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Abstract 

The coefficient of collapsibility is the key parameter involved in the computation of the 

loess collapsible deformation. However, influencing by many factors, theoretical 

estimation of this parameter becomes extremely difficult. In order to quickly and 

conveniently predict the loess collapsibility coefficient according to soil index properties, 

through data mining technology, a model was proposed based on BP neural network 

optimized by HHO (Harris Hawk Optimization) algorithm. The proposed model was 

validated using a database acquired from engineering practice, which indicated that at 

least five soil index properties were necessary for accurate predictions. Also, compared 

with prediction models based on BP (Back Propagation) and PSO (Particle Swarm 

Optimization)-BP neural network, the proposed model gained faster iteration rate, higher 

prediction accuracy and lower error value. Sensitivity analysis based on the connection 

weights shows that the most important index properties affecting the coefficient of 

collapsibility are plasticity index and void ratio, followed by dry density and degree of 

saturation, and finally water content. 

Keywords: Collapsible loess; Coefficient of collapsibility; BP neural network; HHO 

algorithm 

 

1. Introduction 

The loess as a typical problem soil is widely distributed, the northwestern and central USA, northern Russia, 

interior Alaska and south America [1-3]. In China, 6% of the territory is covered by loess, 60% of which belongs 

to problematic soil of high collapsibility [4]. Collapsible loess is typically in a state of unsaturated condition. 

Due to the function of matric suction, the original stable inner structure of collapsible loess could be maintained 

[5]. However, upon water intrusion induced by precipitation, together with matric suction reduction, the 

collapsible loess would suffer remarkable collapsible settlement due to soil inner structure collapse[6-7]. 

Sometimes significant collapsible deformation may give rise to serious engineering problems. For example, it 

was reported that 1505 buildings and 80 kilometers of underground pipes were damaged due to collapsible 

deformation in China during the period of 1974 to 1975 [8]. Therefore, the estimation of the collapsible 

deformation of collapsible loess has been a research focus in recent years. 

Coefficient of collapsibility (δz), as the ratio of △h (i.e., difference of soil sample height between natural and 

saturated states under vertical pressure of 200kPa) to h0 (i.e., initial height of the soil sample), has been widely 

used in engineering practice to evaluate the degree of collapse of loess and estimate the amount of collapsible 
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deformation simply and intuitively [9]. Generally, this parameter is determined through indoor immersion 

compression test on undisturbed soil. However, sometimes the collection of undisturbed soil sampling is 

time-consuming and costly. The sample is easy to be disturbed as well. All these factors may lead to large errors 

in the test results [4,10]. Instead, researchers began to work on theoretical or empirical models to make 

reasonable estimations of loess collapsibility coefficient. Generally, these models could be categorized into two 

types. The first one is based on regression analysis, which initially collects the key factors influencing the 

coefficient of collapsibility (i.e., mineral composition, pore structure, stress state, etc.) and then establishes a 

prediction model using mathematical statistical methods [11-15]. The second one is based on neural network, 

which commonly uses a nonlinear intelligent algorithm to learn and predict the fuzzy relation between the loess 

physical properties indexes and coefficient of collapsibility, thus making evaluations quickly and concisely 

[16-19]. The regression analysis methods are able to establish a clear functional relation between the coefficient 

of collapsibility and the loess’s physical properties for certain region. However, the correlation coefficient of 

predictions just ranged from 0.7-0.9 [20-21]. Such precision of predictions sometimes cannot meet the 

requirement of engineering applications. The existing literature shows that the neural network model is highly 

consistent with the nonlinear correlation between the soil physical property index and loess’s coefficient of 

collapsibility, especially BP neural network model [22-25]. However, this model has the disadvantages of slow 

convergence speed. Also, it would fall into local optimization easily, which limits the accuracy of prediction. 

The HHO (Harris Hawk Optimization) algorithm is able to overcome the shortcomings of the traditional BP 

neural network by finding the neural network’s optimal solution of the initial connection weights and thresholds. 

Due to these advantages, in this study, a model was proposed for estimations of the loess collapsibility 

coefficient based on the BP neural network optimized using the HHO algorithm. By analyzing the inherent 

mechanism of the collapsible deformation, five basic soil index properties (i.e., degree of saturation, water 

content, dry density, void ratio, and plastic index) were selected to develop the prediction model, which also 

enabled the proposed method to be applied universally in different regions. Comparative analysis among BP 

neural network based model, PSO (Particle Swarm Optimization) -BP neural network based model and 

four-parameter HHO-BP neural network based model indicated that the five-parameter HHO-BP neural network 

based model was capable of predicting the loess coefficient of collapsibility in higher speed and accuracy. 

2. The HHO-BP Neural Network based Model for Collapsibility Coefficient Prediction 

In this part, initially the inherent mechanisms of the loess collapsible deformation were analyzed. The key soil 

index properties influencing the loess collapse were determined. Then the traditional BP neural network was 

optimized using the HHO algorithm by optimizing the initial connection weights and thresholds. By introducing 

the key soil index properties into the input layer and setting the coefficient of collapsibility as the final output 

layer, the prediction model could be developed based on data mining technology. 

2.1 Soil index properties related to the loess collapsible deformation 

Figure 1 illustrate the mechanism of the collapse deformation under water intrusion. As shown in Figure 1(A), in 

natural unsaturated condition, there are both air and water inside the soil pores. Soil aggregates were connected 

to each other through either direct or indirect point and surface contact. Apparently the void ratio (e) which 

indicates the pore volume inside the soil, fundamentally determines the amount of possible collapsible 

deformation. While the amount of soil aggregate inside the soil is represented by the dry density (ρd), which 

represents the content of solid soil particles inside the soil. For indirect point and surface contact, clay particles 

act as the joint between adjacent soil aggregates. These joints are also referred to as the weak zone since they 

would soon rupture and dissolve under water intrusion. The amount of clay particles inside the soil is manifested 

by the plasticity index (Ip). Together with the surface tension, which acts as the bonding force exerted by water 

menisci of the close air bubble, the initial inner soil structure is maintained. The surface tension is manifested by 

matric suction, which is related to the water content (w) and degree of saturation(Sr). While as water infiltrates 

into the loess, as shown in Figure 1(B), the big weak zone ruptures and the small weak zone disappears. The soil 

aggregate composed of silts breaks into separated soil particles. Also, the surface tension generated by the air 

bubble vanishes. Under the combined function of these factors, the initial soil structure cannot be maintained 
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any longer. As a consequence, under the soil self-weight or the vertical load, the broken loess particles and 

discrete clay particles fill the original pores inside the soil structure, resulting in soil volume reductions [26-28], 

as shown in Figure 1(C) 

(A) (B)

(C)

 

Figure 1 Mechanism of the loess collapsible deformation 

Besides the five soil index properties as analyzed above, scholars also concluded some other factors related to 

the coefficient of collapsibility, such as the liquid limit, plastic limit and unit weight, etc [29-31]. However, 

these factors generally signify the same content as the aforementioned soil index properties. For example, the 

liquid limit and plastic limit signify the clay content inside the soil, while apparently they are less representative 

compared with plasticity index. Similarly, the unit weight intending to signify the content of solid soil particles 

inside the soil is not representative than dry density. For this reason, the void ratio(e), dry density(ρd), plasticity 

index(Ip), water content(w) and degree of saturation(Sr) are selected as the input parameters in the prediction 

model of the collapsibility coefficient. 

2.2 The prediction model based on BP neural network optimized using the HHO algorithm 

The prediction model based on BP neural network optimized using HHO algorithm was developed following a 

three-step-procedure. Initially the neural network structure was built in a similar way to the BP neural network, 

which determined the number of neurons and various functions. Then the thresholds in input layer, hidden layer 

and output layer as well as the connection weights between different layers were initialized. In this process, the 

initial thresholds and connections weight inside the BP neural network were optimized using the HHO algorithm, 

so as to significantly improve the prediction performance. Finally, the neural network was train by the training 

data set so as to fit the parameters in the prediction model. 

More specifically, as shown in Figure 2, the neural network structures were composed of three layers, namely 

the input layer (i.e., soil index properties), hidden layer and the output layer (i.e., coefficient of collapsibility). 

Then a series of networks were built between input layer and hidden layer as well as the hidden layer and the 

output layer. There was a self-feedback threshold in the input layer while there were mutual feedback weights 

between the input and hidden layers, and between the hidden and output layers. For traditional BP neural 

network, the specific structural characteristics caused that minor changes in each node’s threshold and 

connection weights could significantly affected the output results. In other words, the randomness in initial 

thresholds and connection weights resulted in low convergence speed and poor prediction accuracy. 
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Figure 2 The schematic of the proposed prediction model 

The HHO algorithm was a population-based and free-gradient optimization technology which simulated the 

cooperative behavior of the Harris Hawk to achieve efficient optimization [32]. It is always used to provide high 

accuracy in extracting the optimal parameters and enhanced the prediction performance [33]. In order to 

improve the convergence speed and prediction accuracy, the BP neural network was optimized with the 

assistance of the HHO algorithm following a six-step-procedure: 

(1) Use the thresholds and connection weights to be optimized as the HHO algorithm’s individual dimension. As 

shown in Figure 2, the Xrabbit is referred to as the thresholds and connection weights in the BP neural network 

structure, for example θij, Vij, λi-j, Ti-j;  

(2) According to the number of parameters to be optimized, determine the prey’s dimensionality and authorize the 

initial values of the prey energy, the number of Hawks and the position parameters;  

(3) Consider the mean square error between the predicted and actual value (as shown in Eq.1) as the neural 

network’s fitness function; 

2

1

1
( ( ) ( ))

M

obj i
f X i x i

M 
                                 (1) 

where M is the number of samples in the training set; X(i) is the neural network model’s predicted value of the 

i-th sample; x(i) is the actual value of the i-th sample. 

(4) Use the HHO algorithm’s initialization assignment to generate the initial connection weights and thresholds 

randomly and store them in the matrix unit best_X, and the initial fitness value is recorded in the matrix unit 

Rabbit Energy;  

(5) Use Eq.(2) and Eq.(3) to update the Hawk group’s position continuously, then calculate the fitness 

continuously. Compare the updated fitness value with the original one. If the updated fitness value is smaller 

than the original value, then store the updated value in the matrix unit best_X and Rabbit_Energy to replace the 

original one;  

)()()()1( tXtJXEtXtX rabbit                               (2) 
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)()()1( tXEtXtX rabbit                                   (3) 

In which: X(t+1) and X(t) denote the positions of the Harris Hawk at the t+1 and t iterations, respectively; Xrabbit is 

the position of the prey selected randomly; E is the prey’s energy; ΔX(t)=Xrabbit(t)-X(t), J=2[1-r5] is a random 

number between [0,2] that represents the random jump intensity when the prey escapes; r5 represents a random 

number in the range of [0,1], and ΔX(t) denotes the difference between the prey’s position vector and the current 

position. 

(6) The aforementioned update continues until the default accuracy (i.e., e
-7

) or the default iteration number is 

reached (i.e., 2000). 

Then the optimal initial connection weights and thresholds values was introduced back into the BP neural 

network, after training using the training data set, the proposed model is capable of predicting the collapsibility 

coefficient through certain soil index properties. Figure 3 illustrates the flowchart of the neural work for 

collapsibility coefficient prediction. In this study, the BP neural network adopted a single hidden layer model 

with a structure of 5(input layer)-20(hidden layer)-1(output layer). The number in the algorithm population was 

set to 10 and the improved HHO algorithm was iterated for 100 times. 

 

Figure 3 Flowchart of the BP neural network optimized using the HHO algorithm 

3. Case Study 

In this section, the feasibility of the proposed prediction model was validated using a database presented by An’s 

[22], Feng’s [23], Wang
’
s[34], Ding’s[35], Liu’s[36] and Han’s[37], who collected totally 80 groups of data of 

soil index properties and collapsibility coefficient in Lanzhou and Shanxi, China. The data base was divided into 

the training set which contained 60 groups of data and the testing set which contained 20 groups of data. The 

detained data base was available in Table1.  

 

Table 1 The coefficient of Collapsibility data base[22,23,34-37] 

No. Sr/1 w/% ρd/kg/m
3
 e/1 Ip/% δs/1 No. Sr/1 w/% ρd/kg/m

3 
e/1 Ip/% δs/1 
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1 36.84 15.5 1.260 1.136 15.9 0.044 41 50.80 17.3 1.410 0.919 16.90 0.007 

2 32.62 13.9 1.260 1.151 16.2 0.046 42 15.72 6.8 1.250 1.168 16.40 0.027 

3 24.40 11.4 1.190 1.262 16.2 0.073 43 21.45 9.0 1.270 1.133 16.20 0.013 

4 13.27 5.2 1.310 1.058 16.4 0.078 44 12.90 5.2 1.290 1.089 16.20 0.024 

5 17.47 7.2 1.280 1.113 16.7 0.078 45 19.35 7.6 1.310 1.065 16.50 0.070 

6 20.36 8.6 1.260 1.140 16.3 0.080 46 21.37 8.4 1.310 1.001 16.70 0.080 

7 27.72 11.5 1.270 1.120 16.5 0.066 47 25.83 10.2 1.310 1.066 16.40 0.056 

8 30.25 12.0 1.300 1.071 16.8 0.062 48 30.43 11.5 1.340 1.020 16.10 0.059 

9 34.85 13.0 1.350 1.007 16.9 0.059 49 36.14 13.4 1.350 1.001 16.20 0.036 

10 37.44 13.8 1.350 0.995 17.0 0.031 50 41.89 15.5 1.350 0.999 16.60 0.021 

11 39.77 14.2 1.370 0.964 16.8 0.018 51 41.55 14.8 1.380 0.962 16.70 0.010 

12 43.53 15.5 1.380 0.961 16.6 0.017 52 64.50  23.00  1.408 0.950  9.40  0.012  

13 48.12 16.6 1.400 0.931 17.0 0.013 53 51.80  17.80 1.418 0.920  7.80  0.010  

14 34.93 14.2 1.290 1.098 16.1 0.051 54 53.70 20.00  1.367 1.000  8.50  0.015  

15 32.87 12.9 1.310 1.065 16.3 0.043 55 54.10  17.70  1.418 0.820  8.40  0.007  

16 29.85 12.0 1.290 1.086 16.4 0.047 56 41.00  15.70  1.347 1.030  8.10  0.034  

17 21.01 8.5 1.290 1.093 16.2 0.065 57 47.10 16.90  1.398 0.970  9.10  0.009  

18 22.05 9.0 1.280 1.102 16.7 0.063 58 70.90  22.40 1.480 0.850  9.40  0.001  

19 21.93 8.8 1.300 1.083 16.2 0.066 59 73.70  23.40  1.480 0.850  9.10 0.001  

20 25.07 10.0 1.300 1.077 16.4 0.060 60 34.00  13.10  1.347 1.040  9.30  0.044  

21 26.39 10.3 1.310 1.054 16.2 0.049 61 33.00  12.90  1.337 1.050  9.50  0.040  

22 29.76 11.0 1.350 0.998 16.6 0.031 62 37.00 14.00  1.357 1.020 9.60  0.035  

23 34.51 12.2 1.380 0.954 16.7 0.018 63 34.00  12.10  1.388 0.960  8.70  0.037  

24 42.09 14.8 1.390 0.949 16.6 0.016 64 40.00  13.60  1.439 0.900  7.80  0.022  

25 47.92 16.5 1.400 0.930 17.0 0.013 65 35.00  10.80  1.480 0.840  7.20  0.007  

26 9.47 4.4 1.200 1.255 16.2 0.043 66 28.00 9.20  1.449 0.880  7.50  0.004  

27 18.50 8.2 1.230 1.197 15.9 0.027 67 68.00 18.40  1.582 0.730  7.00  0.003  

28 11.33 4.8 1.260 1.144 16.4 0.051 68 41.60  16.00  1.347 1.030  8.60  0.036  

29 14.04 5.2 1.350 1.000 16.5 0.071 69 36.00  15.00 1.276 1.160  9.40  0.054  

30 17.23 7.2 1.270 1.128 16.2 0.074 70 51.00  14.00 1.571 0.730  6.30  0.002  

31 16.41 6.6 1.290 1.086 15.9 0.080 71 34.00  10.60  1.480 0.850  7.10  0.005  

32 18.18 7.3 1.300 1.084 16.7 0.077 72 44.00 17.10 1.320 1.061 10.9 0.052 

33 20.62 7.8 1.340 1.021 16.4 0.078 73 34.00 13.00 1.340 1.021 9.80 0.035 

34 26.81 10.5 1.310 1.058 16.6 0.074 74 35.00 13.30 1.330 1.026 9.90 0.041 

35 23.60 9.0 1.330 1.030 16.9 0.077 75 27.00 10.90 1.290 1.019 9.90 0.081 

36 31.01 11.2 1.370 0.975 16.9 0.057 76 26.00 10.00 1.330 1.034 9.80 0.019 

37 34.92 12.6 1.370 0.974 16.90 0.043 77 42.30 20.9 1.140 1.340 12.0 0.087 

38 37.09 13.4 1.370 0.975 16.70 0.027 78 50.50 20.4 1.280 1.099 13.4 0.054 

39 41.96 15.0 1.370 0.965 16.80 0.018 79 62.00 24.70 1.302 1.090 13.0 0.017 

40 46.51 16.4 1.380 0.952 17.00 0.019 80 36.00 15.60 1.220 1.168 10.6 0.058 

 

In order to highlight the advantages of the proposed model based on BP neural network optimized using HHO 

algorithm, comparisons were made among experimental data and predictions made by proposed model, 

traditional BP neural network and BP neural network optimized using PSO algorithm. As shown in Figure 4 and 

Table 2, apparently the best comparisons could be achieved between the true value and predictions made by the 

model proposed in this study. Also, as shown in Table 3, the coefficient of determination (R
2
), the root mean 

square error (RMSE) and mean absolute error (MAE) were selected to evaluate the performance of three models 

discussed above. Corresponding equations were listed in Eq.(4) to (6), respectively. The HHO-BP algorithm’s 

optimization accuracy was far higher than the BP neural network and PSO-BP neural network. Further, the 

HHO-BP algorithm’s training speed was higher than the PSO-BP algorithm. 
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Where n is the number of samples; y’ is the prediction made by proposed model; y is the experimental date. The 

closer R
2
 is to 1, and the closer RMSE and MAE are to 0, indicating that the prediction accuracy of this model is 

higher [38-39]. 
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Figure 4 Comparisons of coefficient of collapsibility among BP, PSO-BP and HHO-BP neural network 

predictions in test set 

Table 2 Coefficient of collapsibility of neural network models in test set 

Test set NO. 
δs δs δs δs 

Actual values Prediction values of BP Prediction values of PSO-BP Prediction values of HHO-BP 

1 0.0400 0.0450 0.0420 0.0330 

2 0.0350 0.0290 0.0350 0.0320 

3 0.0370 0.0330 0.0370 0.0320 

4 0.0220 0.0280 0.0260 0.0300 

5 0.0070 0.0073 0.0051 0.0058 

6 0.0040 0.0042 0.0029 0.0036 

7 0.0030 0.0033 0.0033 0.0036 

8 0.0360 0.0350 0.0370 0.0310 

9 0.0540 0.0550 0.0820 0.0590 

10 0.0020 0.0021 0.0018 0.0023 

11 0.0050 0.0051 0.0030 0.0044 

12 0.0520 0.0430 0.0269 0.0518 

13 0.0350 0.0384 0.0328 0.0371 

14 0.0410 0.0255 0.0185 0.0484 

15 0.0810 0.0574 0.0846 0.0840 

16 0.0190 0.0258 0.0563 0.0255 

17 0.0870 0.0658 0.0583 0.0988 

18 0.0540 0.0529 0.0705 0.0553 

19 0.0170 0.0127 0.0153 0.0201 

20 0.0580 0.0423 0.0522 0.0650 
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Table 3 Comparison of prediction effects of neural network models 

Predictive model 

R
2
 MAE RMSE CPU time/s 

Training set Test set Training set Test set Training 

set 

Test set Training  

set 

BP neural network 0.685 0.903 0.0107 0.0062 0.0018 0.0094 2.15 

HHO-BP 0.751 0.972 0.0097 0.0039 0.0132 0.0050 69.49 

PSO-BP 0.741 0.675 0.0084 0.0092 0.0106 0.0150 119.27 

Comparisons of the prediction error for all testing data among HHO-BP neural network, BP neural network, and 

PSO-BP neural network were shown in Figure 5. The HHO-BP neural network’s error was significantly less 

than those of the PSO-BP and BP neural networks. The relative error of the HHO-BP neural network based 

prediction model fluctuated near zero line, and the fluctuation frequency was small. 
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Figure 5 Comparisons of relative errors among BP, PSO-BP and HHO-BP neural network predictions 

Figure 6 showed the convergence rate of the predictions made by HHO-BP neural network based model. The 

fitness fell sharply in the early stage of convergence, while this trend slowed down after around 20 iterations. 

After 100 iterations, HHO-BP algorithm was able to converge stably. 

0 20 40 60 80 100
0.014

0.016

0.018

0.020

0.022

0.024

0.026

0.028

B
es

t 
fi

tn
es

s 
o

b
ta

in
ed

 s
o

 f
a

r

Number of iteration

 HHO-BP neural network

 

Figure 6 Convergence rate of the HHO-BP neural network prediction 

In order to determine the number of soil index properties necessary to produce reasonable predictions, 

predictions using five soil index properties (i.e., the proposed model) and four soil index properties were made 

and compared. As shown in Table 4 and Figure 7, the average value of R
2
 between the predicted and the actual 

value by the five-parameter prediction model reached approximately 91%, which was significantly higher than 

the four-parameter prediction model (approximately 70%). Such a comparison indicated that to predict the 

file:///C:/Users/ASUS/AppData/Local/youdao/dict/Application/8.10.3.0/resultui/html/index.html#/javascript:;
file:///C:/Users/ASUS/AppData/Local/youdao/dict/Application/8.10.3.0/resultui/html/index.html#/javascript:;
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coefficient of collapsibility reasonably, at least five soil index properties were necessary. Further, for other index 

evaluating the performance of various models, such as the maximum value of R
2
, RMSE and MAE, 

five-parameter model was greater than the four-parameter model. 

 

Figure 7 Comparisons of R2 average among five-parameters and four-parameters neural network predictions 

Table 4 Comparison of the average prediction effect of HHO-BP neural network model with five-parameters and 

four-parameters 

Parameter 

settings 

1: Five  

parameters 

2: Four  

parameters 

（without Sr） 

3: Four  

parameters 

（without e） 

4: Four  

parameters 

（without ρd） 

5: Four  

parameters （

without Ip） 

6: Four  

parameters （

without w） 

Collection 

model 

Train-ing 

set 

Test 

set 

Training 

set 
Test set 

Training 

set 

Test 

set 

Training 

set 

Test 

set 

Training 

set 

Test 

set 

Training 

set 

Test 

set 

R
2
 

average 
0.7173 0.9105 0.7144 0.7080 0.7184 0.5926 0.7202 0.5712 0.7075 0.5681 0.7076 0.5798 

R
2
 max 0.8662 0.9716 0.8581 0.944 0.8046 0.9397 0.8174 0.9501 0.8139 0.9004 0.8128 0.9343 

RMSE 0.00005 0.0005 0.0002 0.0006 0.0005  0.0035  0.0012  0.0005  0.0004  0.0007  0.0005  0.0009  

MAE 0.0073 0.0068 0.0067 0.0084 0.0068  0.0071  0.0070  0.0054  0.0071  0.0074  0.0069  0.0068  

4. Sensitivity Analysis 

Sensitivity analysis is a technical approach to assess a model’s robustness based upon the prediction results. The 

sensitivity of the proposed model was analyzed according to the connection weights. Corresponding principle is 

that the greater the sum of the absolute values of the input parameters’ connection weights, the greater influence 

those parameters pose on the output results. The formula to calculate the connection weight was given in Eq. (7). 

The sensitivity analysis results were shown in Table 5. The connection weights showed that the void ratio and 

plasticity index were of greater importance. The correlation between the degree of saturation and loess coefficient 

of collapsibility was greater than water content, and the correlation between the void ratio and coefficient of 

collapsibility was greater than dry density, which was consistent with the research results presented by Zhang et 

al. [40]. 

1

M

X XY

Y

I HB


                                                  (7) 

Where Ix is the sum of connection weights of input neurons to output parameters, HBxy is the connection weights 

of neurons at each layer, M is the number of connection weights. 
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Table 5 Sensitivity analysis of parameters 

NO. of 

parameters 
Input parameters 

Connection weights 

Absolute value of parameter weights Ranking 

1 e 2871.84 1 

2 Ip（%） 1283.37 2 

3 ρd（kg/m
3） 1056.01 3 

4 Sr 990.20 4 

5 w（%） 901.40 5 

5. Conclusion 

In engineering practice, data mining technology has been widely used to predict the collapsibility coefficient of 

loess quickly and conveniently based on the site investigation report. However, for commonly used data mining 

techniques like BP neural network, generations of random thresholds and connections weights may lead to low 

convergence speed and poor accuracy. In order to solve this problem, in this study, initially soil index properties 

tightly related to collapsibility coefficient were revealed. Then a prediction models was proposed based on the 

BP neural network optimized using HHO algorithm. Through above analysis, following conclusions could be 

summarized: 

(1)In consequence of studies, soil index properties tightly related to the collapsibility coefficient were determined 

as void ratio(e), dry density(ρd), plasticity index(Ip), water content(w) and degree of saturation(Sr).  

(2)The HHO algorithm could optimize the initial values of the threshold and connection weight in BP neural 

network so as to significantly improve the convergence speed and prediction accuracy. Comparative analysis of 

correlation coefficients, the results show that the HHO-BP network model could significantly improves the 

prediction accuracy and operation speed compared with the BP neural network and PSO-BP network model. The 

five-parameter model includes the main factors that affect the coefficient of collapsibility comprehensively and 

has higher prediction accuracy and less error than the four-parameter model. 

(3)Through the sensitivity analysis of the loess coefficient of collapsibility by the connection weight method, it is 

found that the void ratio and plasticity index have a great influence on the collapsibility coefficient, followed by 

dry density, and degree of saturation, while the water content has the least effect.  

(4) In the testing stage, the comparison between the predictions of the 5-parameter HHO-BP model and the 

experimental results shows that R
2
 values are higher than 0.9, RMSE and MAE values are as low as 0.005 and 

0.0039. The results are satisfactory. Therefore, instead of the expensive, time-consuming and difficult 

experiments, it is highly suggested to use the 5-parameter HHO-BP neural network model for the preliminary 

prediction of the collapsibility coefficient in practical engineering. 
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