state form of the equation 
can be represented by;  
 

𝜔̇𝜔 + 𝜐𝜐𝛻𝛻𝜔𝜔 − 𝜂𝜂𝛻𝛻2𝜔𝜔 ± 𝑆𝑆 = 0                                                (1) 
 

In the above definition, 𝜔̇𝜔 represents the transient term,𝛻𝛻 is the gradient operator, 𝛻𝛻2 is 
the Laplacian operator, and  𝑆𝑆 is the sum of additional source and/or sink terms. Very often 
the dimensionless parameters, 𝜐𝜐 and 𝜂𝜂 , that measure the relative strength of the diffusion to  
 
  ___________________________________ 
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the convection is quite small leading to situations where thin boundary and interior layers 
are presented and singular perturbation problems arises [2]. 

In the study of this type of problem, the numerical solution in many cases has been tackled 
using traditional method such as the finite difference method (FDM), the finite element 
method (FEM), or the finite volume method (FVM), see the book by Zienkiewicz and Taylor 
[3] and references herein. In these conventional schemes, before the computing process can 
be performed, a mesh generation or meshing process over both the domain 𝛺𝛺 and boundary  
𝜕𝜕𝜕𝜕  is required to take place. This inevitably makes the methods difficult and time-consuming 
particularly when solving complicated geometries. To improve the situation, affords may be 
put to automatically allocating the mesh-grid in hope to obtain optimal solutions and this is 
known as ‘grid-adaptation method’ [4-5].   

Due to this undesirable aspect of mesh-generated numerical methods, together with a few 
more (please see [6]), some alternatives have been proposed over the past decade and one of 
which is those based on the use of a multivariate function called ‘Radial Basis Function 
(RBF)’. The methods under this category is known as ‘Meshfree/Meshless Method’ [7]. 

A radial basis function (RBF) can be defined as a function of the distance of the point to 
the origin. That is, 𝜙𝜙 is a RBF if  𝜙𝜙(𝒙𝒙) = 𝜙𝜙(‖𝒙𝒙‖) , for 𝒙𝒙 is a vector in ℝ𝑛𝑛 and  ‖⋅‖ is a chosen 
norm.  In this work, the main attention is paid to a specific type of inverse multiquadric and it 
is called ‘Inverse-Quadratic (IQ)’, defined as follows;  

 

𝜙𝜙(𝑟𝑟) = 1
(1+(𝜀𝜀𝒓𝒓)2) = 1

(1+(𝜀𝜀‖𝒙𝒙‖2)2)                                            (2) 

 
With ‖⋅‖2  being the Euclidean norm. The appearance of the parameter 𝜀𝜀 > 0 is known to 

have a great effect on the solution of the problem at hand. FIG. 1 demonstrates the IQ-RBF 
profiles influenced by different nonnegative shape 𝜀𝜀 . Under the theory of interpolation, this 
RBF has been proved to be ‘Globally Supported, Strictly Positive Definite Functions’ and this 
function is 𝐶𝐶∞ at the origin [6]. While other kinds of RBF mentioned above have been 
receiving a huge interest from researchers [8-10], it is interesting to see this is not the case for 
IQ and, therefore, it deserves more investigation.  

Numerical methods which require no mesh generation, at least in the domain, have recently 
been more popular. With the use of RBF, one of the pioneers of this idea is the work nicely 
done my Kansa in 1990 [11]. In his work, a multiquadric type of RBF was introduced and 
applied to the interpolation problem and was extended to solving PDEs and the method is 
named “Kansa Method’ ever since; some applications include groundwater contaminant 
transport [12], convection–diffusion problems [13], plate and shell analysis [14], 
microelectromechanical system analysis [15] and many more. Li [19] concluded that the 
accuracy of the RBF method was more superior than FEM.  

The traditional version of Kansa Collocation Method (KCM), nevertheless, is known to 
severely suffer from having a fully asymmetric and populated collocation matrix, increasing 
the risk of being ill-conditioned. Attempts to avoid these drawbacks have been proposed and 
developed, see the book by Hua and Shantanu [17]. 

One of the studies aiming to alleviate the problems encountered in the use of KCM is that 
proposed by Fasshauer [18] in 1997. Fasshauer [18] described the scattered Hermite 
interpolation for the solution of elliptic partial differential equations by using collocation. An 
example of comparison studies is that done by Kazerm et al. [19]. Another attempt is that 
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FIG. 1. Inverse-Quadratic (IQ) –RBF surface plot at different shape parameters 𝜀𝜀. 
 
proposed in 2002 by Wang and Liu [20] and it has been known as ‘The Radial Point 
Interpolation Method (RPIM)’. One of the nice numerical experiments on applying this 
method is that carried out by Liu [21] in 2011, where it was concluded that the singularity 
problem can be improved (see also Bozkurt et. al. [22]). For some more recently and nicely 
documented, the interested reader is referred to [23] and [24]. 

Another comparatively new method that does not require any domain meshing is called 
‘Boundary Element Method (BEM)’ [25]. Nevertheless, an undesirable aspect is the need to 
discretize the domain into a series of internal cells to deal with the terms taken to the boundary 
by application of the fundamental solution, inevitably destroying some attraction of the 
method. To remedy this drawback, one of the attempts is the so-called ‘Dual Reciprocity 
Boundary Element Method (DRBEM)’, by Nardini and Brebbia [26]. The idea has extensively 
been developed by many researchers such as the perturbation DRBEM [27], the separation of 
variables DRBEM [28], and the Laplace transform DRBEM [29]. 

Over the decade, even though some numerical comparison studies are available, see [30] 
for instance, the only criterion adopted appears to be the accuracy. This is rather impractical 
when there are other factors deserve to be taken into consideration as criteria as well.   

In this work, four comparatively young domain-meshless numerical methods are studied 
and they are; the traditional or conventional Kansa Collocation Method (KCM), the Hermite 
Collocation Method (HCM), the Radial Point Interpolation Method (RPIM), and the Dual 
Reciprocity Boundary Element Method (DRBEM). The main objective is to shed more light 
into their overall practical aspects that should cover at least four criteria, listed below;  

 
  



4 

 
Numerical Simulation of Convection-Diffusion Phenomena by Four  

Inverse-Quadratic-RBF Domain-Meshfree Schemes    

 

 
 
1. The overall accuracy and the error growth in time. 
2. The CUP-time requirement in computing process. 
3. The sensitivity to factors involved such as the density of nodes and shape values. 
4. The simplicity to setup and deploy. 
 

The problem chosen for this task is one of the classical convection-diffusion PDE in two 
dimensions.  
 
2. MATHEMATICAL BACKGROUND  
2.1. The Governing Equation of Convection-Diffusion PDE 
This work aims to numerically solve two-dimensional convection-diffusion problems that 
are modelled and governed by the following partial differential equation; 
 

∂𝑢𝑢
∂𝑡𝑡

+ 𝑉𝑉𝑥𝑥
∂𝑢𝑢
∂𝑥𝑥

+ 𝑉𝑉𝑦𝑦
∂𝑢𝑢
∂𝑦𝑦

= 𝜂𝜂𝑥𝑥
∂2𝑢𝑢
∂𝑥𝑥2

+ 𝜂𝜂𝑦𝑦
∂2𝑢𝑢
∂𝑦𝑦2

− 𝛽𝛽𝛽𝛽 + 𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑡𝑡)                  (3) 

 
Where 𝑉𝑉𝑥𝑥 ,𝑉𝑉𝑦𝑦  are convection coefficients, and 𝜂𝜂𝑥𝑥, 𝜂𝜂𝑦𝑦 are diffusion coefficients. The last two 

terms 𝛽𝛽𝛽𝛽  and the source term 𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑡𝑡) are additional and needed only in specific cases.  
For the test cases studied in this work, it is set that  𝜂𝜂𝑥𝑥 = 𝜂𝜂𝑦𝑦 = 𝜂𝜂 the it leads to the following 

expression;  
 

∂𝑢𝑢
∂𝑡𝑡

+ 𝑉𝑉𝑥𝑥
∂𝑢𝑢
∂𝑥𝑥

+ 𝑉𝑉𝑦𝑦
∂𝑢𝑢
∂𝑦𝑦

+ 𝛽𝛽𝛽𝛽 − 𝑔𝑔(𝑥𝑥) = 𝜂𝜂 �∂
2𝑢𝑢
∂𝑥𝑥2

+ ∂2𝑢𝑢
∂𝑦𝑦2

�                           (4) 

 
Leading to;  
 

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝑢𝑢
𝜕𝜕𝑦𝑦2

= 1
𝜂𝜂
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ �𝑉𝑉𝑥𝑥
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑉𝑉𝑦𝑦
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� + 𝛽𝛽𝛽𝛽 − 𝑔𝑔(𝑥𝑥)�                       (5) 

 
Subject to the initial condition 𝑢𝑢(𝑥𝑥,𝑦𝑦, 0) = 𝜓𝜓1(𝑥𝑥,𝑦𝑦) and the boundary condition 

𝑢𝑢(𝑥𝑥,𝑦𝑦, 𝑡𝑡) = 𝜓𝜓2(𝑥𝑥,𝑦𝑦, 𝑡𝑡) with 𝑡𝑡 > 0 and 𝛺𝛺 is a domain of the problem, 𝜕𝜕𝜕𝜕 is its boundary, 
𝜓𝜓1,𝜓𝜓2 are known functions.  

 
2.2. The Kansa Collocation Method (KCM) 
The collocation scheme starts with considering the following elliptical partial differential 
equation defined on a bounded and connected domain 𝛺𝛺;  
 

Φ[𝑢𝑢(𝐱𝐱)] = 𝑓𝑓(𝑥𝑥)          for 𝐱𝐱 ∈ Ω ⊂ ℝ𝑛𝑛                                          (6) 
 

𝐵𝐵1𝑢𝑢(𝐱𝐱) = 𝑔𝑔(𝑥𝑥)             for 𝐱𝐱 ∈ Γ1                                             (7) 
 

𝐵𝐵2𝑢𝑢(𝐱𝐱) = ℎ(𝑥𝑥)             for 𝐱𝐱 ∈ Γ2                                             (8) 
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Where ∂Ω  is the domain boundary containing two non-overlap sections; Γ1 and Γ2 , with  

Γ1 ∩ Γ2 = 𝜙𝜙 . These differential operators; Φ, and 𝐵𝐵1,𝐵𝐵2 are applied on the domain, and the 
two boundary sections respectively. Three known functions 𝑓𝑓(𝐱𝐱),𝑔𝑔(𝐱𝐱), ℎ(𝐱𝐱) can be dependent 
of space and/or time. Let  𝐗𝐗𝑐𝑐 = �𝐱𝐱𝑗𝑗�𝑗𝑗=1

𝑁𝑁
 be a set of randomly selected points, known as ‘ 

collocation’ or ‘centers’, on the domain where �𝐱𝐱𝑗𝑗�𝑗𝑗=1
𝑁𝑁𝑖𝑖  are those contained within, where 

�𝐱𝐱𝑗𝑗�𝑗𝑗=𝑁𝑁𝑖𝑖+1
𝑁𝑁𝑖𝑖+𝑁𝑁1  and �𝐱𝐱𝑗𝑗�𝑗𝑗=𝑁𝑁𝑖𝑖+𝑁𝑁1+1

𝑁𝑁
 are those on the boundary Γ1 and Γ2respectively.  

The collocation scheme writes the approximate solution, 𝑢𝑢�(𝐱𝐱), as a linear combination of 
the basis function {𝜑𝜑(:−)}𝑗𝑗𝑁𝑁, shown in the following form;  

 

𝑢𝑢(𝐱𝐱) ≃ 𝑢𝑢�(𝐱𝐱) = ∑ 𝛼𝛼𝑗𝑗𝜑𝜑 ��𝐱𝐱 − 𝐱𝐱𝑗𝑗�2�
𝑁𝑁
𝑗𝑗=1                                           (9) 

 
Where 𝛼𝛼𝑗𝑗 are coefficients and ‖. ‖2 being the Euclidean norm. The basis function used 

now is the inverse-quadratic radial type as defined previously.  
Applying the operators Φ, and 𝐵𝐵1,𝐵𝐵2 to on both domain and boundary sections, satisfying 

the governing system of equations, allows the system to arrive at; 
 

𝐀𝐀𝐀𝐀 = 𝐛𝐛                                                                (10) 
 

Where 𝛂𝛂 = [𝛼𝛼1 𝛼𝛼2 . . . 𝛼𝛼𝑁𝑁] , the known 𝐛𝐛 vector is as follows;  
 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 11 2 1 1... ... ...

i i i i

T

N N N N N N Nf f f g g h h+ + + +
 =  b x x x x x x x

 
 

And by setting 𝛗𝛗 to be a matrix with entries 𝜑𝜑𝑖𝑖𝑖𝑖 = 𝜑𝜑 ��𝐱𝐱𝑖𝑖 − 𝐱𝐱𝑗𝑗�2�. Hence, for 𝑖𝑖, 𝑗𝑗 =
1,2, . . . ,𝑁𝑁  we have;  

 

𝐀𝐀 = �
Φ[𝛗𝛗]
𝐵𝐵1[𝛗𝛗]
𝐵𝐵2[𝛗𝛗]

�                                                              (11) 

 
Once 𝛼𝛼𝑗𝑗 are obtained, the approximate solution are straightforward yielded. This method 

is known as ‘Kansa’, in honor of a great mathematician Prof. Edward Kansa who discovered 
the idea in 1990. The method has been applied to a wide range of problem ever since [31]. It, 
nevertheless, is not of no shortcoming where it is known to suffer the problem of asymmetric 
interpolation matrix, 𝐀𝐀, and the rigorous mathematical proof of its solvability is still not 
available [32]. It is also very often produces low quality results particularly in boundary-
adjacent region [33]. 

The Laplacian form, LHS of equation (5), can now be expressed as follows;  
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� ∂2

∂𝑥𝑥2
+ ∂2

∂𝑦𝑦2
� 𝜑𝜑(𝑟𝑟) = 𝑑𝑑2

𝑑𝑑𝑟𝑟2
𝜑𝜑(𝑟𝑟) + 1

𝑟𝑟
𝑑𝑑
𝑑𝑑𝑑𝑑
𝜑𝜑(𝑟𝑟)                               (12) 

 
Where the other terms in the equation can also be replaced by derivatives expressed above 

accordingly.  
 

2.3. The Hermite Collocation Method (HCM) 
In 1997, Fasshauer [21] proposed a way of interpolation by applying the self-adjoint operators  
𝛷𝛷∗ , and  𝐵𝐵1∗,𝐵𝐵2∗  to the governing system of equations and rewrite the approximate solution 
as; 
 

𝑢𝑢(𝒙𝒙) ≃ 𝑢𝑢�(𝒙𝒙) = ∑ 𝛼𝛼𝑗𝑗𝛷𝛷∗𝜑𝜑 ��𝒙𝒙 − 𝒙𝒙𝑗𝑗�2�
𝑁𝑁𝑖𝑖
𝑗𝑗=1      

+∑ 𝛼𝛼𝑗𝑗𝐵𝐵1∗𝜑𝜑 ��𝒙𝒙 − 𝒙𝒙𝑗𝑗�2�
𝑁𝑁𝑖𝑖+𝑁𝑁1
𝑗𝑗=𝑁𝑁𝑖𝑖+1

+ ∑ 𝛼𝛼𝑗𝑗𝐵𝐵2∗𝜑𝜑 ��𝒙𝒙 − 𝒙𝒙𝑗𝑗�2�
𝑁𝑁
𝑗𝑗=𝑁𝑁𝑖𝑖+𝑁𝑁1+1               (13) 

 
This leads to a new interpolation matrix 𝑨𝑨, shown as follows;  
 

𝑨𝑨 = �
𝛷𝛷𝛷𝛷∗[𝝋𝝋] 𝛷𝛷𝐵𝐵1∗[𝝋𝝋] 𝛷𝛷𝐵𝐵2∗[𝝋𝝋]
𝐵𝐵1𝛷𝛷∗[𝝋𝝋] 𝐵𝐵1𝐵𝐵1∗[𝝋𝝋] 𝐵𝐵1𝐵𝐵2∗[𝝋𝝋]
𝐵𝐵2𝛷𝛷∗[𝝋𝝋] 𝐵𝐵2𝐵𝐵1∗[𝝋𝝋] 𝐵𝐵2𝐵𝐵2∗[𝝋𝝋]

�                                     (14) 

 
An application of this Hermite type of collocation method to elastostatic problem was done 

by Leitao [34]. Some interesting implementations of the scheme to the transient and nonlinear 
plate problems can be found in [35,36] and [37].  

In order to implement the Hermite concept, it is necessary that the Laplacian be applied 
twice resulting in the following so-called fourth-order biharmonic form;  

 

� 𝜕𝜕4

𝜕𝜕𝑥𝑥4
+ 2 𝜕𝜕4

𝜕𝜕𝑥𝑥2𝜕𝜕𝑦𝑦2
+ 𝜕𝜕4

𝜕𝜕𝑦𝑦4
� 𝜑𝜑(𝑟𝑟) = 𝑑𝑑4

𝑑𝑑𝑟𝑟4
𝜑𝜑(𝑟𝑟) + 2

𝑟𝑟
𝑑𝑑3

𝑑𝑑𝑟𝑟3
𝜑𝜑(𝑟𝑟) − 1

𝑟𝑟2
𝑑𝑑2

𝑑𝑑𝑟𝑟2
𝜑𝜑(𝑟𝑟) + 1

𝑟𝑟3
𝑑𝑑 

𝑑𝑑𝑟𝑟  𝜑𝜑(𝑟𝑟)     (15) 

 
Hence, the inverse-quadratic type of RBF used in this work and its first four orders of 

derivatives can be respectively expressed as follows;  
 

𝜑𝜑 ��𝐱𝐱 − 𝐱𝐱𝑗𝑗�2� = 1
(1+(𝜀𝜀𝜀𝜀)2) = 1

�1+�𝜀𝜀�𝐱𝐱−𝐱𝐱𝑗𝑗�2�
2
�
                              (16) 

 
Thus, 
 

𝑑𝑑
𝑑𝑑𝑑𝑑
𝜑𝜑(𝑟𝑟) = − 2𝜀𝜀2𝑟𝑟

(1+(𝜀𝜀𝜀𝜀)2)2                                             (17) 

 
𝑑𝑑2

𝑑𝑑𝑟𝑟2
𝜑𝜑(𝑟𝑟) = 2𝜀𝜀2 3(𝜀𝜀𝜀𝜀)2−1

(1+(𝜀𝜀𝜀𝜀)2)3                                            (18) 

 
𝒅𝒅𝟑𝟑

𝒅𝒅𝒓𝒓𝟑𝟑
𝝋𝝋(𝒓𝒓) = 𝟐𝟐𝟐𝟐𝜺𝜺𝟒𝟒𝒓𝒓�𝟏𝟏−(𝜺𝜺𝜺𝜺)𝟐𝟐�

�𝟏𝟏+(𝜺𝜺𝜺𝜺)𝟐𝟐�𝟒𝟒
                                            (19) 
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𝑑𝑑4

𝑑𝑑𝑟𝑟4
𝜑𝜑(𝑟𝑟) = 24𝜀𝜀4�1−5(𝜀𝜀𝜀𝜀)2�

(1+(𝜀𝜀𝜀𝜀)2)5                                               (20)  

 
Where 𝑟𝑟𝑖𝑖𝑖𝑖 = �𝒙𝒙 − 𝒙𝒙𝑗𝑗�2 , for each pair of center nodes; 𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗. 

 
2.4. The Radial Point Interpolation Method (RPIM) 
The method was proposed by Wang and Liu [23], and it writes the approximate solution for a 
given PDE, 𝑢𝑢�(𝒙𝒙) , as the linear combination of the basis function and monomials 𝑝𝑝𝑗𝑗(𝒙𝒙), shown 
in the following form; 
 

𝑢𝑢(𝒙𝒙) ≃ 𝑢𝑢�(𝒙𝒙) = ∑ 𝑅𝑅(‖𝒙𝒙 − 𝒙𝒙𝑖𝑖‖2)𝑎𝑎𝑖𝑖 +𝑁𝑁
𝑖𝑖=1 ∑ 𝑝𝑝𝑗𝑗(𝒙𝒙)𝑏𝑏𝑗𝑗𝑚𝑚

𝑗𝑗=1 = 𝑹𝑹𝑇𝑇(𝒙𝒙)𝒂𝒂 + 𝑷𝑷𝑇𝑇(𝒙𝒙)𝒃𝒃        (21) 
 

With 𝑚𝑚 representing the number of polynomial basis (usually, 𝑚𝑚 < 𝑁𝑁). The polynomial 
function can be chosen from Pascal’s triangle which, for 2D problems, as;  
 

𝑷𝑷𝑻𝑻(𝒙𝒙) = [1, 𝑥𝑥,𝑦𝑦, 𝑥𝑥2, 𝑥𝑥𝑥𝑥,𝑦𝑦2, . . . ]                                           (22) 
 

To ensure the unique solution of the system, additional 𝑚𝑚 equations can be added as the 
constraint conditions, as follows;  

 
∑ 𝑝𝑝𝑗𝑗(𝐱𝐱𝑖𝑖)𝑎𝑎𝑖𝑖 = 𝐏𝐏𝑚𝑚𝑇𝑇 𝐚𝐚𝑁𝑁
𝑖𝑖=1 = 0                                              (23) 

 
for 𝑗𝑗 = 1,2,3, . . . ,𝑚𝑚. This leads to the following form of matrix equations describing the 
interpolation process for all centers all over the domain. 

 

𝐔𝐔�(𝐱𝐱) = �𝐔𝐔(𝐱𝐱)
𝟎𝟎

� = �
𝐑𝐑0 𝐏𝐏𝑚𝑚
𝐏𝐏𝑚𝑚𝑇𝑇 𝟎𝟎 � �

𝐚𝐚
𝐛𝐛� = 𝐇𝐇𝛂𝛂0                                  (24) 

 
 
Leading to  
 

𝜶𝜶0 = 𝑯𝑯−1𝑼𝑼�(𝒙𝒙)                                                       (25) 
 
Where  
 

𝑯𝑯 = �
𝑹𝑹0 𝑷𝑷𝑚𝑚
𝑷𝑷𝑚𝑚𝑇𝑇 𝟎𝟎 � 

 

[ ]0 1 2 1 2... ... T
n ma a a b b b 

= = 
 

a
α

b
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1 1 1 2 1 1 1 1

1 2 2 2 2 2 2 2
0

1 2

( , ) ( , ) ... ( , )
( , ) ( , ) ... ( , )

( , ) ( , ) ... ( , )

N

N

N N N N N N N N N

R x y R x y R x y
R x y R x y R x y

R x y R x y R x y
×

 
 
 =
 
 
 

R
   

 

 
and  
 

1 2

1 2

1 2

1 1 ... 1
...
...

(x ) (x ) (x )...

N
T
m N

m m m n m N

x x x
y y y

p p p
×

 
 
 
 =
 
 
  

P
  

 

 
Substituting these back into the collocation equation, yielding;  
 

𝑢𝑢(𝒙𝒙) = [𝑹𝑹𝑇𝑇(𝒙𝒙) 𝑷𝑷𝑇𝑇(𝒙𝒙)]𝑯𝑯−1𝑼𝑼�(𝒙𝒙)                                    (26) 
 
By setting the shape functions matrix, 𝜣̑𝜣𝑇𝑇(𝒙𝒙), as; 
 

𝜣̑𝜣𝑇𝑇(𝒙𝒙) = [𝑹𝑹𝑇𝑇(𝒙𝒙) 𝑷𝑷𝑇𝑇(𝒙𝒙)]𝑯𝑯−1                                      (27) 
 
Then the previous equation can be re-written as;  
 

𝑢𝑢(𝒙𝒙) = 𝜣̑𝜣𝑇𝑇(𝒙𝒙)𝑼𝑼�(𝒙𝒙)                                               (28) 
 
Where the approximate solutions at each center can now be obtained.  

 
2.5 The Dual Reciprocity Boundary Element Method (DRBEM)  
The mathematical construction of the dual reciprocity boundary element method can start with 
the Poisson equation as follows; 

 
𝛻𝛻2𝑢𝑢 = 𝑏𝑏(𝑥𝑥,𝑦𝑦)                                                   (29) 

 
Which as its equivalent integral form, given by [29], as;  
 

* * * *

1

ˆ    ˆ ˆ  
N L

i i j i ij j j
j

c u q ud u qd c u q u d u q dα
+

=Γ Γ Γ Γ

 
+ Γ − Γ = + Γ − Γ 

 
∑∫ ∫ ∫ ∫          (30) 

 

Where 𝑢𝑢∗ is the fundamental solution and the term 𝑞𝑞�𝑗𝑗 is defined as 𝑞𝑞�𝑗𝑗 =
∂𝑢𝑢�𝑗𝑗
∂𝑛𝑛

 , where 𝐧𝐧 is 
the unit outward normal to Γ, and can be written as;  
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𝑞𝑞�𝑗𝑗 = ∂𝑢𝑢�𝑗𝑗
∂𝑥𝑥

∂𝑥𝑥
∂𝑛𝑛

+ ∂𝑢𝑢�𝑗𝑗
∂𝑦𝑦

∂𝑦𝑦
∂𝑛𝑛

                                              (31) 

 
With 𝑁𝑁 and 𝐿𝐿 being the number of boundary and internal nodes respectively, 𝑏𝑏 can be 

now approximated by;  
 

𝑏𝑏𝑖𝑖(𝑥𝑥, 𝑦𝑦) ≈ ∑  𝑁𝑁+𝐿𝐿
𝑗𝑗=1 𝛼𝛼𝑗𝑗𝜑𝜑𝑖𝑖𝑖𝑖(𝑥𝑥,𝑦𝑦)                                     (32) 

 
Here, the function 𝜑𝜑 is the radial basis function, then;  
 

𝛻𝛻2𝑢𝑢�𝑗𝑗 = 𝑓𝑓𝑗𝑗                                                      (33) 
 
For some particular solution 𝑢𝑢�𝑗𝑗. By applying Green’s theorem, the boundary element 

approximation to then it becomes, at a node ith; 
 
𝑐𝑐𝑖𝑖𝑢𝑢𝑖𝑖 + ∑  𝑁𝑁

𝑘𝑘=1 𝐻𝐻𝑖𝑖𝑖𝑖𝑢𝑢𝑘𝑘 − ∑  𝑁𝑁
𝑘𝑘=1 𝐺𝐺𝑖𝑖𝑖𝑖𝑞𝑞𝑘𝑘 = ∑  𝑁𝑁+𝐿𝐿

𝑗𝑗=1 𝛼𝛼𝑗𝑗�𝑐𝑐𝑖𝑖𝑢𝑢�𝑖𝑖𝑖𝑖 + ∑  𝑁𝑁
𝑘𝑘=1 𝐻𝐻𝑖𝑖𝑖𝑖𝑢𝑢�𝑘𝑘𝑘𝑘 − ∑  𝑁𝑁

𝑘𝑘=1 𝐺𝐺𝑖𝑖𝑖𝑖𝑞𝑞�𝑘𝑘𝑘𝑘�     
 (34) 

 
Where the definition of the terms 𝐻𝐻𝑖𝑖𝑖𝑖  and 𝐺𝐺𝑖𝑖𝑖𝑖 can be found in [28]. The index 𝑘𝑘 is used 

for the boundary nodes which are the field points. Using a collocation technique, the above 
equation can be compactly expressed in matrix form as follows;  

 
𝑯𝑯𝑯𝑯 − 𝑮𝑮𝑮𝑮 = �𝑯𝑯𝑼𝑼� − 𝑮𝑮𝑸𝑸��𝛼𝛼                                      (35) 

 
By substituting 𝛼𝛼 = 𝑭𝑭−1𝒃𝒃 into equation (35) making the right-hand side) a known vector. 

Therefore, it can be rewritten as; 
 

𝑯𝑯𝑯𝑯 − 𝑮𝑮𝑮𝑮 = 𝒅𝒅                                                (36) 
 
Where 𝒅𝒅 = �𝑯𝑯𝑼𝑼� − 𝑮𝑮𝑸𝑸��𝑭𝑭−1𝒃𝒃.  
 
Applying boundary condition(s) to equation (36) then it can be seen as the simple form as 

follows;  
 

𝑨𝑨𝑨𝑨 = 𝒀𝒀                                                    (37) 
 
Where 𝑿𝑿 contains 𝑁𝑁 unknown boundary values of 𝑢𝑢’𝑠𝑠 and 𝑞𝑞’𝑠𝑠 and the resulting linear 

system can be solved by Gaussian elimination scheme. Therefore, the solution is obtained via;  
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𝑢𝑢𝑖𝑖 = −∑  𝑁𝑁

𝑘𝑘=1 𝐻𝐻𝑖𝑖𝑖𝑖𝑢𝑢𝑘𝑘 + ∑  𝑁𝑁
𝑘𝑘=1 𝐺𝐺𝑖𝑖𝑖𝑖𝑞𝑞𝑘𝑘 = ∑  𝑁𝑁+𝐿𝐿

𝑗𝑗=1 𝛼𝛼𝑗𝑗�𝑐𝑐𝑖𝑖𝑢𝑢�𝑖𝑖𝑖𝑖 + ∑  𝑁𝑁
𝑘𝑘=1 𝐻𝐻𝑖𝑖𝑖𝑖𝑢𝑢�𝑘𝑘𝑘𝑘 − ∑  𝑁𝑁

𝑘𝑘=1 𝐺𝐺𝑖𝑖𝑖𝑖𝑞𝑞�𝑘𝑘𝑘𝑘�     
(38) 

 
When dealing with convection-diffusion forms of PDEs, it can be done by setting;  
 

𝑉𝑉𝑥𝑥
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑽𝑽𝒙𝒙
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑭𝑭−1𝒖𝒖                                          (39) 

 
And 
 

𝑉𝑉𝑦𝑦
∂𝑢𝑢
∂𝑦𝑦

= 𝐕𝐕𝐲𝐲
∂𝐹𝐹
∂𝑦𝑦
𝐅𝐅−1𝐮𝐮                                         (40) 

 
Also, we set the RHS of equation (5) as;  
 

𝑏𝑏 = 1
𝜀𝜀
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ �𝑉𝑉𝑥𝑥
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑉𝑉𝑦𝑦
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� + 𝛽𝛽𝛽𝛽 − 𝑔𝑔(𝑥𝑥)�                            (41) 

 
Therefore, from equation (5), equation (36), and equation (41), the governing equation can 

be rewritten in the following form;  
 

𝑯𝑯𝑯𝑯 − 𝑮𝑮𝑮𝑮 = 𝑺𝑺�𝟏𝟏
𝜺𝜺
�𝒖̇𝒖 + �𝑽𝑽𝒙𝒙

𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏
𝑭𝑭−𝟏𝟏𝒖𝒖 + 𝑽𝑽𝒚𝒚

𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏
𝑭𝑭−𝟏𝟏𝒖𝒖� + 𝜷𝜷𝜷𝜷 − 𝒈𝒈(𝒙𝒙)��         (42) 

 
Where 𝑢̇𝑢 is the transient term which will be discretized using RK4 as detailed in the 

following section.  
 

3. COMPUTATION SETUPS 
All numerical solutions obtained from the whole experiment are validated mainly by 
comparing to the exact or analytical solutions. For this, the following error norms are used;  
 
1. Maximum Error (𝐿𝐿∞ ) ; 
 

𝐿𝐿∞ =    𝑚𝑚𝑚𝑚𝑚𝑚
1≤𝑖𝑖≤𝑁𝑁

 |𝑢𝑢�(𝒙𝒙𝑖𝑖) − 𝑢𝑢(𝒙𝒙𝑖𝑖)|                                         (43) 

 
2. Root-Mean-Square Error (𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 ); 
 

𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 =    �1
𝑁𝑁
∑ �𝑢𝑢��𝒙𝒙𝑗𝑗� − 𝑢𝑢�𝒙𝒙𝑗𝑗��

2
𝑁𝑁
𝑗𝑗=1 �

1/2
                              (44) 
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3. Percentage Relative Error (𝑅𝑅𝑅𝑅𝑅𝑅.𝐸𝐸𝐸𝐸𝐸𝐸.) 
 

𝑅𝑅𝑅𝑅𝑅𝑅.𝐸𝐸𝐸𝐸𝐸𝐸. (%) = �𝑢𝑢𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒−𝑢𝑢𝑖𝑖

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�

�𝑢𝑢𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒�

× 100                              (45) 

 
4. Absolute Error (𝐴𝐴𝐴𝐴𝐴𝐴.𝐸𝐸𝐸𝐸𝐸𝐸.) 

 
Abs. Err. =  �uiext − ui

appx�                                       (46) 
 

The transient term of the governing equation is tackled numerically by using the well-
known Runge-Kutta (RK4) method for all schemes under investigation.  The process begins 
by setting;  

 
d𝐮𝐮
dt

= F(𝐮𝐮)                                                    (47) 
 
For 𝒖𝒖(𝒙𝒙, 𝑡𝑡𝑛𝑛) = 𝒖𝒖𝑛𝑛, 𝒙𝒙 ∈ ℝ𝑑𝑑 .  Then let the following; 
 

𝑘𝑘1 = Δ𝑡𝑡𝑡𝑡(𝐮𝐮𝑛𝑛, 𝑡𝑡𝑛𝑛), 
 

𝑘𝑘2 = Δ𝑡𝑡𝑡𝑡 �𝐮𝐮𝑛𝑛 +
𝑘𝑘1
2

, 𝑡𝑡𝑛𝑛 +
Δ𝑡𝑡
2
� , 

 
……………..(48) 

𝑘𝑘3 = Δ𝑡𝑡𝑡𝑡 �𝐮𝐮𝑛𝑛 +
𝑘𝑘2
2

, 𝑡𝑡𝑛𝑛 +
Δ𝑡𝑡
2
� , 

 
𝑘𝑘4 = Δ𝑡𝑡𝑡𝑡(𝐮𝐮𝑛𝑛 + 𝑘𝑘3, 𝑡𝑡𝑛𝑛 + Δ𝑡𝑡). 

 
Then, the time-increased 𝒖𝒖𝑛𝑛+1 is obtained by;  
 

𝒖𝒖𝑛𝑛+1 = 𝒖𝒖𝑛𝑛 + 1
6

(𝑘𝑘1 + 2𝑘𝑘2 + 2𝑘𝑘3 + 𝑘𝑘4)                                   (49) 

 
4. NUMERICAL EXPERIMENTS AND GENERAL DISCUSSION 
Example 4.1: Interpolation with Inverse-Quadratic RBF  
To study the impact of the shape parameter,𝜀𝜀,can be done by investigating an interpolation 
problem of a benchmark and well-known Franke-type function [38] defined on a  unit square-
domain, as;  
 

𝑓𝑓(𝑥𝑥,𝑦𝑦) = 0.75 𝑒𝑒𝑒𝑒𝑒𝑒 �− (9𝑥𝑥−2)2

4
− (9𝑦𝑦−2)2

4
�+ 0.75 𝑒𝑒𝑒𝑒𝑒𝑒 �− (9𝑥𝑥+1)2

49
− (9𝑦𝑦+1) 

10
�

 
+

0.5 𝑒𝑒𝑒𝑒𝑒𝑒 �− (9𝑥𝑥−7)2

4
− (9𝑦𝑦−3)2

4
� − 0.2 𝑒𝑒𝑒𝑒𝑒𝑒[−(9𝑥𝑥 − 4)2 − (9𝑦𝑦 − 7)2]             (50) 
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With a set of 𝑁𝑁 computational nodes uniformly-distributed over the unit square (i.e. the 

summation of internal and boundary nodes). The interpolation function, 𝑓𝑓(𝒙𝒙𝑖𝑖) at the i-th 
center node 𝒙𝒙𝑖𝑖 , is defined as a linear combination of the inverse quadratic radial basis function 
as;  

 

𝑓𝑓(𝒙𝒙𝑖𝑖) = ∑ 𝛼𝛼𝑗𝑗𝜑𝜑 ��𝒙𝒙𝑖𝑖 − 𝒙𝒙𝑗𝑗�2�
𝑁𝑁
𝑗𝑗=1 = ∑ 𝛼𝛼𝑗𝑗 �

1

�1+�𝜀𝜀�𝒙𝒙𝑖𝑖−𝒙𝒙𝑗𝑗�2�
2
�
�𝑁𝑁

𝑗𝑗=1                   (51) 

 
With 𝑓𝑓(𝒙𝒙𝑖𝑖) = 𝑓𝑓(𝒙𝒙𝑖𝑖) for all 𝑖𝑖 = 1,2, . . . ,𝑁𝑁. By imposing this function on all nodes, it leads 

to the linear system expressed as;  
 

𝑨𝑨𝑨𝑨 = 𝑭𝑭                                                           (52) 
 
Where  
 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 12 2 2

2 1 2 2 22 2 2

1 22 2 2

...

...

...

N

N

N N N N

ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ

 − − −
 
 − − −

=  
 
 

− − −  

x x x x x x

x x x x x x
A

x x x x x x

   

 

 
Functions’ and the coefficient matrix; 𝜶𝜶 = [𝛼𝛼1 𝛼𝛼2 . . . 𝛼𝛼𝑁𝑁]𝑇𝑇 , with the known vector 

function ( ) ( ) ( )1 2 ...
T

Nf f f =  F x x x   . By the well-known Gauss-Seidel 

method, the coefficient matrix 𝜶𝜶 is easily obtained and it will then be used to interpolate the 
value of 𝑓𝑓(𝑥𝑥,𝑦𝑦) at a new set of interpolation nodes via. the same linear summation as defined 
above.  

With starting the interpolation process by utilizing 𝑁𝑁ctr = 10 × 10 centers,  FIG. 2. shows 
the RMS error produced at a wide range of shape parameter when using 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖  = 7 × 7 
interpolation nodes. It is observed that the error is clearly varies with the shape and the best 
interpolation solution is seen to take place when 𝜀𝜀 ∈ (2.0,5.0). At 𝜀𝜀 ≈ 3.5 in particular, the 
results obtained are in good agreement with the exacts as illustrated in  FIG. 3. The comparison 
of absolute error (𝐴𝐴𝐴𝐴𝐴𝐴.𝐸𝐸𝐸𝐸𝐸𝐸.) produced when using two values of shape, 𝜀𝜀 = 3.5 and 𝜀𝜀 = 10.0, 
is provided in Tab. 1. It can be seen from this Table. that the shape has great effect on the final 
numerical solution, both locally and globally, of the domain. Nodes (0.333,0.000), 
(1.000,0.333), and (1.000,0.666) are some of the locations where the highest growths in 
𝐴𝐴𝐴𝐴𝐴𝐴.𝐸𝐸𝐸𝐸𝐸𝐸. are found; from ≈ 9.00𝐸𝐸 − 06 up to ≈ 1.00𝐸𝐸 − 01 .  
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FIG. 2. RMS obtained shape parameter computed with 𝑁𝑁ctr = 10 × 10centers and 
𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖  = 7 × 7 interpolation nodes. 
 

 
FIG. 3. Interpolated values with the exact surface computed with 𝜀𝜀 = 3.5.  
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Tab. 1. Absolute error of inverse quadratic-RBF interpolation using 𝜀𝜀 = 3.5 and 
𝜀𝜀 = 10.0. 

(𝒙𝒙,𝒚𝒚) 
Abs. Error 

(𝒙𝒙,𝒚𝒚) 
Abs. Error 

𝜺𝜺 = 𝟑𝟑.𝟓𝟓 𝜺𝜺 = 𝟏𝟏𝟏𝟏.𝟎𝟎 𝜺𝜺 = 𝟑𝟑.𝟓𝟓 𝜺𝜺 = 𝟏𝟏𝟏𝟏.𝟎𝟎 

(0.000,0.666) 1.70E-05 3.37E-01 (0.666,0.333) 2.00E-05 2.61E-02 
(0.000,1.000) 1.64E-05 2.21E-01 (0.666,0.666) 5.30E-05 2.72E-01 
(0.333,0.000) 9.99E-06 4.09E-01 (0.666,1.000) 2.46E-05 5.12E-01 
(0.333,0.333) 9.99E-06 3.22E-02 (1.000,0.000) 9.99E-06 7.44E-02 
(0.333,0.666) 6.29E-05 2.66E-01 (1.000,0.333) 9.99E-06 1.68E-01 
(0.333,1.000) 9.20E-06 2.09E-02 (1.000,0.666) 6.00E-06 3.29E-01 

 
Example 4.2: Poisson with Nonrectangular Domain 
The equation is shown below; 
 

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝑢𝑢
𝜕𝜕𝑦𝑦2

= −𝑥𝑥2                                                (53) 

 
This is defined on the domain with an elliptical boundary, expressed as;  
 

𝑥𝑥2

4
+ 𝑦𝑦2 = 1                                                     (54) 

 
Where the boundary condition is taken directly from the exact solution which is expressed 

as follows;  
 

𝑢𝑢(𝑥𝑥,𝑦𝑦) = − 1
246

(50𝑥𝑥2 − 8𝑦𝑦2 + 33.6) �𝑥𝑥
2

4
+ 𝑦𝑦2 − 1�              (55) 

 
In this example, the shape values expected to lead to reasonably good results are adopted 

from the findings in example 1, i.e. 𝜀𝜀 ∈ (2.0,5.0). The main focus is paid to the effect of the 
density of nodes contained in the domain and for this, at least 4 levels of nodes density are 
investigated. FIG. 4 displays two levels of density where the number of boundary nodes is 
kept constant at 40 for all cases.  

Both RMS and 𝐿𝐿∞ – error norms are carefully monitored, and the results are in Tab. 2. 
As the number of nodes increases, it is found from both error norms that all the four 

numerical schemes under investigation produce results with more accuracy. Nevertheless, 
RPIM is seen to provide results with the comparatively lowest error at every level of nodes 
density. At the highest density of nodes, while KCM, HCM, and DRBEM have 𝐿𝐿∞ > 1.0𝐸𝐸 −
03, it is RPIM that produces solutions with only 𝐿𝐿∞ ≈ 3.25𝐸𝐸 − 04 . However, all errors 
revealed from all schemes in this example and at all levels of density of nodes, are found to 
remain under 5.00𝐸𝐸 − 03 which is reasonably well. An example of solutions obtained from 
DRBEM is plotted against the exact solution and is depicted in FIG. 5. 
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FIG. 4. Two levels of nodes density with a fixed number of boundary nodes of 40 
and with; (a) 51 internal nodes, and (b) 217 internal nodes.   

 
 
 
 

 
FIG. 5. DRBEM-solution plot against corresponding exact ones; 81 computational 
nodes and Inverse-Quadratic shape 𝜀𝜀 = 3.0.  
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Tab. 2. RMS- and 𝐿𝐿∞-error, produced at 4 levels of densities of internal nodes. 

Method 
𝟓𝟓 × 𝟓𝟓 𝟏𝟏𝟏𝟏 × 𝟏𝟏𝟏𝟏 𝟏𝟏𝟏𝟏 × 𝟏𝟏𝟏𝟏 𝟐𝟐𝟐𝟐 × 𝟐𝟐𝟐𝟐 

RMS 𝑳𝑳∞ RMS 𝑳𝑳∞ RMS 𝑳𝑳∞ RMS 𝑳𝑳∞ 

KCM 1.71E-03 2.15E-03 1.22E-03 2.03E-03 1.04E-03 1.19E-03 9.41E-04 1.27E-03 
HCM 2.01E-03 2.74E-03 1.41E-03 2.46E-03 1.01E-03 2.05E-03 8.55E-04 1.18E-03 

RPIM 9.44E-04 1.85E-03 8.62E-04 1.54E-03 5.23E-04 1.75E-03 3.86E-04 3.25E-04 
DRBEM 1.64E-03 1.99E-03 1.37E-03 2.04E-03 1.22E-03 1.78E-03 7.07E-04 1.01E-03 

 
Example 4.3: With Zero Source Term 
In this example, the governing equation explained in Section 2.1 is solved with the main 
objective of investigating the error accumulated in time where the best shape parameter is still 
believed to follow the findings from example 4.1. In this case, we set 𝑉𝑉𝑥𝑥 = 𝑉𝑉𝑦𝑦 = 0.8 and 𝜂𝜂𝑥𝑥 =
𝜂𝜂𝑦𝑦 = 0.01  with zero sink and zero source terms, i.e. 𝛽𝛽𝛽𝛽 = 𝑔𝑔(𝑥𝑥) = 0 .The governing equation 
is of the form as shown below;  
 

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

+  𝜕𝜕
2𝑢𝑢

𝜕𝜕𝑦𝑦2
= 1

0.01
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 0.8 �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
��                                    (56) 

 
Where (𝑥𝑥,𝑦𝑦) ∈ 𝐷𝐷 = {(𝑥𝑥,𝑦𝑦) ∈ ℝ2|0.5 < 𝑥𝑥,𝑦𝑦 < 2},  𝑡𝑡 ∈ 0,𝑇𝑇. Its exact solution is defined 

as follows;  
 

𝑢𝑢(𝑥𝑥,𝑦𝑦, 𝑡𝑡) = 1
4𝑡𝑡+1

𝑒𝑒𝑒𝑒𝑒𝑒 �− (𝑥𝑥−0.8𝑡𝑡−0.5)2

0.01(4𝑡𝑡+1) − (𝑦𝑦−0.8𝑡𝑡−0.5)2

0.01(4𝑡𝑡+1) �                (57) 

 
Both initial condition and boundary conditions come from the exact solution. FIG. 6 depicts 

the exact solution profile at  𝛥𝛥𝛥𝛥 = 0.001 computed using 20 × 20  computation nodes.  
Tab. 3 compares RMS errors measured at chosen 7 internal nodes obtained at two time 

levels, 𝑡𝑡 = 0.5 and 𝑡𝑡 = 1.0 , using 𝛥𝛥𝛥𝛥 = 0.001 and 12 × 12 computational nodes. At the 
smaller 𝑡𝑡 = 0.5, KCM and DRBEM are found to have approximately the same error 
magnitude where the other two, HCM and RPIM are close to each other with comparatively 
lower error range,≈ 5.00𝐸𝐸 − 04 to 9.00𝐸𝐸 − 04 . When the time level increases to 𝑡𝑡 = 1.0, it 
is interesting to have found that while KCM, HCM, and DRBEM methods are seen to produce 
solutions with noticeably lower accuracy, it is RPIM that has been only slightly affected, with 
the RMS remaining in the range, i.e.< 8.00𝐸𝐸 − 04 .  

When time increases even further, see FIG. 7, it can be clearly seen that all four domain-
meshfree methods have growing their own 𝐿𝐿∞ −   error norm. The highest magnitude in error 
is found to have been produced by KCM with above 𝐿𝐿∞ ≈ 1.00𝐸𝐸 − 01  at 𝑡𝑡 = 2.00. DRBEM 
is also found to have approximately the same growth rate in error as KCM, but is only slightly 
lower in overall. On the other hand, HCM and RPIM are found to remain at lower level of this 
type of error norm with the lowest value of  𝐿𝐿∞ −  error is found to be obtained from RPIM, 
i.e.𝐿𝐿∞ < 1.00𝐸𝐸 − 02 .  
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FIG. 6. Exact solution profile obtained with 𝛥𝛥𝑡𝑡 = 0.001 at 𝑡𝑡 = 1.00  and 20 × 20 nodes.  

 
 

 
FIG. 7. 𝐿𝐿∞ − Error measurement obtained at each time level 1.1 ≤ 𝑡𝑡 ≤ 2.0 with 𝛥𝛥𝑡𝑡 =
0.005, 𝑁𝑁 = 12 × 12   and a fixed 𝜀𝜀 = 3.5. 
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Tab. 3. RMS error comparison at two time levels with Δ𝑡𝑡 = 0.001  and using 12 × 12  
nodes. 
time Center KCM HCM RPIM DRBEM 

𝑡𝑡 = 0.5  

(0.6,0.6) 1.641E-03 8.622E-04 6.024E-04 1.221E-03 

(0.8,0.8) 1.352E-03 8.045E-04 5.110E-04 1.039E-03 

(1.0,1.0) 1.547E-03 9.144E-04 6.117E-04 1.085E-03 

(1.2,1.2) 1.594E-02 8.014E-04 6.405E-04 1.002E-03 

(1.4,1.4) 2.054E-02 8.556E-04 5.759E-04 7.065E-03 

(1.6,1.6) 1.544E-03 9.012E-04 6.641E-04 2.112E-03 

(1.8,1.8) 1.219E-03 8.510E-04 5.882E-04 1.403E-03 

𝑡𝑡 = 1.0  

(0.6,0.6) 1.971E-03 9.844E-04 6.775E-04 2.004E-03 

(0.8,0.8) 1.774E-03 1.022E-03 7.059E-04 1.995E-02 

(1.0,1.0) 1.690E-03 2.012E-03 7.215E-04 1.704E-03 

(1.2,1.2) 1.704E-02 9.571E-04 6.994E-04 8.112E-02 

(1.4,1.4) 2.204E-02 1.102E-03 6.024E-04 1.295E-02 

(1.6,1.6) 1.821E-03 1.507E-03 7.302E-04 7.045E-02 

(1.8,1.8) 1.604E-03 9.991E-04 6.230E-04 9.881E-02 
 

Example 4.4: With Nonzero Source Term 
The governing equation is set to contain 𝛽𝛽= 0 and the source term is given by; 
 

𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑡𝑡) = (𝜂𝜂𝑥𝑥𝑉𝑉𝑥𝑥 + 𝜂𝜂𝑦𝑦𝑉𝑉𝑦𝑦)(𝑒𝑒−𝑡𝑡�𝜂𝜂𝑥𝑥3+𝜂𝜂𝑦𝑦3�)𝑐𝑐𝑐𝑐𝑐𝑐(𝜂𝜂𝑥𝑥𝑥𝑥 + 𝜂𝜂𝑦𝑦𝑦𝑦)                      (58) 
 
The computational domain is (𝑥𝑥,𝑦𝑦) ∈ 𝐷𝐷 = {(𝑥𝑥,𝑦𝑦) ∈ ℝ2|0 < 𝑥𝑥,𝑦𝑦 < 2},  𝑡𝑡 ∈ 0,𝑇𝑇 and all 

boundary conditions are taken from the analytical solution which is provided as follows; 
 

𝑢𝑢(𝑥𝑥,𝑦𝑦, 𝑡𝑡) = 𝑒𝑒−𝑡𝑡�𝜂𝜂𝑥𝑥3+𝜂𝜂𝑦𝑦3�𝑠𝑠𝑠𝑠𝑠𝑠(𝜂𝜂𝑥𝑥𝑥𝑥 + 𝜂𝜂𝑦𝑦𝑦𝑦)                                (59) 
 
On this regular domain, it is set that the total number of centers or computational nodes is 

defined as the sum of the number of internal nodes and the boundary nodes or 𝑁𝑁 = 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 +
𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏 . In order to cover as wide aspect; accuracy, computational time, node density and 
parameter effect, as possible, a large amount of numerical experiments were carried out and 
the main results are listed in Tab. 4. In this Table., only comparatively best results for each 
case produced by a certain value of shape parameter, 𝜀𝜀𝑜𝑜𝑜𝑜𝑜𝑜 , are presented for each node density 
level.  
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In terms of effect due to the shape value, it is clearly seen that it is very much varying for 

each numerical method and no noticeable correlation can be established. When compare 
between DRBEM and KCM method, for instance, while the optimal values of shape used in 
DRBEM remain under 1.00𝐸𝐸 − 01 , those found for KCM seem to increase beyond 
1.00𝐸𝐸 + 01 as 𝑟𝑟𝑖𝑖𝑖𝑖 = �𝐱𝐱𝑖𝑖 − 𝐱𝐱𝑗𝑗�2 is reduced, for all 𝑉𝑉𝑥𝑥 = 𝑉𝑉𝑦𝑦 = 𝑉𝑉 = 10, 102 and 103. 
Moreover, the optimal shape does not always increase when the number of nodes creases and 
this aspect can be seen in the case of HCM and RPIM. When setting 𝑉𝑉𝑥𝑥  =  𝑉𝑉𝑦𝑦 = 5,000, 𝜂𝜂𝑥𝑥 = 
𝜂𝜂𝑦𝑦 = 1 and with 𝑁𝑁 = 19 × 19,  FIG. 8  clearly shows that KCM is highly sensitive to the 
change of shape parameter value. In this FIGURE., the good quality of solutions produced by 
HCM, RPIM, and DRBEM can still be expected while utilizing the same shape values as listed 
in  Tab. 4, yet this is not the case for KCM. Another evidence supporting this assumption is 
what is displayed in  FIG. 9. It shows that the solution quality obtained from KCM is 
significantly improved when an optimal, 𝜀𝜀𝑜𝑜𝑜𝑜𝑜𝑜 , is found and used for that particular case. 

 
Tab. 4. Average Relative error (𝐴𝐴𝐴𝐴𝐴𝐴.𝑅𝑅𝑅𝑅𝑅𝑅.𝐸𝐸𝐸𝐸𝐸𝐸., %) and computational time (CPU-T) 
at 𝑡𝑡 = 0.75 at different values of 𝑉𝑉𝑥𝑥 = 𝑉𝑉𝑦𝑦 = 𝑉𝑉  for three node-density levels, 
computed using Δ𝑡𝑡 = 0.0005, with its corresponding optimal shape 𝜀𝜀𝑜𝑜𝑜𝑜𝑜𝑜 . 

V Method 

5 5N = ×  
(𝑵𝑵𝒊𝒊𝒊𝒊𝒊𝒊 = 𝟗𝟗,𝑵𝑵𝒃𝒃𝒃𝒃𝒃𝒃 = 𝟐𝟐𝟐𝟐) 

11 11N = ×  
(𝑵𝑵𝒊𝒊𝒊𝒊𝒊𝒊 = 𝟗𝟗𝟗𝟗,𝑵𝑵𝒃𝒃𝒃𝒃𝒃𝒃 = 𝟐𝟐𝟐𝟐) 

25 25N = ×  
(𝑵𝑵𝒊𝒊𝒊𝒊𝒊𝒊 = 𝟓𝟓𝟓𝟓𝟓𝟓,𝑵𝑵𝒃𝒃𝒃𝒃𝒃𝒃 = 𝟗𝟗𝟗𝟗) 

𝜺𝜺𝒐𝒐𝒐𝒐𝒐𝒐  
𝑨𝑨𝑨𝑨𝑨𝑨.𝑹𝑹𝑹𝑹𝑹𝑹. 
𝑬𝑬𝑬𝑬𝑬𝑬. (%) CPU-T 𝜺𝜺𝒐𝒐𝒐𝒐𝒐𝒐 

𝑨𝑨𝑨𝑨𝑨𝑨.𝑹𝑹𝑹𝑹𝑹𝑹. 
𝑬𝑬𝑬𝑬𝑬𝑬. (%) CPU-T 𝜺𝜺𝒐𝒐𝒐𝒐𝒐𝒐 

𝑨𝑨𝑨𝑨𝑨𝑨.𝑹𝑹𝑹𝑹𝑹𝑹. 
𝑬𝑬𝑬𝑬𝑬𝑬. (%) CPU-T 

10   

KCM 12.0 1.1127 16.422 15.5 1.4012 24.504 35.0 2.0025 27.844 

HCM 6.50 1.0122 55.201 10.0 1.0504 78.021 25.0 1.5800 102.001 

RPIM 5.50 1.2015 45.877 9.50 0.5488 71.778 30.0 0.4014 84.021 

DRBEM 0.05 1.2014 22.074 0.06 0.8441 33.851 0.09 0.5101 36.235 

210   

KCM 11.4 1.5412 20.104 16.0 1.1001 32.280 19.0 0.9211 45.561 

HCM 7.80 0.8925 62.502 14.5 0.8122 84.533 6.0 0.8001 121.025 

RPIM 10.5 0.7458 41.211 5.00 0.8014 70.266 19.0 0.7418 92.815 

DRBEM 0.04 1.0215 24.025 0.05 0.8010 34.002 0.08 0.8700 37.105 

103  

KCM 22.5 0.2154 28.524 32.0 0.1805 33.212 38.0 0.2058 51.299 

HCM 18.5 0.2001 80.221 6.50 0.0511 102.085 11.0 0.1844 144.544 

RPIM 15.0 0.0895 57.205 30.0 0.0219 86.260 25.0 0.0878 108.992 

DRBEM 0.05 0.1202 26.118 0.06 0.1054 34.108 0.10 0.1955 38.211 
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FIG. 8. Solution surface plot computed using  𝑉𝑉𝑥𝑥  =  𝑉𝑉𝑦𝑦 = 5,000, 𝜂𝜂𝑥𝑥 = 𝜂𝜂𝑦𝑦 = 1  at 𝑡𝑡 = 0.01, 
using ∆𝑡𝑡 = 0.001 with 𝑁𝑁 = 19 × 19; (a) KCM (𝜀𝜀𝑜𝑜𝑜𝑜𝑜𝑜 = 38.0), (b) HCM (𝜀𝜀𝑜𝑜𝑜𝑜𝑜𝑜 = 11.0), (c) RPIM 
(𝜀𝜀𝑜𝑜𝑜𝑜𝑜𝑜 = 25.0), (d) DRBEM (𝜀𝜀𝑜𝑜𝑜𝑜𝑜𝑜 = 0.10), and (e) Exact .      
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FIG. 9. Solution  comparison 𝑢𝑢(𝑥𝑥,𝑦𝑦) ; measured on the straight line 𝑥𝑥 = 𝑦𝑦 across the 
unit domain for  𝑉𝑉𝑥𝑥  =  𝑉𝑉𝑦𝑦 = 10,000, 𝜂𝜂𝑥𝑥 = 𝜂𝜂𝑦𝑦 = 1  at 𝑡𝑡 = 1.00,𝛥𝛥𝑡𝑡 = 0.005 with 𝑁𝑁 = 20 × 20; (a) 
KCM with unadjusted shape (𝜀𝜀𝑜𝑜𝑜𝑜𝑜𝑜 = 38.0), and (b) KCM with an adjusted shape 
(𝜀𝜀𝑜𝑜𝑜𝑜𝑜𝑜 = 43.5).    
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Example 4.5: Transient with Dirichlet boundary conditions 
The special form of the problem is considered by setting;  
 

𝑐𝑐𝑥𝑥 =  
𝑉𝑉𝑥𝑥+ �𝑉𝑉𝑥𝑥2+4𝜂𝜂𝑥𝑥

2𝜂𝜂𝑥𝑥
    and  𝑐𝑐𝑦𝑦 =  

𝑉𝑉𝑦𝑦+ �𝑉𝑉𝑦𝑦2+4𝜂𝜂𝑦𝑦

2𝜂𝜂𝑦𝑦
                           (60) 

 
The exact solution is as follows;  
 

𝑢𝑢(𝑥𝑥,𝑦𝑦, 𝑡𝑡) = 𝑒𝑒𝑡𝑡(𝑒𝑒−𝑐𝑐𝑥𝑥𝑥𝑥 + 𝑒𝑒−𝑐𝑐𝑦𝑦𝑦𝑦)                                           (61) 
 
The initial and boundary conditions are then imposed using the above exact forms;   
 

𝑢𝑢(𝑥𝑥,𝑦𝑦, 0) =  𝑒𝑒−𝑐𝑐𝑥𝑥𝑥𝑥 + 𝑒𝑒−𝑐𝑐𝑦𝑦𝑦𝑦                                             (62) 
 
The Dirichlet boundary conditions; 
 

𝑢𝑢(0,𝑦𝑦, 𝑡𝑡) =  𝑒𝑒𝑡𝑡(1 + 𝑒𝑒−𝑐𝑐𝑦𝑦𝑦𝑦),    𝑢𝑢(1, 𝑦𝑦, 𝑡𝑡) =  𝑒𝑒𝑡𝑡(𝑒𝑒−𝑐𝑐𝑥𝑥 + 𝑒𝑒−𝑐𝑐𝑦𝑦𝑦𝑦) 
 

𝑢𝑢(𝑥𝑥, 0, 𝑡𝑡) =  𝑒𝑒𝑡𝑡(1 + 𝑒𝑒−𝑐𝑐𝑥𝑥𝑥𝑥),      𝑢𝑢(𝑥𝑥, 1, 𝑡𝑡) =  𝑒𝑒𝑡𝑡(𝑒𝑒−𝑐𝑐𝑥𝑥𝑥𝑥 + 𝑒𝑒−𝑐𝑐𝑦𝑦)               (63) 
 
At 𝑉𝑉𝑥𝑥  =  𝑉𝑉𝑦𝑦 = 1.0, 𝜂𝜂𝑥𝑥 = 𝜂𝜂𝑦𝑦 = 0.8 and time 𝑡𝑡 = 0.05,  
Tab. 5 contains the numerical solutions at 8 points over the domain, obtained from all 4 

schemes.  
When time increases, nevertheless, from  𝑡𝑡 = 0.05 to 𝑡𝑡 = 0.5 , all four methods have been 

found to have lost their capability as clearly displayed in FIG. 10 .  KCM is found to strongly 
be affected by the time-increment while HCM and RPIM are much less affected. When time 
has been even further increased, it is very interesting to have seen that it is actually DRBEM 
that can provide good results. FIG. 11. confirms this argument where DRBEM leads to 
approximately the same quality of accuracy as those produced by RPIM. As the computation 
process continues from 𝑡𝑡 = 1.0 to 𝑡𝑡 = 2.0, however, the only scheme that can remain 
desirable solution accuracy while keeping the same 𝜀𝜀𝑜𝑜𝑜𝑜𝑜𝑜 is actually RPIM and the evidence of 
this is shown in  FIG. 12.  

So far, it has been clearly seen that RPIM is capable of producing the best quality of 
numerical results and is least sensitive to the change of the shape parameter. The last 
experiment is on the effect on nodes density in the computational domain. FIG. 13 depicts the 
RMS error generated by all four method when the nodes increase, for the case of 𝑉𝑉𝑥𝑥  =
 𝑉𝑉𝑦𝑦  = 10, 𝜂𝜂𝑥𝑥  = 𝜂𝜂𝑦𝑦 = 0.8 at 𝑡𝑡 = 1.5 when using 𝛥𝛥𝛥𝛥 = 0.005. Once again, RPIM is seen to be 
slightly affected by the distance between nodes while strong fluctuations in error clearly 
appear in the case of DRBEM and KCM. When comparing RPIM with HCM, the results show 
that HCM is even less sensitive to nodes density particularly during 50 < 𝑁𝑁 < 250 . 
Nevertheless, in terms of the accuracy, RPIM is noticeably more accurate with RMS as low 
as ≈ 1.00𝐸𝐸 − 05.  
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Tab. 5. Numerical solutions produced by each RBF compared to the exact using 
𝛥𝛥𝛥𝛥 = 0.001 for 𝑉𝑉𝑥𝑥  =  𝑉𝑉𝑦𝑦 = 1.0, 𝜂𝜂𝑥𝑥 = 𝜂𝜂𝑦𝑦 = 0.8 and time 𝑡𝑡 = 0.05 . 

Center KCM HCM RPIM DRBEM Exact 

(0.5,0.1) 1.27112 1.25998 1.27125 1.26601 1.274227 

(0.9,0.1) 1.05401 1.15020 1.00523 1.04109 1.057985 

(0.7,0.3) 0.86901 0.89012 0.87004 0.89901 0.870372 

(0.1,0.5) 1.26801 1.21205 1.27311 1.27012 1.274227 

(0.9,0.5) 0.58821 0.60012 0.59701 0.60123 0.594516 

(0.3,0.7) 0.86810 0.79910 0.86905 0.86801 0.870372 

(0.1,0.9) 1.10521 1.00214 1.07012 1.05007 1.057985 

(0.5,0.9) 0.60188 0.59001 0.59102 0.59199 0.594516 

 

 
FIG. 10. Relative error percentage of solutions computed by the four methods for 
𝑉𝑉𝑥𝑥  =  𝑉𝑉𝑦𝑦 = 10, 𝜂𝜂𝑥𝑥 = 𝜂𝜂𝑦𝑦 = 1.0 on the straight line 𝑥𝑥 = 𝑦𝑦 at 𝑡𝑡 = 0.5 using 𝛥𝛥𝑡𝑡 = 0.001, and 𝑁𝑁 =
21 × 21 . 
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FIG. 11. Solution contours for 𝑉𝑉𝑥𝑥  =  𝑉𝑉𝑦𝑦 = 10, 𝜂𝜂𝑥𝑥 = 𝜂𝜂𝑦𝑦 = 1.0 at 𝑡𝑡 = 1.0 when using 𝛥𝛥𝑡𝑡 =
0.001 , and 𝑁𝑁 = 21 × 21; (a) DRBEM, (b) RPIM, and (c) Exact.  
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FIG. 12. Solution profiles for  𝑉𝑉𝑥𝑥  =  𝑉𝑉𝑦𝑦 = 10, 𝜂𝜂𝑥𝑥 = 𝜂𝜂𝑦𝑦 = 1.0 at 𝑡𝑡 = 2.0 when using 𝛥𝛥𝑡𝑡 = 0.005  
, and 𝑁𝑁 = 21 × 21; (a) RPIM and (b) Exact.  
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FIG. 13. RMS error progression in terms of number of computational nodes for  
𝑉𝑉𝑥𝑥  =  𝑉𝑉𝑦𝑦 = 10, 𝜂𝜂𝑥𝑥 = 𝜂𝜂𝑦𝑦 = 0.8 at 𝑡𝑡 = 1.5 when using 𝛥𝛥𝑡𝑡 = 0.005. 

 
5. CONCLUSION  
In this study, one of the classical PDEs namely convection-diffusion is numerical solved by 
four numerical domain-meshfree approaches. The common and crucial component of all the 
methods is radial basis function and the inverse-quadratic (IQ) type is chosen. To reach the 
main purposes; to shed more light into the practical use of IQ-RBF and to compare the 
effectiveness of the four methods, a large series of numerical experiments were carries out 
and 4 aspects of each method are measured. The computed results have revealed the following 
conclusions;  
 
1. In terms of the overall accuracy and error growth in time; all four schemes are found to 

have approximately the same error growth rate but different in magnitude, i.e. KCM and 
DRBEM are roughly one-order of magnitude higher than the other two.  

2. In the time-consuming aspect, it appears that the Hermite type of collocation requires 
comparatively noticeably higher CPU-time. KCM is, on the other hand, found to be the 
fastest approach. 

3. The impact caused by the number of nodes, 𝑁𝑁, and the change of shape parameter, 𝜀𝜀 ,  are 
seen to be very high under the context of KCM. DRBEM and RPIM are found the be much 
less sensitive to those factors.  

4. In terms of the simplicity to construct and deploy, this can easily be judged by the way of 
approximating the solution  𝑢𝑢�(𝑥𝑥𝑖𝑖) . Based on this, it is concluded in this work that KCM 
is the simplest while HCM is the most complicated one followed by DRBEM and RPIM 
respectively.  
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All in all, if a good shape parameter can be achieved, this work has proved that KCM is 

the most suitable. for most practical use. Under the situation where internal nodes are less 
needed, DRBEM is an obvious choice where only boundary nodes play the major rules. For 
large and multidimensional domains, while KCM might encounter the problem of asymmetric 
and populated collocation matrix and while DRBEM can no longer handle properly, HCM 
can well be another alternative (provided that CPU-time has no limitation). In summary, it has 
been revealed that RPIM is the optimal approach in terms of all aspects and criteria mentioned 
above.  
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