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Abstract 

As the total energy consumption continues to rise, environmental issues and the balance 

of energy supply and demand have become increasingly severe. With the integration of 

photovoltaic and wind power generation, wind and solar power generation, while 

reducing users' carbon emissions, also introduce additional complexity to the power 

system due to their inherent uncertainty. However, deep learning algorithms have shown 

tremendous potential in accurately predicting wind and solar power output. This paper 

combinate the ICEEMDAN algorithm and temporal convolutional neural network to 

achieve dynamic forecasting of wind and photovoltaic power outputs. In addition, an 

enhanced beluga whale optimization algorithm is utilized to select optimal 

hyperparameter combinations for the forecasting model, so that the accuracy and 

robustness of the model's forecasting outcomes can be enhanced. The research results 

show that the wind and photovoltaic power forecasting model we constructed can 

effectively mitigates the impact of volatility and complexity associated with these energy 

sources on prediction outcomes and achieve accurate forecasting. 

Keywords: Wind and photovoltaic power forecasting, correlation analysis, deep learning, 

neutral network, beluga whale optimization algorithm (BWO). 

 

1. Introduction 

Currently, wind power generation has become a significant component of China's energy structure. Wind energy, 

as a typical environmentally friendly power source, possesses advantages such as renewability and no greenhouse 

gas emissions [1]. However, because of the stochastic and fluctuating nature of [2], integrating wind power into 

the grid for effective frequency regulation remains challenging. Consequently, enhancing the accuracy of 

forecasting is a momentous research direction [3,4]. 

The previously employed wind-solar complementary power generation systems simply combined wind and solar 

energy production equipment. Due to their small size and lack of specific computational models, their utility was 

quite limited. The progression of wind-solar hybrid power generation systems in China has advanced through 

three stages: small-scale standalone integrated wind power systems, grid-based decentralized small-scale wind-

solar power systems, and long-distance solar power generation systems. Large-scale wind-solar complementary 

power generation systems connect independent wind power plants and separate photovoltaic power plants over 

long distances. Most of these systems fall into the megawatt category, and they face challenges such as high 

penetration rates when connected to the grid [5]. Fluctuations in the overall processing capacity can negatively 

impact the safety and stability of grid operations [6].  

To address the challenges mentioned above, domestic and international scholars have conducted a series of 

studies. The combination of wind and solar hybrid energy production with computational methods, especially 
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methods in the field of deep learning, is significantly influencing the landscape of wind and solar power output 

prediction [7,8]. The analytical power of computational analysis is widely used to improve the stability and 

precision of power prediction models. With the emergence of complex deep learning algorithms, researchers can 

extract satisfactory solutions from large amounts of data, thereby predicting wind power generation more 

accurately and efficiently. Ding et al. [9] established a dynamic analysis model and applied the active and reactive 

power decoupling dual-loop current control strategy to wind and photovoltaic power generation systems. They 

introduced a novel maximum power tracking algorithm. António et al. [10] systematically selecting 

meteorological features to minimize wind power prediction errors through a sequential forward feature selection 

algorithm. With the analysis of seven wind plants in Portugal with distinct climates, it was observed that this 

method significantly reduced the root mean square error of the power prediction results. Ye et al. [11] introduced 

a novel prediction model for hybrid wind power. They increased the importance of the neural network using the 

multi-objective Runge-Kutta algorithm (MORUN), thus enhancing prediction accuracy and stability. To further 

improve the model's predictive ability, integrated learning strategies were also added. Yang et al. [12] presented a 

wind farm forecasting model utilizing a nonlinear mapping network. The meteorological data of the Numerical 

Weather Forecasting (NWF) system is incorporated into this model as external components, allowing it to acquire 

the underlying patterns of wind power generation time series. By balancing the internal factors of wind farm time 

series data and the external factors of meteorological data, the issue of wind farm curtailment could be effectively 

addressed. Wang et al. [13] proposed a neural network model to forecast wind power. This method utilizes the 

asymmetric Laplace distribution to describe the uncertainty of wind power generation forecasts, enabling more 

precise and reliable interval forecasting outcomes. Wang et al. [14] proposed a novel ensemble probabilistic 

predicting model. It selects the optimal model input for predicting wind power generation based on the maximal 

information coefficient values. Wang et al. [15] introduced a method that combines prior guidance with data-

driven approaches to deliver accurate and meaningful wind farm predictions. The model's performance was 

validated using both real-world datasets and publicly available datasets. 

With the escalating concern over environmental pollution, solar energy has gained significant attention in recent 

years as an optimal clean energy source. Similar to wind power, accurate prediction of photovoltaic power holds 

paramount importance for the secure and steady operation of the power system [16]. With the different methods 

of power forecasting, we can distinguish between two primary methodologies: direct prediction and indirect 

prediction. Direct prediction involves employing forecasting models to directly predict photovoltaic power 

output. On the other hand, indirect prediction entails precise forecasting of solar radiation quantity and combining 

it with the photovoltaic power calculation formula to achieve photovoltaic power prediction. 

In terms of direct prediction methods, Yin et al. [17] constructed the photovoltaic power prediction model by 

combining particle swarm optimization with machine learning algorithms, effectively reducing the prediction 

error. Li et al. [18] presented a multi-factor photovoltaic power prediction model incorporating fuzzy C-means, 

improved white shark optimizer, error correction, variational mode decomposition and long short-term memory. 

This innovative model substantially enhances photovoltaic power prediction accuracy, mitigating the impact of 

photovoltaic data volatility on predictive outcomes. In the domain of indirect prediction methods, scholars 

worldwide have extensively researched solar radiation forecasting methods. The HOTTEL and ASHRAE models 

are two internationally recognized approaches. Liu et al. [19] established a random forest classifier based on 

factors influencing solar radiation, creating a random forest-based solar radiation prediction model. Xin et al. [20] 

explored a novel computational intelligence model, a hybrid of extreme gradient boosting (XGB), covariance 

matrix adaptation evolutionary strategy (CMAES), and multi-adaptive regression splines (MARS), for precise 

predicting of daily-scale solar radiation. Sharma et al. [21] introduced a novel approach for solar radiation 

forecasting, achieving hourly forecasts using a mixed wavelet neural network (WNN). Sun et al. [22] established 

a solar radiation illuminance prediction system using an improved fruit fly algorithm, planning node locations 

correlated with solar radiation illuminance behavior. Goliatt et al. [23], drawing from stochastic modeling theory, 

proposed a solar radiation value prediction model, generating prediction intervals and expected values under 

varying cloud cover conditions. Model validation using data from a US BMS photovoltaic power station 

demonstrated the model's commendable predictive accuracy. 
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According to the above research, in the wind and photovoltaic power generation forecasts, employing techniques 

such as data decomposition and heuristic algorithm optimization can enhance the accuracy of predictions for both 

wind and photovoltaic power outputs. Additionally, the utilization of correlation analysis algorithms proves 

effective in mitigating the influence of weakly correlated components on predictive outcomes. Moreover, the 

application of error correction models contributes importantly to enhancing the precision of renewable energy 

power forecasts. 

The remainder of this paper is structed as follows: Section 2 procides the methodology; Section 3 outlines the 

data and results; Section 4 presents the conclusions of this work. 

2. Methodology 

2.1 Factors influencing model forecasting accuracy 

To enhance both training efficiency and predictive precision of the model, it is imperative to incorporate highly 

correlated influential factors as input parameters in the deep learning model, thereby mitigating the impact of 

weakly correlated factors on training outcomes [24,25]. In this study, considerations are directed towards 

meteorological factors, geographical factors, historical wind and solar power data, and other pertinent aspects, as 

shown in Table 1, illustrating the primary influencing factors. 

Based on the influencing factors listed in Table 1, the relationship between every influencing factor and wind and 

photovoltaic power can be calculated using the correlation analysis method. The calculation formula is presented 

in Equation (1). 

Table 1 Influential factors in the power forecasting model. 

Types Wind power forecasting model Photovoltaic power forecasting model 

Factors 

Environmental temperature 

Soil temperature 

Air specific humidity 

Intensity of solar radiation 

Wind speed at 10 meters 

Wind speed at 50 meters 

Historical wind power 

Environmental temperature 

Soil temperature 

Air specific humidity 

Intensity of solar radiation 

Wind speed at 10 meters 

Wind speed at 50 meters 

Historical photovoltaic power 

Output results Wind power Photovoltaic power 

 

    
∑ (    ̅)(    ̅) 

   

√∑ (    )  
   √∑ (    )  

   

 ( )  

Here,     represents the correlation coefficient between time series x and y; N denotes the number of data points 

in the time series;  ̅ signifies the mean value of the time series   , while  ̅ signifies the mean value of   . The 

value range of     lies between [-1, 1], with |   | reflecting the strength of correlation between the data. A higher 

|   | value signifies stronger correlation. Specifically,    =0 indicates no correlation between two variables, |   | 

< 0.3 suggests weak correlation, 0.3 <     < 0.5 indicates moderate correlation, and |   | > 0.5 implies strong 

correlation. 

2.2 The forecasting model 

2.2.1 Methodology to preprocess input data in the forecasting model. 

Currently, the CEEMDAN algorithm is commonly used for analyzing non-stationary and nonlinear data 

parameters in time-domain analysis [26,27]. This algorithm addresses the issues of error caused by overlapping 

signals and low computational efficiency in the EEMD algorithm [28-30], and CEEMDAN also alleviates the 

phenomenon of mode mixing to some extent. Despite these improvements, the CEEMDAN algorithm still has 

areas that require enhancement: (a) residual noise remains present in the modes, and (b) the appearance of signal 

information occurs later compared to EEMD, with some 'pseudo' patterns emerging during early stages of 

decomposition. The Improved CEEMDAN (ICEEMDAN) algorithm partially resolves these challenges. 
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Accurate short-term forecasting of multivariate load data is the basis for the operation and optimization of 

integrated energy systems, bearing significant importance in the analysis and study of system demand-side 

dynamics [31,32]. Long Short-Term Memory (LSTM) neural networks [33], a form of deep learning algorithm,  

are extensively utilized in load forecasting due to their advantages in modeling complex data patterns and 

analyzing temporal correlations in data. 

As an enhancement algorithm for recurrent neural networks (RNNs), LSTM neural network not only has the 

ability of RNN's efficient processing of load data, time, and to solve the problems of RNN gradient 

disappearance, explosion, etc., but also has the characteristic of strong processing capacity and high efficiency 

[34,35]. 

Compared to the classical RNN, LSTM neural network adds a "processor" called a cell on top of it, which is used 

to determine whether the information is useful. Within a cell, there are three gates: the input gate   , the output 

gate    and the forget gate   . When information is put into the LSTM network, the three control gates within the 

cell manage the selection of memory feedback and adjust the parameters for gradient descent to optimize the self-

loop weights, ensuring dynamic changes in weights. The structure is depicted in Figure 1, where the output of 

LSTM at moment t is   , the input value is   , and the memory state is   . 

According to the structure shown in Figure 1, when the data      of the current time period is passed in with the 

time period implicit layer and the input data    of the current time after passing through   , irrelevant information 

is discarded. The calculation formula as shown in Equation (2). 

    (   [       ]    ) ( )  

A
tanhσ σ σ

tanh

A

 

Figure 1 LSTM structure 

where   is the activation function;    and    are the weight matrix and bias vector in the forget gate   , 

respectively. 

The new information is then computed by the activation function (sigmoid function), which is solved to obtain 

data that can be put into the memory cell, while a new alternate state   ̃ is acquired by the tanh functionand at the 

same time, which is calculated by Equations (3) and (4): 

    (   [       ]    ) ( )  

  ̃      (   [       ]    )  ( )  

where    and    are the weight matrix and bias vector in the input gate, respectively;    and    are the weight 

matrix and bias vector in the cell state, respectively. Then the value of the cell state at the current time is given by 

Equation (5). 

               ̃ ( )  

Additionally, by applying the tanh function to the data    classified through the sigmoid function and the new cell 

state   ,  the value    of the hidden layer data to be passed in the next time step is obtained, as shown in 

Equations (6) and (7): 

    (   [       ]    ) ( )  

         (  )  ( )  
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where    and    are the weight matrix and bias vector of the output gate. 

2.2.2 Improved beluga whale optimization algorithm - hyperparameter optimization 

As a new optimization algorithm. The beluga whale optimization algorithm (BWO) is inspired by beluga whales, 

simulating their swimming, foraging, and "whale fall" behaviors [36]. The BWO algorithm consists of two 

phases: exploration and exploitation. The exploitation phase manages local search within the same area, whereas 

the exploration phase employs random selection to guarantee global search capability in the design space. The 

behavior of beluga whales is represented as that of a search agent capable of navigating the search space by 

adjusting its position vector [37]. Moreover, BWO also takes into account the likelihood of a whale fall. Due to 

its population-based mechanism, every beluga whale in the BWO algorithm represents a candidate solution and 

undergoes continuous updates throughout the optimization process [38,39]. 

Although the BWO algorithm has the above advantages, most of them use random initialization to generate the 

initial population in the initial stage, which complicates the task of maintaining population diversity throughout 

the entire optimization process. To solve the problems above, we introduces the opposites learning mechanism to 

improve the population diversity of BWO algorithm during the particle generation process at the outset of the 

algorithm, and introduces the operations of single-point crossover and diversity mutation during the iterative 

updating, to further enhance the local and global search ability, the detailed calculation steps are shown as 

follows: 

(a) Identify the algorithm parameters, including the maximum number of iterations      and the overall size n. 

(b) Oppositional learning strategy is used to generate the starting positions of all beluga whales and the fitness 

value can be acquired by the objective function. Oppositional learning strategy is shown in Equations (8) and (9): 

  
 
   

 
     (   )  (  

 
   

 
) ( )  

   
 
   

 
   

 
   

 
 ( )  

where   
 
 is the position of the whale in the algorithm;   

 
 is the opposing point of   

 
;   

 
 and   

 
 define the upper 

and lower bounds of the search range. 

(c)In the exploration and exploitation phase, each whale decides which phase to enter. If       , the update 

mechanism enters the exploration phase; if       , the update is controlled by the exploitation phase. 

Subsequently, the current iteration's optimal value is found via computing and ranking the fitness values of the 

belugas' current position. 

(d) Whale fall stage updates. During each iteration, the likelihood of a whale falling    also needs to be 

calculated. 

(e) Particle crossover. To further enhance the algorithm's capabilities for local and global search and mitigate the 

occurrence of premature convergence during optimization, a particle crossover operation is introduced after the 

whale fall update. This involves selecting two chromosomes and splitting them at randomly chosen positions, 

then exchanging the right-hand segments to create two distinct sub-chromosomes. A schematic diagram of single-

point crossover is illustrated in Figure 2. 

 

Figure 2 Single-point crossover schematic diagram 

(f) Diversity mutation. After the particle crossover operation, to improve the global search capability, a diversity 

mutation operation is applied to the particle population. This involves randomly selecting an element    

(            ) from an individual    with a probability of 1/d, then generating a random real number within the 
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range [     ] to replace the element     in the individual, resulting in a new individual   
  (   

     
      

 ). This 

process is shown in Equation (10), 

  
  {

     (     )    
            

 (  )  

where    and    is the upper and lower limits of the variable, and   [   ] is a random number. 

(g) The BWO algorithm stops when the current iteration exceeds the maximum iteration limit. Otherwise, repeat 

step (b). 

Based on the above algorithm steps, the flowchart of the improved BWO (IBOW) is presented in Figure 3. 

 

Figure 3 The flowchart of the IBWO algorithm 

2.2.3 Temporal convolutional neural network - outcome forecasting 

The Temporal Convolutional Network (TCN) is designed to address temporal sequence problems [40]. It 

possesses the capability to effectively extract the relationships between data points and make predictions about 

future data. Its primary architecture is based on dilated causal convolutions. What sets TCN apart from traditional 

Convolutional Neural Networks is its use of causal convolutions, which restricts it from having access to future 

data. This characteristic gives it a unidirectional structure, allowing it to infer future data solely from preceding 

data points. Consequently, TCN functions as a model that adheres to temporal constraints [41]. 
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Figure 4 The dilated causal convolution structure of TCN 

Dilated causal convolutions are illustrated in Figure 4. From the diagram, it is evident that the output    at time t 

can only depend on the inputs    to      from earlier times. In this study, a TCN network with convolutional 

kernels of size 2 is employed, and dilation factors of d=1, 2, 4, and 8 are used. 

The TCN network takes into consideration the temporal characteristics, and adjusts the length of output node 

memory according to different input time scales. This ability to adapt the memory length effectively addresses the 

issue of historical data forgetting present in traditional methods. As a result, TCN is more suitable for power 

prediction problems. 

2.3 Wind and photovoltaic forecasting model based on ICEEMDAN-IBWO-TCN 

Combined with the principle of the IBWO algorithm, we establishes a forecasting model based on the 

ICEEMDAN-IBWO-TCN algorithm to predicting the wind and photovoltaic power. The ICEEMDAN algorithm 

is applied to decompose the wind and photovoltaic power data to alleviate the impact of the volatility of wind and 

light data on the forecasting model, and the LSTM algorithm learns the features of the decomposed generated 

power results to realize the dynamic prediction of it. For the hyperparameters of the LSTM neural network, the 

IBWO algorithm optimizes the hyperparameters and select the optimal hyperparameter combination to enhance 

the  accuracy and robustness. The flowchart of the forecasting model based on ICEEMDAN-IBWO-TCN 

algorithm is illustrated in Figure 5. 

 

Figure 5 The flowchart of the forecasting model based on ICEEMDAN-IBWO-TCN 

3. Results 

3.1 Data 

This paper takes the 2020 wind power and photovoltaic power data from an area in southern China, combined 

with the typical meteorological data of Jiangsu region in 2020 as the basis for data validation. The local wind 

power and photovoltaic power, related meteorological data and historical wind and photovoltaic power data are 

shown below in Figure 6. 
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a) Wind power data.                                                            b) Photovoltaic power data.

      

c) Environmental temperature data.                                             d) Air specific humidity data. 

       

e) Intensity of solar radiation.                                             f) Soil average temperature data. 

        

g) Air velocity.                                                              h) Historical wind power data. 
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i) Historical photovoltaic power data. 

Figure 6 Wind power and photovoltaic power data in 2020 of a region in southern China 

3.2 Correlation analysis 

According to the description in Section 2.1, the correlations between wind and photovoltaic power can be 

calculated, and the analysis results are presented in Figure 7. 

 

Figure 7 Wind and photovoltaic power correlation analysis results 

Table 2 Input and output parameters of wind and photovoltaic power forecasting model. 

Parameters Wind power forecasting model Photovoltaic power forecasting model 

Input 

Historical wind power 

Wind speed at 10 meters 

Wind speed at 50 meters 

Environmental temperature 

Intensity of solar radiation 

Historical photovoltaic power 

Output Forecasted wind power Forecasted photovoltaic power 

 

Based on the results shown in Figure 7, it is evident that among the influencing factors for wind power, the wind 

speeds at 10 meters and 50 meters, as well as the historical wind power, exhibit high levels of correlation, all 

being indicators of strong correlation. The correlation analysis results of the other influencing factors are all 

below 0.3, indicating weak correlations. Regarding photovoltaic power influencing factors, historical solar power 
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and solar radiation intensity are both highly correlated factors, while the environmental temperature shows a 

moderate correlation with a correlation coefficient of 0.3. The correlation analysis results for the other influencing 

factors are all below 0.3, indicating weak correlations. In accordance with the evaluation criteria for correlation 

analysis, this study retains influencing factors with moderate or higher correlation coefficients on the input side of 

the forecasting model, and discards those with low correlation coefficients. This approach is taken to mitigate the 

impact of weakly correlated factors on wind and photovoltaic power prediction results. Consequently, the 

resulting input parameters for the forecasting models are presented in Table 2. 

3.3 Forecasting results 

We employ the ICEEMDAN algorithm described in Section 2.2 to mitigate the impact of the power fluctuations 

and complexity on prediction results. This algorithm decomposes wind and photovoltaic power into multiple 

relatively smooth intrinsic mode components, creating a set of component neural network forecasting models. 

Figure 8 depicts the power modal decomposition results. 

The modal decomposition results are presented in Figure 8, it can be observed that the fluctuation of the first five 

intrinsic modal components is relatively large, but from the sixth intrinsic modal component, the fluctuation of 

the results of its intrinsic modal components is reduced and gradually smoothed, which has less effect on the 

precision of the forecasting model. According to the above decomposition results, combined with the wind and 

photovoltaic power forecasting model in section 2.2, the power forecasting results are obtained in Figure 9. It is 

evident that ICEEMDAN-LSTM can better realize the power prediction, but there is still a certain forecasting 

error. 

       

a) Wind power decomposition result.               b) Photovoltaic power decomposition result. 

Figure 8 Decomposition results 
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a) Wind power forecasting results.                                          b) Photovoltaic power forecasting results.  

Figure 9 Forecasting results based on ICEEMDAN-LSTM 

Figure 10 shows the forecasting error in the test set, it is obviously that in the wind power forecasting, most of the 

errors are between [-55kW,55kW], and the peak error is relatively small. In the photovoltaic power forecasting, 

most of the errors are between [-4kW,4kW], and the prediction accuracy is high. Despite the relatively large error 

in wind power forecasting results, the order of magnitude of the forecasting error is relatively small compared to 

the wind power and is within the acceptable range. 

 

a) Wind power forecasting error.                                        b) Photovoltaic power forecasting error. 

Figure 10 The forecasting error based on ICEEMDAN-LSTM 

 

a) Wind power forecasting error distribution.                    b) Photovoltaic power forecasting error distribution. 

Figure 11 Histogram of the forecasting error distribution 
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Through the error distribution histogram, we further analyze the prediction error results and the results were 

obtained in Figure 11. 

The wind power forecasting error is mostly concentrated between [-40kW, 40kW], part of the error is between [-

60kW, -40kW] and [40kW, 100kW], and only a small part of the error results are outside the range. Therefore, 

although there are some deviations between the predicted and actual wind power, it is still within the acceptable 

range, and its peak forecasting error is less, which can play a certain early warning role for the secure and stable 

functioning of the power grid. 

It can be seen that most of the errors are in [-4kW,4kW] in the photovoltaic power forecasting results, and only a 

small part of the error is between [-10kW, -4kW] and [6kW, 10kW]. So the accurate forecasting of photovoltaic 

power can be realized by using ICEEMDAN-LSTM algorithm. 

3.4 Optimization of forecasting errors 

To enhance the power prediction accuracy while reducing the impact of renewable energy uncertainty on grid 

stability, this paper utilizes the ICEEMDAN-TCN algorithm to learn the features of the power forecasting errors, 

and realizes the dynamic error correction. Figure 12 illustrates the modal decomposition results of the forecasting 

errors. 

As can be observed in Figure 12, starting from IMF5, the power forecasting error decomposition results are 

gradually smoothed, and the residual value curve has almost no fluctuation situation. After decomposition by 

ICEEMAN algorithm, the decomposed intrinsic modal component values are used to establish a component 

neural network prediction error trimming model, and utilize the TCN algorithm to realize the dynamic correction 

of wind power and photovoltaic power prediction error. Figure 13 shows the learning results of error 

characteristics. 

       

a) Wind power forecasting error decomposition result. b) Photovoltaic power forecasting error decomposition 

result. 

Figure 12 The forecasting error decomposition results based on ICEEMDAN 
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a) Comparison of wind power forecasting error result.    b) Comparison of photovoltaic power forecasting error 

result. 

Figure 13 Comparison of the power forecasting error results based on ICEEMDAN-TCN 

According to the comparison results, the use of ICEEMDAN-TCN algorithm is able to better realize the error 

learning, and realize the accurate correction of the forecasting error of the wind and photovoltaic mobility rate, 

and provide a more reliable guarantee for the secure and steady functioning of the power grid. 

4. Conclusions 

This paper employs approaches such as deep learning prediction, data preprocessing and prediction error 

correction from the perspectives of meteorological and geographical factors to achieve accurate prediction of 

wind and photovoltaic power. And we using real-world data to validate the feasibility of the proposed methods. 

Firstly, weakly correlated factors are eliminated from the model's predictive outcomes through correlation 

analysis to improve predictions accuracy. Secondly, we utilize the ICEEMDAN-LSTM forecasting model. In the 

ICEEMDAN phase, the generated power is decomposed into several relatively smooth intrinsic mode 

components, reducing the impact of data volatility on forecasting results. During the LSTM network phase, 

multiple modal component neural networks are established, and reconstructing each modal component to obtain 

the prediction results of the forecasted wind and photovoltaic power. Lastly, constructing a power prediction error 

correction model to improve prediction accuracy. The research results are as follows: 

(1) According to the correlation analysis, wind speed and historical power generation data effectively affect wind 

power. For photovoltaic power, the major influencing factors are solar radiation intensity, environmental 

temperature, and historical solar power data. 

(2) The ICEEMDAN algorithm significantly reduces the impact of complexity and volatility of wind and 

photovoltaic power on prediction results. When combined with the powerful data mining and feature learning 

capabilities of the LSTM algorithm, it can achieve accurate forecasting of wind and photovoltaic power. This 

provides data support for subsequent low-carbon economic scheduling of the power grid, enhancing grid stability. 

(3) The use of the time convolutional neural network achieves effective correction of prediction errors, 

significantly reducing peak errors and enhancing the robustness of wind and photovoltaic power prediction 

results. 
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