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Abstract 

With the expansion of the scale of the urban power grid, its structure is becoming more 

and more complex. After the occurrence of N-1 failure, the operation risk is likely to 

increase, resulting in a large area of power failure at N-1-1. Therefore, this paper 

proposes a load transfer strategy of urban power grid based on Double Deep Q-Network 

to generate load transfer scheme of power grid intelligently. Firstly, the load transfer 

problem of urban power grid is modeled as a sequential decision problem which is easy 

to be learned and trained by agents, and the intelligent load transfer decision model is 

constructed. Secondly, a learning framework of agent load transfer knowledge is 

proposed by using a large amount of interaction information between agents and line 

switches in the simulation environment to continuously accumulate power grid operation 

knowledge. Finally, in order to improve the effectiveness and generalization of the 

algorithm, a strategy of pre-action-change exploration value selection is added. The 

effectiveness of the proposed method is verified through the analysis of actual power grid 

examples. The proposed method can reduce the serious consequences such as the loss 

of voltage in all substation stations after N-1-1 occurrence, and provide support and 

guarantee for the operation safety of urban power grid. 

Keywords: Diversion strategy, intelligent generation, generalization; N-1-1. 

 

1. Introduction 

In recent years, with the rapid economic development, the social demand for electricity is increasing, so to 

ensure the safety and reliability of power supply is the most important. In the whole power system, dispatching 

operation is an important part to ensure the normal operation of the power system [1, 2]. Up to now, the 

dispatching department has developed a perfect plan and measures for the occurrence of N-1 in the urban power 

grid, so as to ensure that there will be no power outage when N-1 occurs, but it is difficult to ensure that some 

substations are not in the state of single supply risk after the occurrence of N-1. For example, when the 

substation bus breaks down, the action of the backup automatic transmission device in the system will ensure 

that the system will not have a power failure under the current state, but if these substations once the line breaks 

down again, there is no alternative path available, it is very easy to have a large area of power failure in a certain 

area. In order to prevent the above situation, the dispatching department adopts the means of load transfer to 

transfer the load carried by the substation with risks to other alternate paths. However, due to the relationship 

between a large number of switches and voltage levels in the urban power grid, some traditional methods take a 

long time to solve and cannot timely formulate decision plans for the dispatching department. Therefore, it is 

very important for this paper to study how to quickly develop load transfer scheme for dispatching department 

and reduce the risk of N-1-1 in urban power grid. 
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At present, the methods for solving load transfer at home and abroad are roughly divided into the following 

kinds, including heuristic algorithm, expert system method, mathematical programming method and so on. At 

present, most researches on heuristic algorithms are based on simulated annealing, genetic algorithm, particle 

swarm optimization algorithm and ant colony algorithm [3-5]. However, heuristic algorithms rely heavily on in-

depth understanding of specific problems and domain knowledge. Although feasible solutions can be narrowed 

to a certain space according to such knowledge, and suitable routing paths can be found in a short time, once the 

lack of such knowledge, the robustness and universality of the system will be greatly reduced or even the 

algorithm will be unable to find effective solutions. The main feature of expert system method is that it can call 

the pre-saved policy library, so it has good real-time performance and wide applicability. Enables it to quickly 

provide solutions when dealing with complex problems [6]. However, it takes a lot of time and effort to build 

and integrate these strategy libraries, and the expert system needs to be constantly adjusted to the new operating 

conditions as the city grid undergoes load transfer. This adjustment process is tedious and time-consuming, 

which increases the complexity and workload of system maintenance. Mathematical programming method is a 

popular method in recent years because of its good ability to search for optimization in the whole world, which 

can transform the complicated load transfer problem of urban power grid into mathematical problem. And when 

solving the problem of load transfer, it is supported by very strict mathematical theory and formula deduction, 

which can ensure the real and effective and optimal solution. However, when dealing with a large and complex 

structure, high dimensional power grid, such methods are extremely prone to "combination explosion" situation 

[7-10]. 

In recent years, artificial intelligence has developed rapidly in various fields, and its technology has become 

increasingly mature, which has also laid the foundation for solving the problem of load transfer in the power 

system. Among them, the application of deep reinforcement learning technology in power system has a very 

significant advantage. It is not limited by complex physical models, and a large number of sample data can be 

automatically generated after the information of system topology and power flow is known. Moreover, deep 

reinforcement learning can deal with complex nonlinear environment and changeable state space through neural 

network model [11, 12]. This capability enables it to flexibly adapt to various situations when facing practical 

problems. The model does not require prior knowledge, and the corresponding strategies can be gradually 

optimized through the interactive self-help learning between the agent and the power grid environment. The 

load transfer process of power grid is regarded as a Markov decision process, and the framework of Markov 

decision process is helpful to optimize the load transfer strategy systematically and quickly in the complex 

power grid environment. 

Therefore, this paper proposes an improved Double DQN load switching research method based on deep 

reinforcement learning, which significantly improves the convergence speed of the algorithm by introducing an 

instant reward mechanism and adding a change exploration value selection strategy to the pre-action [13-15]. 

When N-1 failure occurs in the power grid, this method can respond quickly and provide high-quality load 

switching decision schemes in real time. This method not only effectively deals with different N-1 fault 

scenarios, but also ensures the reliability of the system [16-19]. 

2. Reinforcement Learning Model of Load Transfer 

Reinforcement learning is a process of constantly interacting with the environment, obtaining feedback, 

updating strategies, and iterating until the optimal strategy is learned. The power grid is the environment of 

reinforcement learning, the agent provides the current power grid state space S, and the result of the agent's 

analysis and decision is the switching action A. The action is applied to the environment, and the reward value 

of the environment is R [20-22]. The objective of the reinforcement learning agent is to maximize the 

cumulative reward value through a limited number of steps, so as to find the optimal strategy [23]. The 

reinforcement learning model of load transfer is shown in Figure 1. 
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Figure 1 Intelligent load transfer decision architecture based on reinforcement learning 

2.1 State space 

The state space should consider as far as possible the factors that will affect the decision, so in reinforcement 

learning, these data are selected to build the state space S , which refers to the limited set of the state of the 

environment, and tS  represents the state of the environment at the current moment: 

 [ , ]g iS K G  (1) 

Where, gK  is the switching state vector of the branch in the power grid, and iG  is whether each substation has 

a single supply. 

2.2 Action space 

Action space A  refers to the set of all actions that the agent can perform on the environment, and the action 

taken by the agent ta  time t  is represented by AT. A complete load switching operation consists of a series of 

switching switches. In order to prevent the state space from being too large, this paper selects the mode of 

switching only one switch in one operation. In addition, the load switching should end within a limited number 

of operations, and the action of actively ending this switching should be set. 

 1 2,[ , ..., ,... ]k nA a a a a  (2) 

Where, 1 2,, ..., ,...k na a a a  indicates whether the switch operates, when the vector is 1, it indicates that the 

switch operates, and n  is the number of switches. 

2.3 Return function 

(1) Bonus part 

The main purpose of load transfer in the network is to reduce the risk of N-1-1 occurrence in the network after 

N-1 failure. 

 
1 2

1 10
n s

R e


   (3) 

In the formula, s  is the number of single supply, and the maximum reward value is when the single supply is 0. 

 2 transformR P  (4) 

Where, transformP  is the amount of load transformed from risk load to non-risk load. 
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The transfer of supply should be completed in as few operation times as possible to reduce the cost of operation 

and maintenance and the possibility of error, but also save the operation time, prevent the distribution network 

structure from changing too much, and increase the difficulty of restoring the original operation mode after the 

fault is eliminated. 

 
2

3 ( )
2

x a
R b


    (5) 

Where, x  is the number of actions, a  is the optimal number of actions, ranging from 1 to 8, and b  is the 

maximum value of reward. 

(2) Penalty part 

In order to ensure the normal operation of the distribution network, it is essential to maintain the node voltage 

within the specified range. The voltage should be kept within the allowable deviation range of ±7% to ensure the 

stability of the system. In order to prevent the agent from acting without meeting this voltage constraint, severe 

penalties are given for voltage values outside this range, but no penalties are set for voltage values within this 

range. This strategy is designed to guide the agent to select operations that meet the requirements of voltage 

stability, thereby avoiding behaviors that may cause system instability and ensuring the reliability of grid 

operation. 

The voltage exceeds the limit and enters the failed exit state directly. Formula () is the calculation formula of 

voltage penalty dyP , 
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 (6) 

Where iU  is the per unit value of the voltage of node i; dP  is the penalty value after the voltage exceeds the 

limit; miniU  and maxiU  are the lower limit and upper limit of node i voltage respectively. 

When the transmission power exceeds the limit value, it is easy to cause secondary failure of the equipment in 

the power grid, and there should be corresponding limit value for each branch, and corresponding punishment 

should be done after exceeding the limit value. The calculation formula of power penalty glP  is as follows: 

 
max

max

max

,

0,

i
i

gl

i

P
r P P

PP

P P


 

 
 

 (7) 

Where, maxP  is the maximum transmission power of a branch, and iP  is the power transmitted on a branch. 

When the agent performs invalid redundant actions, such as repeatedly turning off the switch that has been 

turned off or the switch that has been turned off because of the N-1 fault is turned off again, these actions will 

have an adverse impact on the recovery of the power grid and economic cost in the later stage, so the penalty for 

invalid actions is given in formula (8). 

 
,
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o i A

ope

i A

P a C
P

a C


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
 (8) 

Where, oP  is the penalty value for the agent to perform an invalid redundant action, ia  is the agent to perform 

the i th action, and AC  is the set of switching actions. 
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Finally, the reward function of the model is composed of the sum of the reward part and the punishment part: 

 1 2 3 dy gl opeR R R R P P P       (9) 

3. Load transfer method based on deep reinforcement learning 

3.1 Double DQN algorithm 

 

Figure 2 Reinforcement learning process 

The whole process of reinforcement learning can be simplified into Markov decision process ( MDP ), and all 

states are Markov. At each time step, the agent receives a state. It selects an action according to a preset policy 

mechanism, receives a corresponding reward according to the dynamic model of the environment, and then 

moves on to the next state. The policy mechanism defines how the agent determines actions based on the current 

state. In reinforcement learning, MDP  can be represented by a quintuple 
, , , ,S A P R 

, and in a 

fragmented environment, this process continues until it reaches a termination state. The model here refers to the 

dynamic characteristics of the environment, including the law of state transition and the way rewards are 

distributed [24], as shown in Figure 2. 

The network structure of DQN is composed of target network and estimate network. The two networks are 

architecturally identical, but have different parameters. The estimation network uses the latest parameters to 

calculate the value of the current state-action pair and periodically updates these parameters to the target 

network to calculate the target Q value. With this dual network structure, correlations between data can be 

broken, enabling DQN to learn from different data distributions. The experience playback unit can store the 

historical behavior information of the agent, including the current moment state s , action a , reward r  and the 

next moment state. When updating the DQN algorithm, the system will randomly extract some behavior 

sequences from the experience pool for playback training. This replay training method can alleviate the problem 

of high correlation between data in the experience pool, and solve the problem of insufficient generalization 

ability caused by non-static data distribution. The DQN algorithm directly computes the target Q value using a 

greedy strategy, which quickly converges to the best possible target by maximizing the Q value. However, this 

method can easily lead to overestimation of Q value and introduce large deviation, which is unfavorable to the 

research of robot operation behavior. In order to solve this problem, the Double DQN algorithm decouples the 

action selection from the calculation of the target Q value to avoid the overestimation of the Q value [25, 26]. 

Double DQN algorithm is an improved version of DQN algorithm, which solves the problem of overestimating 

behavior value of DQN algorithm. In the DQN algorithm, when the state at a certain time is a non-terminating 

state, the calculation formula of the target Q value is as follows: 

 '

' '

1max ( , ; )j j ja
y r Q s a    (10) 

The Double DQN algorithm does not directly select all possible Q values calculated by the target network in a 

maximized way, but first selects actions corresponding to the maximum Q value by estimating the network. The 

formula is expressed as follows: 

 max 1arg max ( , ; )a ta Q s a   (11) 

Then the target network calculates the target Q value according to maxa
, and the formula is expressed as 

follows: 

 
'

1 max( , ; )j j jy r Q s a    (12) 
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Since the final goal of Double DQN is to minimize the gap between the estimated Q value and the real target's Q 

value, the formula () can be obtained and the loss function can be defined: 

 
'

1 1( , ) ( , ; ) ( ( ,arg max ( , ; ); ))t t i t t t t a tQ s a y Q s a r Q S Q s a           (13) 
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 (14) 

There are two neural network models in the Double DQN framework, namely the training network and the 

target network. The structure of the two neural network models is exactly the same, but the weight parameters 

are different. After each training interval, the weight parameters of the training network are copied to the target 

network. During the training of the whole model, the training network is responsible for estimating the current 

( )t tQ s a
, and the target network is responsible for estimating the 1max ( , )a t tQ s a . The target network 

ensures that the estimate of the true value arg ( , )t et tQ s a
 will not change too quickly with the continuous update 

of the training network. Double DQN also supports offline learning. The past experience is learned offline by 

constructing an experience pool. The loss function of the training network is mean-square error 

arg( , )train t etMSE Q Q
, and the training model is updated by backpropagation of gradient descent method. 

Finally, after several rounds of experience pool sampling, the weight of the training network model is assigned 

to the target model, and the model self-learning of Double DQN is carried out, as shown in Figure 3. 

 

Figure 3 Double DQN algorithm structure diagram 

3.2 Explore the greed mechanism in pre-action 

Consider that rewards play a key role in action evaluation and Q-value optimization in reinforcement learning. 

Before the neural network is fully trained, when the Q value may not be stable, using instant rewards as a guide 

to choose the next action can help the agent explore the environment more effectively and discover the optimal 

strategy. The pre-action exploration strategy guides the action selection by evaluating the immediate reward of 

the predicted action, enabling the agent to quickly accumulate high-quality experience samples in the early 

learning period. This approach not only improves the efficiency of exploration, but also helps agents adapt and 

optimize decision-making strategies quickly in complex environments. 

4. Example Analysis 

4.1 Training process 

As shown in Figure 4, in order to prove the effectiveness of the proposed model method, a local power grid in a 

certain region is used as an example. The power grid topology contains 4 power stations, 6 220kV substations, 
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12 110kV substations, 12 220kV grade lines and 36 110kV grade lines. 158 nodes, 196 operable switches. The 

simulation environment is Python3.7, pytorch1.10, CPU is i7-11800, and memory is 16GB. 

 

Figure 4 Topology diagram of a regional power grid and break position 

Double DQN neural network is composed of input layer, hidden layer and output layer. The hidden layer of the 

two agents has 64, 48 neurons, 24 and 16 neurons respectively. The discount coefficient is 0.98, the capacity of 

experience playback pool is 1000, and the number of learning samples is 100. The learning rate, which starts at 

0.001, decreases over time. 

In order to verify the effectiveness of the load transfer control method based on Double DQN proposed in this 

paper, the scheduling method based on Double DQN algorithm is compared with the DQN algorithm, the same 

reward function is set for them, and the average reward value obtained during the training process is compared. 

 

Figure 5 Average reward value comparison 

As can be seen from Figure 5, in the early stage of training, due to the tendency of the flow to not converge, the 

reward level of the comparison method is low, while the action selection mechanism of the proposed method 

introduces the immediate reward mechanism to obtain a higher average reward, while the pre-action-change 

exploration value selection strategy improves the global optimal convergence ability. At the later stage of 

training, certain oscillations are due to the probability that the agent attempts random actions to avoid falling 
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into local optimality. Double DQN algorithm and classical DQN algorithm are prone to pursue risk prevention 

and control effect, which makes it difficult to restore the radiation network and obtain a relatively perfect 

transfer strategy. As a result, it is difficult to provide the optimal convergence speed and higher reward value of 

the method. 

4.2 Analysis of multi-scenario intelligent decision strategy results 

In order to further verify the applicability of intelligent online decision making in different N-1 scenarios 

concerned by scheduling departments, multiple N-1 topology scenarios are set for testing. After training, the 

proposed method and model still have good decision-making performance in different scenarios. 

Table 1 Transfer strategy 1 (DH Station: PD Line A and B, DM Line A and B Outages) 

Breakdown DH Station: PD Line A and B, DM Line A and B Outages 

Risk 
Apart from the DS and DL lines, all other loads at the DH station are supplied only by the YL line. If this 

line goes down, it will lead to a significant loss of load. 

Procedure Switch Operation Turn (string) supply path 

1 

DA Line A to AL Line A Switch Open → Close 
DH station east bus load transfers to MY 

station 
YL Line A Switch 

Close → Open DH Station 66kV Bus Coupler 

Transfer result 
The loads on the two buses at the DH station are supplied by CY Station and MY Station respectively, 

reducing the likelihood of simultaneous power outages. 

 

Table 2 Transfer strategy 2 (MY Station: MH Line A and B Outages) 

Breakdown MY Station: MH Line A and B Outages 

Risk 
The loads at MY Station are supplied solely by the LA line. If this line goes down, it will result in a complete 

loss of load. 

Procedure Switch Operation Turn (string) supply path 

1 
DT Line West Bus Side Switch Open → Close 

TD load changes to XM 
DT Line East Bus Side Switch Close → Open 

2 

DA Line A to AL Line A Switch Open → Close 
MY station east bus load transfers to DH 

station 
LA Line A Switch 

Close → Open 
MY Station 66kV Bus Coupler 

Transfer 

result 

The loads on the two buses at MY Station are supplied by DH Station and HL Station, and the DT line load is 

transferred to prevent equipment overload, reducing the likelihood of simultaneous power outages. 

 

Table 3 Transfer strategy 3 (HL Station: HH Line A and B, XH Line A and B Outages) 

Breakdown HL Station: HH Line A and B, XH Line A and B Outages 

Risk 
At HL Station, aside from the LA Line A, the remaining loads are only supplied by the XL line. If this line goes 

down, it will result in a significant loss of load. 

Procedure Switch Operation Turn (string) supply path 

1 
TX Line B North Bus Side Switch Open → Close 

TX line B load transfer to BM 
TX Line B South Bus Side Switch Close → Open 

2 

LY Line B Switch Open → Close 

HL station west bus load transfers to TD station XL Line B Switch 
Close → Open HL Station 66kV Bus Coupler 

Transfer 

result 

The loads on the two buses at HL Station are supplied by TX Station and TD Station, and the TX Line B load 

is transferred to prevent equipment overload, reducing the likelihood of simultaneous power outages. 

 

As can be seen from Table 1 to Table 3, under the load switching strategy proposed in this paper, there is no 

substation single supply risk, and the load loss risk is at a relatively low level. N-1-1 check conforms to the 

requirements of the risk strict control event level (there is no whole station voltage loss of substations above 

110kV, and the load loss is less than 50MW). However, after the empirical decision optimization, there are high 

risks of the whole substation voltage loss and load loss risk, which is due to the lack of a systematic evaluation 

system for N-1 new risks when the plan is formulated. 
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Figure 6 Switch switching position 

Table 4 Comparison of transfer results 

Transfer method Transfer scheme 
Number of substations 

at risk (units) 

Maximum load rate 

(%) 

non-optimization - 4 42.78 

Textual method 
①open a1 ②close a2 ③open b1 ④close b3  

⑤close d1 ⑥open d4 ⑦close c1 ⑧open c2 
0 67.17 

 

The load transfer results of the urban power grid after N-1 are analyzed and compared with the non-optimization 

method. The load transfer results are shown in Table 4, and the switch positions are marked in Figure 6. In this 

paper, the maximum load ratio of the line with the switching strategy is 67.17%, which indicates that the load 

ratio of the power network is relatively uniform. 

 

Figure 7 The comparison of load rates after transfer under different methods 



International Journal of Multiphysics 

Volume 18, No. 2, 2024 

ISSN: 1750-9548 

 

439 

As shown in Figure 7, the Double DQN switching strategy is effective for reducing the load ratio. Although the 

load ratio of some light-load branches is greater than that of the non-optimization method, this is the inevitable 

result of transferring the load of heavy-load branches. 

5. Conclusion 

In this paper, the deep reinforcement learning method is applied to the process of power grid load transfer. 

Through direct and effective analysis of the operating environment information of the power grid, effective data 

is extracted to build a deep reinforcement learning switching model, and a series of switches of the power grid 

are reasonably and effectively controlled to realize load switching. This method can adapt to the N-1 situation 

across multiple scenarios in the power grid, and does not need to modify the model for different fault types, thus 

providing a more generalized switching strategy. 

In the algorithm design, this paper improves the effectiveness of decision making and speeds up the training 

speed significantly by using Double DQN method. Compared with the traditional algorithm, this method has the 

dual advantages of offline learning and online application. By transferring a large number of calculations to the 

offline stage, the algorithm can accumulate rich experience through offline learning of massive data. When an 

N-1 failure occurs in the power grid, the algorithm can quickly perform online calculation and provide accurate 

and effective control strategy for operators in a very short time. The power failure loss is reduced and the 

operating cost is reduced. 

In addition, the improved algorithm proposed in this paper can also handle more complex load switching 

scenarios, such as different line break fault locations. The algorithm can dynamically adjust its own parameters 

to adapt to different operating environments and conditions. This flexibility and adaptability make the algorithm 

more applicable and valuable in real-world scenarios. 

To sum up, the innovation of this paper lies in the combination of artificial intelligence deep reinforcement 

learning technology and power system load transfer, and puts forward a method with high efficiency and 

adaptability. Through the in-depth experimental verification, the method shows remarkable superiority in 

improving the reliability of power grid operation. 
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