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Abstract 

To enhance the precision and timeliness of soybean yield prediction in Jilin Province, this 

study leveraged data from 43 weather stations within the region. Employing 

methodologies such as Random Forest, Genetic Algorithm-assisted BP Neural Network, 

Support Vector Machine, and Convolutional Neural Network, predictive models for 

soybean yield were developed, with a specific focus on comparing the outcomes when 

including meteorological disaster index variables. The research findings highlight the 

paramount importance of certain feature variables closely linked to soybean yield, 

namely minimum temperature, accumulated temperature ≥10°C, mean temperature, 

frost-free days, maximum temperature, longitude, and precipitation. Notably, the 

integration of meteorological disaster index variables led to superior simulation results. 

Among the models utilizing these variables, the Random Forest model demonstrated the 

highest simulation accuracy, while the GA-BP and SVM models displayed relatively lower 

performance, with MAE values of 4.45 and 4.49 respectively. Conversely, the CNN model 

showcased the weakest performance in the context of this study. Ultimately, the 

collective models exhibited commendable accuracy levels. 

Keywords: Jilin Province, soybean, yield prediction, meteorological disasters, machine 

learning. 

 

1. Introduction 

Currently, the primary soybean-producing regions in China are predominantly situated in the northeast region 

and the Huang-Huai-Hai Plain, with Jilin Province being a key soybean-producing province in the northeastern 

region. Research indicates that the Songnen Plain and Sanjiang Plain in the northeastern plains exhibit the 

greatest potential for increased soybean production [1, 2]. With the rapid development of the domestic economy, 

the domestic demand for soybeans has surpassed local production levels, leading to a widening gap between 

production and demand [3]. Therefore, for the local soybean industry’s advancement, the timely and accurate 

prediction of soybean yields holds significant importance. 

Nevertheless, soybean yields are influenced by a plethora of factors, including soil quality, seed varieties, pest 

infestations, and meteorological conditions, all of which significantly impact soybean production. 

Meteorological elements such as temperature, precipitation, sunlight, wind, drought, and flooding play crucial 

roles in the growth, development, and yield of soybeans [4]. Meteorological disasters represent a pivotal factor 

that cannot be overlooked in the soybean production process. Different types of meteorological disasters may 

detrimentally affect crop growth and development, potentially leading to substantial yield reductions [5, 6]. 

Currently, numerous scholars have investigated the impact of meteorological disasters on soybean yields. For 
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instance, Wang and others [7] have highlighted the pronounced effects of floods and droughts on crop 

production in Heilongjiang Province, with hailstorms and low-temperature disasters demonstrating relatively 

stable impacts and causing minimal harm to agricultural production. Research by Yin et al. [8] reveals that 

soybeans encountering drought stress during the emergence stage post-sowing experience reduced yields, even 

mild droughts triggering unfavorable yield outcomes. Additionally, Gai and colleagues [9] note that frequent 

occurrences of unpredictable low-temperature damage pose obstacles to the stable production of soybeans, 

severely constraining the growth of soybean yields and the sustainable development of the soybean industry. 

Studies by Qu and others [10] indicate that low temperatures, excessive rainfall, and their combined effects can 

lead to decreased soybean yields, with significant variations in yield reductions. Furthermore, the Standardized 

Precipitation Evapotranspiration Index (SPEI), used to assess drought conditions by considering both 

precipitation and potential evapotranspiration effects, has been widely employed in drought evaluation within 1-

6 month scales and can be utilized to forecast the yields of various crops [11, 12]. 

To ascertain the impact of meteorological factors and meteorological disasters on soybean yields and to quantify 

these effects, it is essential to establish a mathematical mapping relationship between meteorological factors and 

soybean yields. In recent years, with the continuous advancement of machine learning technologies, utilizing 

machine learning for crop yield prediction has become a prominent research focus [13, 14]. Models for yield 

simulation, such as those based on Random Forest, Genetic Algorithm-Backpropagation (GA-BP), Support 

Vector Machine (SVM), and Convolutional Neural Network (CNN) algorithms, have garnered widespread 

research attention and practical applications. Khanal et al. [15] employed remote sensing techniques to gather 

crop data under compacted conditions, subsequently integrating linear regression, Random Forest, and other 

machine learning algorithms to devise a remote sensing-based maize yield prediction model. Zhou et al. [16] 

utilized the GA-RF algorithm to establish a classification model for assessing the impact of soil compactness on 

soybean yield. Furthermore, Luo and colleagues [12] demonstrated that models based on Gradient Boosting 

Decision Trees (GBDT), Bidirectional Recurrent Backpropagation (BRBP), and SVM machine learning 

algorithms achieved significantly higher accuracy in simulating apple yields relative to models based on 

traditional linear regression algorithms. The majority of the aforementioned studies have been dedicated to 

investigating other crops or factors influencing soybean yields, with limited research examining the impact of 

meteorological disaster factors on soybean production. 

This study is grounded in meteorological geographic spatial variables alongside augmented meteorological 

disaster variables. By employing Random Forest, Genetic Algorithm-enhanced Backpropagation Neural 

Networks, Support Vector Machines, and Convolutional Neural Networks, a predictive model for soybean yields 

was constructed. The precision of these models was compared, offering insights that could furnish decision-

making information for large-scale agricultural management. 

2. Data and Methodology 

2.1 Study area and data sources 

In this study, data from 43 meteorological stations in Jilin Province from 1978 to 2017 were utilized, 

encompassing daily meteorological variables such as maximum temperature (Tmax), minimum temperature 

(Tmin), mean temperature (Tmean), relative humidity (RH), precipitation (P), and sunshine hours (R), all sourced 

from the Jilin Provincial Meteorological Bureau. Additionally, geographical variables including longitude (Lon), 

latitude (Lat), and elevation (Dem) were sourced from respective observation sites, as depicted in Figure 1. 

Soybean yield data were sourced from the Statistical Yearbook of Jilin Province. Quality control measures were 

implemented, involving screening of meteorological and soybean yield data to eliminate missing data points, 

culminating in a total of 1,681 viable data points for model construction (comprising 1,200 samples for the 

training set and 481 samples for the test set). Prior to inputting data into the soybean yield prediction model, 

normalization procedures were undertaken to mitigate the impact of differing dimensions on model performance 

and enhance accuracy [17]. The study employed the min-max normalization method for data preprocessing, 

followed by inverse normalization to convert model predictions back to actual soybean yield values. The 

computational formula is as follows: 
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Where, 

nx = the normalized input data; 

x =the original input variable data; 

maxx =the maximum input variable; 

and minx =the minimum input variable. 

 

Figure 1 The spatial distribution of the 43 meteorological stations in Jilin Province 

2.2 Characteristic variables for model input 

The soybean growth period in Jilin Province spans from May to September [18]. Within this growth period, ten 

meteorological geographic spatial variables and two meteorological disaster indicators were selected as input 

variables for constructing the soybean yield prediction model, as outlined in Table 1. 

Table 1 Characteristic variables for soybean yield prediction model input. 

Characteristic Variables Variables Calculation methods 

Meteorological 

geographic spatial 

variables 

Mean temperature (Tmean) Mean temperature during the growing season 

minimum temperature (Tmin) 
Average minimum temperature during the 

growing season 

maximum temperature (Tmax) 
Average maximum temperature during the 

growing season 

Accumulated temperature ≥10℃ (Tc) 
Total sum of temperatures ≥ 10℃ during the 

growing season 

Relative humidity (RH) 
Arithmetic mean of relative humidity during the 

growing season 

Precipitation (P) 
Total precipitation amount during the growing 

season 

Sunshine hours (R) Total sunshine hours during the growing season 

Longitude Longitude of the meteorological station 

Latitude Latitude of the meteorological station 

Altitude Altitude of the meteorological station 

Meteorological disaster 

indicators 

Frost-free days Number of frost-free days per year 

Standardized precipitation 

evapotranspiration index 
Thornthwaite method 
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Accumulated temperature refers to the total sum obtained by adding up the daily mean temperatures over a 

certain period, and it is utilized to investigate the relationship between temperature and the development rate of 

organisms. In Jilin Province, the accumulated temperature for active growth (≥10°C) between May and 

September ranges from 2100 to 3100 (°C·days), with the effective accumulated temperature for the entire 

growth period falling between 1700 and 2900 (°C·days). Most regions in Jilin Province meet the temperature 

requirements for soybean growth, yet certain western areas exhibit higher ≥10°C accumulated temperatures. 

Consequently, soybean cultivation in these regions may not yield optimal results. 

This study employed the Standardized Precipitation Evapotranspiration Index (SPEI) to assess the supply and 

demand of moisture. SPEI is derived through the accumulation of the normalized difference sequence between 

precipitation and potential evapotranspiration. To calculate SPEI, monthly precipitation and monthly average 

temperature were utilized as input data to establish an accumulated sequence of water surplus or deficit based on 

the difference between precipitation and potential evaporation, encompassing various time scales. The 

Thornthwaite method was utilized to compute potential evapotranspiration (PET), which considers temperature 

variations comprehensively and requires minimal input variables, facilitating convenient calculations. This 

method effectively captures the characteristics of surface potential evaporation. The specific computational 

process referenced the approach outlined by Ma et al. [19]. 

Firstly, the calculation of potential evapotranspiration is conducted as follows: 

i10
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H

                                                                     (2) 
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Where, 

PET =potential evapotranspiration; 

iT =the monthly average temperature; 

H = the annual heat index; 

and A = a constant. 

Subsequently, the difference between monthly precipitation and evapotranspiration is computed: 

i i iD P PET                                                                             (4) 

Where, 

iD =the difference between precipitation and evapotranspiration; 

iP = the monthly precipitation; 

and 
iPET = the monthly evapotranspiration. 

In the third step, as negative values may exist in the original data sequence, the difference sequence is 

standardized using a three-parameter log-logistic probability distribution to calculate the corresponding SPEI 

values: 
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Where, parameters  ,   and  represent scale, shape, and location parameters, respectively, obtained 

through linear moment estimation: 
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Where: = the factorial function; 
0 , 

1  and 
2  are the probability weighted moments of the data sequence
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Where, N =the number of months. 

Finally, the cumulative probability density was normalized to compute the SPEI: 
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Where, the cumulative probability P ≤0.5 and operated similarly to SPI calculations. 

2.3 Machine learning algorithms 

2.3.1 Random forest 

Random Forest (RF) is a supervised ensemble learning algorithm belonging to the Bagging category, which 

enhances prediction accuracy by integrating multiple decision trees. This algorithm possesses robust anti-

overfitting capabilities and high-precision prediction characteristics [14, 20]. Comprising multiple decision 

trees, each tree is generated by bootstrap sampling the dataset. During training, each decision tree learns features 

and patterns from different data subsets and predicts unknown data. Finally, the final prediction is derived by 

voting or averaging the predictions of all decision trees. 

2.3.2 Genetic algorithm-backpropagation neural network (GA-BP) 

Yang et al. [21] detailed the fundamental steps and principles of the GA-BP model. In this study, 70% of the 

overall effective data was randomly selected as training samples, while the remaining 30% was used for testing 

the GA-BP model’s predictions. The average results of 50 modeling and prediction tests (including root mean 

square error and correlation coefficients) were calculated to quantitatively evaluate the accuracy and stability of 

the model constructed based on meteorological disaster indicator variables [12]. The parameters for the GA-BP 

model were set as follows: 5 hidden layer nodes, maximum genetic generations of 50, crossover probability of 

0.7, mutation probability of 0.01, maximum training iterations of 1000, minimum target root mean square error 

of 0.001, and learning rate of 0.01. 

2.3.3 Support vector machine (SVM) 
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Support Vector Machine (SVM) is a supervised learning algorithm aimed at finding the optimal hyperplane for 

best data classification [22, 23]. This hyperplane separates different classes in the dataset with the maximum 

margin, thus SVM classifies by seeking a hyperplane with the maximum margin. During training, SVM utilizes 

a set of labeled training data to construct a classification model by learning the features and patterns of the data. 

This classification model can then be used to predict the classification of new unknown data. SVM excels in 

handling high-dimensional data, addressing non-linear problems, and exhibiting strong generalization 

capabilities. It finds extensive application in pattern recognition, text classification, image recognition, and other 

fields. 

2.3.4 Convolutional neural network (CNN) 

Convolutional Neural Network (CNN) is a deep learning model particularly adept at processing data with grid 

structure, such as images and videos [24]. Its primary feature lies in extracting spatial structural features of data 

through convolution operations and reducing parameter volume and computational complexity through pooling 

operations. CNNs are constructed by stacking multiple convolutional and pooling layers, culminating in fully 

connected layers for classification or regression tasks. During training, CNN adjusts network parameters using a 

large labeled dataset through the backpropagation algorithm, enabling the network to learn features and patterns 

in the data. 

2.4 Model evaluation 

In this study, the evaluation of model simulation accuracy is conducted using three statistical metrics: the 

Pearson correlation coefficient (r), the Root Mean Square Error (RMSE), and the Mean Absolute Error (MAE). 

3. Results and Analysis 

3.1 Correlation analysis between soybean yield and variables 

This study delves into the correlation between soybean yield and various variables (refer to Figure 2, 

significance level P < 0.05). The results reveal that temperature-related variables including average temperature 

(Tmean), maximum temperature (Tmax), minimum temperature (Tmin), and sunshine hours (Tc) exhibit a 

positive correlation with soybean yield. Specifically, the correlation between Tmin and soybean yield is most 

significant, with a coefficient reaching 0.25. Following closely are Tc and Tmean, showing relatively high 

correlation coefficients, while the correlation between Tmax and soybean yield is the weakest at a coefficient of 

only 0.16. Moreover, precipitation (P) demonstrates a positive correlation with soybean yield, whereas relative 

humidity (RH) and sunshine hours (R) exhibit lower correlation coefficients with soybean yield. Additionally, 

concerning meteorological disaster indicators, the number of frost-free days shows a positive correlation with 

soybean yield, with a coefficient of 0.11; the SPEI index also shows a positive correlation with soybean yield, 

albeit with a weaker correlation. Regarding geographical spatial variables, longitude demonstrates a negative 

correlation with soybean yield, while latitude and altitude exhibit a positive correlation with soybean yield. 

Notably, the correlation between longitude and soybean yield is the most significant, while the correlation with 

the other two variables is relatively low. 
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Figure 2 Heatmap illustrating the correlation between soybean yield and meteorological feature variables 

3.2 Simulation accuracy analysis of different soybean yield models based on meteorological disaster index 

variables 
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Figure 3 A comparison of the predictive accuracy of soybean yield simulation models constructed using four 

algorithms based on meteorological and geographical spatial variables ((a), (c), (e), (g)) versus models 

incorporating additional meteorological disaster variables ((b), (d), (f), (h)). 

The fitting effects of soybean yield prediction models established using meteorological and geographical spatial 

factors via RF, GA-BP, SVM, and CNN algorithms are illustrated in Figure 3. As observed in Figure 3 ((a), (c), 
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(e), and (g), where the dotted line represents the 1:1 line; asterisks denote P < 0.01), the CNN model, as depicted 

in Fig.3(g), exhibits the weakest predictive performance in the test set, with a correlation coefficient of 0.70 and 

the highest average absolute error and root mean square error at 4.97 and 7.12, respectively. The GA-BP neural 

network (Figure 3(c)) and SVM algorithm model (Figure 3(e)) yield similar results, with correlation coefficients 

of 0.69 each and RMSE values of 6.46 and 6.47, respectively. In terms of the mean absolute error, the GA-BP 

neural network model outperforms. The RF model (Figure 3(a)) distinctly outperforms the other models, with an 

r value of 0.77, MAE of 4.28, and RMSE of 6.89. 

The soybean yield prediction models incorporating meteorological disaster factors demonstrate a significant 

enhancement in fitting effects. As shown in Figure 3 ((b), (d), (f), and (h)), compared to models solely 

considering meteorological and geographical spatial factors, the addition of meteorological disaster factors leads 

to improvements in the fitting effects of all models. Among these models, the soybean yield impact prediction 

model based on the Random Forest method (Figure 3(b)) performs the best, with the lowest root mean square 

error (RMSE). Compared to the model considering only meteorological and geographical spatial factors, the 

RMSE decreases by 11.8%. The correlation coefficient remains the same, while the MAE slightly increases. 

Additionally, by incorporating meteorological disaster factors, the simulation effects of the GA-BP neural 

network (Figure 3(d)) and SVM models (Figure 3(f)) also improve. The correlation coefficient increases by 

7.2% and 1.4%, MAE decreases by 1.8% and 7.4%, and RMSE values are 6.22 and 6.96 respectively. Despite 

the CNN model’s (Figure 3(h)) poorer fitting ability compared to other models, there is still some improvement. 

Its correlation coefficient r increases by 1.4%, MAE decreases by 3.6%, and RMSE increases by 1%. 

In conclusion, considering the impact of meteorological disasters on soybean yield leads to enhanced model 

accuracy. Although CNN, as a deep learning algorithm, did not exhibit the best performance in this context, as it 

is more suited for processing grid-structured data like images and videos. In contrast, ensemble learning 

algorithms (such as Random Forest) are better at handling complex relationships between data, enhancing model 

predictive performance and thus demonstrating superior performance in soybean yield impact models. 

Meanwhile, the GA-BP neural network and SVM belong to genetic neural networks and supervised learning 

algorithms, respectively. Through comparing these three types of algorithms, we find that ensemble learning 

algorithms are more suitable for studying the impact of meteorological disasters on soybean yield. 

4. Conclusions 

This study, based on meteorological and geographical spatial variables as well as meteorological disaster 

variables, utilized Random Forest, Genetic Algorithm-based BP Neural Network, Support Vector Machine, and 

Convolutional Neural Network methods to establish predictive models for soybean yield, yielding favorable 

prediction outcomes. The following conclusions were drawn: 1. The feature variables with the highest 

correlation to soybean yield are, in descending order, minimum temperature, accumulated temperature above 

10°C, average temperature, frost-free days, maximum temperature, longitude, and precipitation. Variables such 

as latitude, SPEI index, sunshine hours, elevation, and relative humidity exhibit lower correlations. 2. 

Incorporating meteorological disaster index variables improves the fitting effects of the models compared to 

models considering only meteorological and geographical spatial factors. 3. In terms of simulating with 

meteorological disaster index variables, the RF model demonstrates high precision, with a correlation coefficient 

r of 0.77, root mean square error (RMSE) of 6.08, and mean absolute error (MAE) of 4.48. The GA-BP and 

SVM models show slightly lower performance, with correlation coefficients r of 0.74 and 0.70, RMSE values of 

6.22 and 6.96, and MAE values of 4.45 and 4.49, respectively. The CNN model exhibits the weakest results, 

with a correlation coefficient r of 0.71, RMSE of 7.08, and MAE of 4.79. By comparing these algorithms, it is 

evident that ensemble learning algorithms are better suited for investigating the impact of meteorological 

disasters on soybean yield. 
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