
International Journal of Multiphysics

Volume 18, No. 2, 2024

ISSN: 1750-9548

133

A Novel Heterogeneous Multi-GPU Parallel Rendering

Framework in UE4 Scene

Siyu Zhang, Yanfeng Wang, Jianjun Guo*
1
Beijing Weiling Times Technology Co., Ltd., Beiijng, China

* Corresponding Author.

Abstract

Parallel rendering of heterogeneous multi-GPU in UE4 scene can be realized by explicitly

calling graphics API, instead of relying on hardware limitations or drivers. Dual GPUs can

bring better performance improvement. In this paper, we mainly design a novel mul-

ti-thread rendering framework in UE4 scene, which has a better improvement in perfor-

mance. Under the current multi-GPU implementation, we have expanded the multi-

threading architecture and added a new RHI Thread, which we call MRHI Thread, to

handle the rendering instruction operation for the newly added GPU. Then, in the design of

rendering architecture, rendering objects are divided into U Object main thread logic

component object, F Render Object rendering thread object, and FRHI Render Object RHI

thread object. Moreover, Because the requirement is to render two scenes, the Scene

Capture component is used as the entrance of GPU1 rendering. In the test, we used two

Nvida RTX3070, and realized parallel rendering of two GPUs. The performance improved

by 150-160%, and the parallel efficiency was close to 95%. Under our proposed frame-

work, the parallel efficiency of the GPU will be greatly improved compared with the pre-

vious version.

Keywords: Parallel rendering, UE4, heterogeneous, Multi-adapters

1. Introduction

Nowadays, with the increasing quality of games, more and more people are paying attention to the development of

unreal engine [1-5]. At present, unreal engine is the most advanced real-time 3D creation platform in the world,

which is applied in simulation, XR development, multimedia design, transportation, architecture, visualization,

urban planning and other industries. Among them, the fourth generation unreal engine (UE4) is one of the most

open and advanced real-time 3D creation platforms in the world [6-8]. It can use advanced technologies such as

ray tracing to create images that are difficult to distinguish between true and false. Many products that can be seen

in the market, such as Survival of the Jedi and Need for Speed, are from UE4 unreal engine. In recent years, UE4

is not only used in game apps, but also widely used in film and television production[9].

UE4 scene is usually combined with rendering technology [10,11]. Usually, the process of generating images

from 3D models by software is called rendering, which is widely used in simulation, animation video and film and

television production [12-14]. Graphics Processing Unit (GPU) is a kind of computing chip specially used for

processing graphics and images. Compared with Central Processing Unit (CPU), GPU has more parallel pro-

cessing units and can process a large amount of data at the same time, so it has higher performance in graphics and

images. Rendering business scenes requires GPU graphics card to realize graphics acceleration and real-time

rendering, and also requires a lot of calculation, memory or storage [15-17].

Lots of works have been done in the redering technology based on GPUs [18-22]. In [18], the authors address the

integration of early ray termination and empty-space skipping into texture based volume rendering on graphical

processing units (GPU). The authors exploit the early z-test to terminate fragment processing once sufficient

opacity has been accumulated, and to skip empty space along the rays of sight. In [19], the authors consider the

problem of real-time GPU rendering of algebraic surfaces defined by Bezier tetrahedra. It is proposed that the

International Journal of Multiphysics

Volume 18, No. 2, 2024

ISSN: 1750-9548

134

general framework could be extended to higher order with numerical root finding. In [20], the authors present a

reformulation of bidirectional path-tracing that adequately divides the algorithm into processes efficiently exe-

cuted in parallel on both the CPU and the GPU. The proposed method is more than ten times faster than standard

bidirectional path-tracing implementations, leading to performance suitable for production-oriented rendering

engines. An algorithm to generate high quality images with a small number of slices by utilizing displaced pixel

shading technique was given in [21]. A new 3D edge detector was given. In [22], A new rendering technology of

GPU-accelerated radiosity is presented. Using new OpenGL extensions to realize texture traverse, classification

and accumulation, the rendering results of hemi-cube method can be used directly on GPU.

In this paper, we design a novel framework to mainly realize the parallel rendering technology of heterogeneous

multiple GPUs in UE4 scene. Under the current multi-GPU implementation, we have expanded the multithreading

architecture and added a new RHI Thread, which we call MRHI Thread, to handle the rendering instruction op-

eration for the newly added GPU. The whole paper is organized as follows. In section 2, we give out the design of

the proposed multi-thread rendering framework to achieve parallel rendering in UE4 scene. In section 3, the

proposed framework is test based the comparision results are given. It is conclued in Section 4.

2. Design of Multi-thread Rendering Framework

2.1 Introduction of MRHI threads

UE4' s rendering pipeline involves three layers of threads, such as main thread, rendering thread and RHI thread,

and multiple threads exist at the same time. In the design of multi-thread rendering framework, as shown in Fig-

ure. 1, the rendering thread of UE is divided into three layers:

Figure 1 UE4’s threading model

 Game Thread: which is used to handle the main game logic and running process, will be executed as a

rendering thread at the same time when the engine starts the first frame, and there will also be some rendering

tasks;

 Rendering Thread: which mainly handles rendering tasks and generates rendering instructions and ren-

dering logic;

 RHI Thread: RHI thread is used to translate the rendering instructions passed by the rendering thread into

the rendering commands of the corresponding platform API.

Under the current multi-GPU implementation, we have expanded the multithreading architecture as shown in

Figure. 2, and added a new RHI Thread, which we call MRHI Thread, to handle the rendering instruction opera-

tion for the newly added GPU. The purpose of adding a new RHI Thread is to specify the GPU Adapter Index

executed by the current rendering task through thread TLS as UID.

International Journal of Multiphysics

Volume 18, No. 2, 2024

ISSN: 1750-9548

135

Figure 2 Multi-thread rendering model in UE

2.2 Command Dispatch

The UE mentioned above will record the rendering command in the rendering thread, and then the rendering

command will be translated into the corresponding platform API command in the RHI thread. Here, the rendering

thread stores the command through the FRHI Command List object, and then passes it to RHI Thread. Here, the

RHI Command List is extended, bound with Adapter Index, and created as GPU1, and a global RHI Command

List is also created. Then create a Command Dispatcher command dispatcher as a global object for rendering

thread and game thread, which is used to control the current command to be recorded on those RHI Command

List.

At present, there are three modes of command allocator as shown in Figure. 3: Dispatch To All is allocated to all

adapters, Dispatch To Primary is allocated to Adapter0, and Dispatch To Code is allocated to Adapter1.

Figure 3 Command Dispatch

2.3 Resource object structure

In the design of UE rendering architecture, rendering objects are divided into U Object main thread logic com-

ponent object, F Render Object rendering thread object, and FRHI Render Object RHI thread object.

These resource objects have a one-to-one correspondence between rendering threads and RHI threads. However,

for different GPUs, separate objects should be created for them, and this object should be linked with rendering

thread resources. Therefore, it is necessary to create a structure that can map multiple D3D12 resources in the

resource object of RHI layer. The mapping relationship is shown in Figure. 4.

International Journal of Multiphysics

Volume 18, No. 2, 2024

ISSN: 1750-9548

136

Figure 4 The mapping of Relationship

The resource objects that inherit this structure are: In addition to rendering resources, there are pipeline state

object PSO objects. The design of PSO mechanism in UE is very complicated because it faces a variety of APIs.

Simply put, it can be divided into three layers: first, Shader Pipeline Cache, and the cache of Pipeline parameters

at the rendering thread level is essentially CSV table. Then there is the Pipeline State Cache, which is the cache of

RHI PSO objects by the RHI layer. Finally, FD3D12PipelineStateCacheBase caches D3D12 RHI objects.

For PSO objects, it is also necessary to expand multiple GPUs. At present, the operation of rendering thread on

PSO is transferred to RHI thread, and a Map of PSO cache is created for each GPU, and the operation of the

corresponding GPU is carried out in RHI thread.

2.4 Rendering application layer pipeline

Because the requirement is to render two scenes, the Scene Capture component is used as the entrance of GPU1

rendering. Extends the rendering mode of Scene Capture component, M Adapter Rendering. When the Scene

Capture rendering mode is M Adapter Rendering, the rendering logic flow is as shown in Figure. 5.

Figure 5 Rendering logic flow chart

International Journal of Multiphysics

Volume 18, No. 2, 2024

ISSN: 1750-9548

137

The current implementation is divided into three stages, namely, GPU0 Renderer (), GPU1 Renderer () and

Renderer (). The renderer here is the F Scene Renderer, and the pipeline for scene rendering in UE is the PC delay

pipeline F Deferred Shading Scene Renderer. What is executed in the Renderer is the rendering of scene objects,

and the input contains viewport information and information needed for scene rendering, so it should be executed

separately for each GPU, and it is necessary to switch the Command Dispatcher to the corresponding task allo-

cation mode during execution.

In addition to Renderer, we also have external rendering tasks such as particle simulation, Texture Steam and

Environment Map. These rendering tasks usually prepare the necessary data information for the Renderer, so they

need to be executed on multiple GPUs.

2.5 Rendering command delayed execution

When designing Cmdlist rendering commands, UE usually has two modes: immediate execution by bypass and

delayed execution by pressing into the command queue, and some of them are directly executed on the rendering

thread.

Bypass immediate execution mode is designed to make local synchronous calls to APIs that do not support De-

ferred Context, such as OpenGL and early Dx11. And open multi-thread rendering API such as Dx12. When the

engine starts the first frame, Vulkan will also execute in Bypass mode. Another purpose is to facilitate debugging.

Push command queue mode, which is called more modes in multithreading rendering of modern API such as

Dx12 and Vulkan.

Take Draw Primitive Indirect as an example, as shown in Figure. 6, and the process is as follows:

Figure 6 Push command queue mode

The calling process is through the member function of Cmdlist, and the object that Cmdlist usually obtains in

rendering thread and game thread is GRHI CommandList.CommandList Immediate global object. The AL-

LOC_COMMAND macro is used to push commands into the command queue. What we need to change here is to

International Journal of Multiphysics

Volume 18, No. 2, 2024

ISSN: 1750-9548

138

extend ALLOC_COMMAND to push the command into the corresponding Cmdlist according to the mode of

Command Dispatcher. When FRHI CommandList Executor executes, different RHI threads are enabled for ex-

ecution according to different Cmdlist. Therefore, the Bypass path and the execution path that does not enable

RHI Thread will be discarded. The modified process is shown in Figure. 7.

Some of the function operations corresponding to Cmdlist only provide Bypass immediate execution mode in

design. Because of the need for multi-thread delay execution, this part of the command needs to be extended and

changed so that it can be executed in the RHI layer.

Figure 7 Modified push command queue mode

2.6 Multi-GPU synchronization logic

In the current platform, only the GPU is connected to the realtor for output. If you want to get the rendering

structure of GPU1, you need to copy the data across GPUs. Cross-GPU copy operation depends on API to create

cross-GPU resources. There are two ways to get cross-GPU resources: Copy, DX12. One is that if the GPU

supports Feature CrossdapterRowMajortextSupported, the operation can be directly completed through the

statements Copy Resource (GPUTexute [1], GPUTexute [2]), and there will also be hardware driver optimization.

However, there are very few GPUs supported by this Feature, basically only a few Intel core displays and Intel

ARC single displays are supported.

For most vendor, there is no support. Therefore, we can only rely on another Copy method: explicitly control the

Copy operation. The copy process is GPU1-Copy→GPU1Shared, GPU0Shared-copy→GPU0. The process of

GPU1-copy→GPU1Shared is essentially a memory read-back process, which consumes a lot of bandwidth and

has a slow performance. And this process will interrupt the GPU and CPU processes.

International Journal of Multiphysics

Volume 18, No. 2, 2024

ISSN: 1750-9548

139

The specific process is shown in Figure. 8.

Figure 8 Explicitly control the Copy operation

It may be seen that the CPU will be interrupted, resulting in a long overall wait, so it is necessary to design a

synchronization scheme to reduce the delay. The synchronization scheme is to design a Back Buffer for the

rendering result of GPU1. By copying the rendering result asynchronously, the Back Buffer of GPU 1 is set to 3

frames like GPU0. GPU1→CPU processes the current frame, and CPU-GPU0→ processes the previous frame. In

this way, the synchronization delay is reduced, at the cost that the test result needs a frame delay, as shown in

Figure. 9.

Figure 9 Synchronization scheme

2.7 Multi-thread rendering framework process

To sum up, the specific process of multithreading rendering framework is shown in Figure. 10.

Figure 10 Multi-thread rendering framework

3. Simulations and Tests

Based on UE4, this paper implements a parallel real-time rendering framework for heterogeneous GPUs. Het-

erogeneous GPUs refer to calling graphics API through display, rather than relying on hardware limitations or

drivers to achieve parallel rendering. However, when the workload of the two GPUs is unbalanced or the per-

formance difference is large, there will be inevitable delays. In order to solve this problem, the framework of this

International Journal of Multiphysics

Volume 18, No. 2, 2024

ISSN: 1750-9548

140

paper theoretically supports heterogeneous GPUs, but the current rendering task needs GPUs with similar per-

formance. In the test, we used two Nvida RTX3070, and realized parallel rendering of two GPUs. The perfor-

mance improved by 150-160%, and the parallel efficiency was close to 95%.

Specifically, we use two GPUs to render two images respectively, and realize the rendering within one frame. As

shown in Figure. 11, compared with the previous sharing of Value on GDC 2016, dual GPU brings 30-35%

performance improvement. The version we have implemented has further improved in performance.

Figure 11 GPU rendering

3.1 Initial test

The test configuration in this paper mainly includes: CPU configuration i7-12700k, System Memory：64g DDR5

4800Mhz, GPU1 and GPU 2: RTX 3070.

The test scenario in this paper is a free resource in the mall: [SCANS] Abandoned Factory Buildings - Day/Night

Scene]. Temporarily turn off Occlusion Culling in the project settings, because there is an exception in the im-

plementation of Occlusion Query, which may cause wait blocking. Set the RT Fotmat RGBA8 with the resolution

of 1920*1080 as shown in Figure. 12 below from another perspective of Scene Capture, and temporarily turn off

the rendering of Scene Capture Particle Sprites.

Figure 12 Scene Capture setup diagram

 Test results of Unmodified engine:

The unopened Scene Capture is compared with the opened Scene Capture, and the results are shown in Table 1:

Table 1 The comparison of RT turned on and not turned on of the unmodified engine

Test scenario Total Time GPU Time Memory Usage
Video Memory Us-

age

RT not enabled 8.33ms 6.93ms 2076mb 2245mb

Turn on RT 12ms 11.9ms 2076mb 2245mb

 Test results of Current version of engine:

The unopened Scene Capture is compared with the opened Scene Capture, and the results are shown in Table 2:

https://www.unrealengine.com/marketplace/en-US/product/scans-abandoned-factory-buildings-day-night-scene?sessionInvalidated=true
https://www.unrealengine.com/marketplace/en-US/product/scans-abandoned-factory-buildings-day-night-scene?sessionInvalidated=true

International Journal of Multiphysics

Volume 18, No. 2, 2024

ISSN: 1750-9548

141

Table 2 The comparison of RT turned on and not turned on of the current engine

Test scenario Total Time GPU Time
Memory Us-

age

Video Memory Us-

age
Notes

RT not enabled 8.33ms 7.64ms 1928Mb 1.6Gb

Turn on RT

GPU0 Rendering
12.58ms 12.27ms 1928Mb 1.6Gb

Turn on RT

GPU1 Rendering Backward

read

13.00ms 20.7ms 2110Mb 1.6Gb CrossCopy:5.35ms

Turn on RT

GPU0 Rendering No back

read

8.33ms 15.93ms 1725Mb 1.6Gb
CrossCopy:0ms

Constant total time

According to the above test results of the unmodified engine and the test results of the current version of the

engine, we can find that:

 For the Current version found under test:

(1) After starting cross-GPU readback, it takes as long as 5ms, which slows down the overall time, which is dif-

ferent from the expected performance. This is related to the need for Fence waiting synchronization in the current

implementation of CrossMAdapterCopy operation.

(2) After the GPU is turned off to read back, the time per frame is exactly the same as that when the SceneCapture

is not turned on.

 Reasons for the decrease of efficiency caused by CrossCopy:

(1) The operation itself is inefficient. Although API implementation is provided, the principle implementation

should still be GPU0-CPU, and CPU-GPU1 should read back big RT twice in a row. It is not excluded that the API

is inefficient.

(2) Another point may be that the current Fence synchronous waiting process interrupts parallel execution. Re-

sulting in a long wait for the overall GPU0.

3.2 Update test

According to the test, we found that the format, size and bandwidth of RT map will cause great delay. Therefore,

we set the delayed rendering result BackBuffer with the SceneCapture rendering result to 3 frames, which will

delay the output of the result by 1 frame on the display RT. After adding delayed frame rendering, after repeated

tests, it is found that cross-GPU copy operation itself is time-consuming.

In the format of 1920*1080 resolution RGBA16, the time consumption of a single GPU is 5ms, which is con-

sistent with the previously observed CrossCopy consumption, while in the format of 1920*1080 resolution

RGBA16, the time consumption of a single GPU is 5ms, which is consistent with the previously observed

CrossCopy consumption. In the format of 1920*1080 resolution RGBA8, when the bandwidth pressure is reduced

by half, when the output is delayed by one frame, the time to complete the whole rendering frame is within 9 ms..

Compared with 12.40ms when a single graphics card renders two RT's, it optimizes 3 ms-4 ms.

Then we test the distribution rate of 4K, and set the rendering resolution of the main ViewPort as 200%, the

resolution of SceneCapture as 3840*2160, and the rendering of the main ViewPort alone as 16ms. The test results

show that the efficiency is about 32ms； when Scene Capture is turned on and GPU0 is used for rendering. When

Scene Capture is turned on to render with GPU1, the efficiency is about 25ms, and the extra time here actually

comes from the copy bandwidth.

Carry out the CrossCopy unit test, as shown in Figure. 13, Figure. 14 and Figure. 15. We set the RT format as

RGBA8, and it takes 2.5ms to copy when the resolution is 1920*1080. Setting the RT format to RGBA16, it takes

5ms to copy when the resolution is 1920*1080; Set the RT format to RGBA8, and it takes 10ms to copy when the

resolution is 4k 3840*2160.

International Journal of Multiphysics

Volume 18, No. 2, 2024

ISSN: 1750-9548

142

Figure 13 RT format setting as RGBA8 when the resolution is 1920*1080

Figure 14 RT format setting as RGBA 16 when the resolution is 1920*1080

Figure 15 RT format setting as RGBA8 when the resolution is 4k 3840*2160

Based on the results in Table 3, we find taht the time consumption and bandwidth increase linearly.

Table 3 Time-consuming and bandwidth test results

RT Format Resolution Ratio Time-consuming

RGBA8 1920*1080 2.5ms

RGBA16 1920*1080 5ms

RGBA8 3840*2160 10ms

In Table 4, we can see the overall efficiency. After GPU1 is delayed by one frame, when the loads of two GPUs

are close, there will be no consumption of waiting for the result of the current frame, and all the consumption is

concentrated on the cross-GPU data copy.

Table 4 The comparison of overall efficiency test results

Test scenario Total Time

Unmodified engine

RT not enabled 1080p 8.33ms

Turn on RT GPU0 Rendering 1080p 12.58ms

Turn on RT GPU1 Rendering Backward read 1080p 13.00ms

Updated

Turn on RT GPU1 Rendering Backward read 1080p 9ms

RT not enabled 4k 16ms

Turn on RT GPU0 Rendering 4k 32ms

Turn on RT GPU1 Rendering Backward read 4k 25ms

4. Conclusions

In this paper, we mainly design a novel multi-thread rendering framework in UE4 scene, which has a better im-

provement in performance. Under the current multi-GPU implementation, we have expanded the multithreading

International Journal of Multiphysics

Volume 18, No. 2, 2024

ISSN: 1750-9548

143

architecture and added a new RHI Thread, which we call MRHI Thread, to handle the rendering instruction op-

eration for the newly added GPU. In the test, we used two Nvida RTX3070, and realized parallel rendering of two

GPUs. The performance improved by 150-160%, and the parallel efficiency was close to 95%. By moving the task

dispatch mode to the render thread and specifying a separate RHIThread for each GPU to execute the Com-

mandList, GPU parallelization efficiency is improved and wait time is reduced. Under our design, the GPU par-

allel efficiency can be improved by switching the dispatch mode in different stages and threads, and the organi-

zation and management can achieve more efficient rendering performance under the premise of ensuring task

dependency.

For the future design, we need to expand more Adapter, which will involve great changes. Meanwhile, according

to the logical distinction of different threads, it is necessary to make corresponding changes with the added new

RHI Thread, which will be a heavy workload.

Acknowledgments

The paper was funded by the "New Generation Information and Communication Technology Innovation"

program under the Beijing City Science and Technology Development Plan of Beijing City Science and

Technology Commission. Name of Project: Development and Demonstration Application of PaaS Platform for

Multi-graphics Card Distributed Rendering. Project Number: Z221100007722006.

References

[1]. Kim W Y . The Design and Implementation of an Elevator 3D Model Simulator Framework based on Unreal Engine.

Jouranl of Information and Security, vol. 23, no. 2, pp. 67-74, 2023. DOI:10.33778/kcsa.2023.23.2.067.

[2]. Torres-Ferreyros C M , Festini-Wendorff M A , Shiguihara-Juarez P N . Developing a videogame using unreal engine

based on a four stages methodology. 2016 IEEE ANDESCON, Arequipa, Peru, 2016, pp. 1-4.

DOI:10.1109/ANDESCON.2016.7836249.

[3]. Ratican J , Hutson J , Wright A . A Proposed Meta-Reality Immersive Development Pipeline: Generative AI Models

and Extended Reality (XR) Content for the Metaverse. Journal of Intelligent Learning Systems and Applications, vol.

15, no. 1, pp. 24-35, 2023.

[4]. Lewis J , Brown D , Cranton W ,et al. Simulating visual impairments using the Unreal Engine 3 game engine. 2011

IEEE 1st International Conference on Serious Games and Applications for Health (SeGAH), Braga, Portugal, 2011,

pp. 1-8. DOI:10.1109/SeGAH.2011.6165430.

[5]. Herrlich M , Meyer R , Malaka R ,et al. Development of a Virtual Electric Wheelchair - Simulation and Assessment of

Physical Fidelity Using the Unreal Engine 3. 2010 Entertainment Computing ICEC, Springer Berlin Heidelberg,

pp.286-293. DOI:10.1007/978-3-642-15399-0_29.

[6]. Su, Y.; Seng, K.P.; Smith, J.; Ang, L.M. Efficient FPGA Binary Neural Network Architecture for Image Su-

per-Resolution. Electronics, vol.13, no.2, pp. 1-16, 2024. https://doi.org/10.3390/electronics13020266

[7]. Deng,Siyu,Che,et al. GPU-based 3D model rendering of chinese ink painting. Computer Aided Drafting, Design and

Manufacturing, vol.38, No.351, pp.3-8, 2017. DOI:CNKI:SUN:CADD.0.2017-01-001.

[8]. Wang P, Yu Z. RayBench: An Advanced NVIDIA-Centric GPU Rendering Benchmark Suite for Optimal Perfor-

mance Analysis. Electronics, vol. 12, no.19, pp.4124, 2023. https://doi.org/10.3390/electronics12194124

[9]. Whencheng Z , Chengyi W . Development of Real-time Rendering Technology for High-Precision Models in Au-

tonomous Driving. Arxiv.org, 2023. DOI:10.48550/arXiv.2302.00291.

[10]. Chen Z , Ma Y , Wen H ,et al. Sonographic demonstration of sulci and gyri on the convex surface in normal fetus using

3D-ICRV rendering technology. Ultraschall in der Medizin, vol. 44, no. 6, pp.284-295, 2023.

DOI:10.1055/a-2122-6182.

[11]. Liubogoshchev M, Korneev E, Khorov E. EVeREst: Bitrate Adaptation for Cloud VR. Electronics. vol.10, no.6,

pp.678, 2021. https://doi.org/10.3390/electronics10060678

[12]. G. -H. Lin, C. -H. Chang, M. -C. Chung and Y. -C. Fan. Self-driving Deep Learning System based on Depth Image

Based Rendering and LiDAR Point Cloud. 2020 IEEE International Conference on Consumer Electronics - Taiwan

(ICCE-Taiwan), Taoyuan, Taiwan, 2020, pp. 1-2. DOI:10.1109/ICCE-Taiwan49838.2020.9258010.

[13]. Bin Mohamad Saifuddin MR, Ramasamy TN, Qi Tong WP. Design and Control of a DC Collection System for

Modular-Based Direct Electromechanical Drive Turbines in High Voltage Direct Current Transmission. Electronics.

vol. 9, no. 3, pp.493, 2020. https://doi.org/10.3390/electronics9030493

[14]. Deng S., Che, et al. GPU-based 3D model rendering of chinese ink painting.Computer Aided Drafting, Design and

Manufacturing, vol.38, no.351, pp.3-8, 2017. DOI:CNKI:SUN:CADD.0.2017-01-001.

International Journal of Multiphysics

Volume 18, No. 2, 2024

ISSN: 1750-9548

144

[15]. Weng X , Guo B . A method of airport runway dataset construction for the visual detection algorithm. 2022 Interna-

tional Conference on Intelligent Equipment and Data Processing, IOP Publishing Ltd, 2435, 2023.

DOI:10.1088/1742-6596/2435/1/012016.

[16]. Dong Y , Peng C . Multi-Gpu Multi-Display Rendering of Extremely Large3d Environments. SSRN Electronic

Journal, vol. 39, pp. 6473-6489, 2022. DOI:10.2139/ssrn.4144322.

[17]. Zheng A , Liu T , Song Y ,et al. Minimum dose path planning method for virtual nuclear facilities based on navigation

mesh. Annals of nuclear energy, vol. 195, pp. 1-12, 2024. DOI: 10.1016/j.anucene.2023.110104.

[18]. Kruger J , Westermann R . Acceleration techniques for GPU-based volume rendering. IEEE Visualization, 2003. VIS

2003., Seattle, WA, USA, 2003, pp. 287-292, doi: 10.1109/VISUAL.2003.1250384.

[19]. Charles,Loop,Jim,et al. Real-time GPU rendering of piecewise algebraic surfaces. ACM Transactions on Graphics,

vol. 25, no. 3, pp.664-670, 2026. DOI:10.1145/1179352.1141939.

[20]. Pajot A , Barthe L , Paulin M ,et al. Combinatorial Bidirectional Path-Tracing for Efficient Hybrid CPU/GPU Ren-

dering. Computer Graphics Forum, vol. 30, no. 2, pp.315-324, 2011. DOI:10.1111/j.1467-8659.2011.01863.x.

[21]. Zhang H , Choi J . High quality GPU rendering with displaced pixel shading. Proceedings of SPIE - The International

Society for Optical Engineering, vol. 6141, pp.1-9, 2006. DOI:10.1117/12.652307.

[22]. Hu W . A New Rendering Technology of GPU-Accelerated Radiosity. Journal of Computer Research and Develop-

ment, vol. 42, no. 6, pp.945-950, 2005. DOI:10.1360/crad20050607.

