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ABSTRACT 
The temporal instability and primary breakup length of a non-Newtonian 

viscoelastic liquid jet moving in an inviscid gaseous environment were 

carried out by solving a set of linearized Navier-Stokes equations and 

employing the linear viscoelastic model, respectively. The dimensionless 

dispersion equation that governs the instability was derived and solved by a 

numerical method. The effects of fluid properties on the instability and 

primary breakup length of viscoelastic liquid jets were carried out. It could be 

seen that by increasing the growth rate, the instability range and the primary 

breakup length of the viscoelastic liquid jets could result in an increase in the 

liquid Weber number and the ratio of gas to liquid density. Moreover, the 

significant findings are that an increase in the time constant ratio, and also 

the Ohnesorge number reduced both of the growth rates of disturbances 

and primary breakup length. Though, increasing the elasticity number 

resulted in a higher growth rate of disturbances and enhanced the breakup 

mechanism.  

 

 
1. INTRODUCTION  
When a liquid jet exits from an atomizer, it becomes unstable. The amplitude of the 
disturbances on the liquid-gas interface grows and leads to the breakup of the liquid sheet into 
ligaments and then into droplets. This multiphysics process is called atomization and is used 
in several industrial processes:  fuel injection in combustion processes, chemical combustion, 
spray drying, evaporative cooling, agricultural sprays, and medicine. Since the efficiency and 
quality of production are strongly dependent on these mechanisms, it is essential to understand 
the physics of instability and the breakup of liquid jets and sheets [1]. Rayleigh [2] was the 
first to address the linear instability of an inviscid cylindrical liquid column in the absence of 
surrounding gas. Liquid viscosity and surrounding gas pressure were considered in the study 
done by Weber [3]. A review of the linear instability theories for liquid jets is given by 
Lefebvre [4], Lin [5] and Sirignano and Mehring [6]. Reitz and Bracco [7] concluded that the 
combination of aerodynamic interaction theory and nozzle geometry was adequate to explain 
their experimental results. It is generally acknowledged that the aerodynamic interactions 
between the liquid and the ambient gas play a significant role in the breakup of the liquid jet. 
Their aerodynamic interactions enhance the unstable wave growth rate on the liquid surface, 
and then these unstable waves cause the liquid jet to break into ligaments and then into droplets  
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[8]. The instability and breakup of inviscid liquid sheets of uniform thickness in an inviscid 
gas environment were analyzed by Squire [9] and Hagerty and Shea [10]. Their results 
showed that the surface tension forces always tend to dampen out any protuberances, and 
the aerodynamic forces are responsible for the instability of inviscid sheets. The 
characteristics of instability and breakup of Newtonian liquid sheets in an inviscid gaseous 
medium were analyzed by Li and Tankin [11]. Li and Tankin’s results showed that for 
Newtonian fluids, the surface tension always opposes, while the relative motion between 
the sheet and gas favors the onset and development of instability. Since many fluids used 
in atomization applications in practical fields are non-Newtonian liquids, it is significant to 
study the growth of instability in non-Newtonian liquid jets [12-15]. Yarin [16] studied in 
detail the instability and breakup mechanisms of non-Newtonian liquid jets. Rallison and 
Hinch [17] considered the linearized inertial instability of the parallel shear flow of a 
viscoelastic liquid. Keller et al. [18] explored the spatial instability of a circular cylindrical 
jet of liquid in ambient air. Gordon et al. [19] studied the instability of several non-
Newtonian fluid jets under the influence of externally controlled disturbances and then 
investigated the breakup patterns of each fluid. Brenn et al. [20] investigated the temporal 
instability behavior of non-Newtonian liquid jets moving in an inviscid gaseous 
environment for axisymmetrical disturbances, and then gained the corresponding dispersion 
relation between the wave growth rate and the wave number. According to their report, the 
linear stability analysis showed that a jet of a viscoelastic fluid exhibited a more significant 
growth rate of axisymmetric disturbances than a jet of a Newtonian fluid with the same 
Ohnesorge number. The results indicated that non-Newtonian liquid jets were more unstable 
than Newtonian jets. 

The objective of the present work was to derive a distribution relation by means of linear 
stability analysis for non-Newtonian viscoelastic liquid jets under the action of surface tension 
and aerodynamic forces, as well as to investigate and analyze its predictions of the jet 
characteristics. The results of the present model will be compared with other theories of jet 
instability. The influence of non-dimensional parameters on the stability and primary breakup 
of the viscoelastic liquid jet will also be discussed. 

 
2. FORMULATION FOR LINEAR INSTABILITY ANALYSIS 
Consider an incompressible viscoelastic liquid jet of density 𝜌𝜌, surface tension 𝜎𝜎, and radius 
a moving at constant velocity 𝑈𝑈� through an inviscid and incompressible gas of density 𝜌𝜌𝑔𝑔. 
The governing equations are written in a cylindrical coordinate system, with the z-axis along 
the centerline of the jet, and the r axis is normal to the liquid jet with its origin located at 
the axis of symmetry. The axisymmetric disturbances on the surface of the liquid jet are 
considered in this study. Figure 1 shows a schematic diagram of a moving liquid jet and the 
coordinate system. 

The governing equations of the liquid motion in a jet are the conservation laws of mass and 
momentum, as given in Equation (1) and (2). 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝛻𝛻.𝜌𝜌𝜌𝜌 = 0,                                                          (1) 
 

𝜌𝜌 � 𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣.𝛻𝛻�𝑣𝑣 = −𝛻𝛻.𝜋𝜋 + 𝜌𝜌𝜌𝜌,                                               (2) 
 
where t is the time, v is the liquid velocity vector, g is the gravitational acceleration vector, 
and 𝜋𝜋 is the total stress tensor of the liquid, which is given by Equation (3).  
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Figure 1: Schematic diagram of a liquid jet with axisymmetrical surface 
disturbances and the laboratory-fixed coordinate system r, z. 

 
𝜋𝜋 = 𝑝𝑝𝑝𝑝 + 𝜏𝜏,                                                          (3) 

 
where p is the pressure of the liquid due to the disturbance, 𝜏𝜏 is the extra stress tensor of the 
liquid, and 𝛿𝛿 is the unit tensor.  

The viscoelastic properties of the fluid are described using the corotational Oldroyd eight-
constant model which has the general constitutive equation in the objective reference frames 
in the form of Equation (4). 
 

𝜏𝜏 + 𝜆𝜆1
𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

+
1
2
𝜇𝜇0(𝑡𝑡𝑡𝑡𝑡𝑡)𝛾̇𝛾 −

1
2
𝜇𝜇1{𝜏𝜏. 𝛾̇𝛾 + 𝛾̇𝛾. 𝜏𝜏} +

1
2
𝑣𝑣1(𝜏𝜏: 𝛾̇𝛾)𝛿𝛿 

= −𝜂𝜂0 �𝛾̇𝛾 + 𝜆𝜆2
𝐷𝐷𝛾̇𝛾
𝐷𝐷𝐷𝐷
− 𝜇𝜇2{𝛾̇𝛾. 𝛾̇𝛾} + 1

2
𝑣𝑣2(𝛾̇𝛾: 𝛾̇𝛾)𝛿𝛿�,                                  (4) 

 
where 𝜆𝜆1 is the stress relaxation time, 𝜆𝜆2 is the deformation retardation time of the liquid, 𝛿𝛿 is 
the unit tensor and 𝜇𝜇0 is the zero shear viscosity. 

The rate of strain tensor 𝛾̇𝛾 and the vorticity tensor 𝜔𝜔 are defined by Equation (5) and 
Equation (6). 

 
𝛾̇𝛾 = ∇𝑣𝑣 + (𝛻𝛻𝛻𝛻)𝑇𝑇 ,                                                      (5) 

 
𝜔𝜔 = ∇𝑣𝑣 − (∇𝑣𝑣)𝑇𝑇                                                       (6) 

 
D/Dt is defined as the corotational derivative and given by Equation (7) and Equation (8). 
 

𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ (𝑣𝑣.∇)𝜏𝜏 + 1
2

{𝜔𝜔. 𝜏𝜏 − 𝜏𝜏.𝜔𝜔},                                       (7) 
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𝐷𝐷𝛾̇𝛾
𝐷𝐷𝐷𝐷

= 𝜕𝜕𝛾̇𝛾
𝜕𝜕𝜕𝜕

+ (𝑣𝑣.∇)𝛾̇𝛾 + 1
2

{𝜔𝜔. 𝛾̇𝛾 − 𝛾̇𝛾.𝜔𝜔},                                      (8) 
 
Similarly the governing equations for the inviscid and incompressible gas are expressed as 

Equation (9) and Equation (10). 
 

∇.𝑢𝑢𝑔𝑔 = 0,                                                         (9) 
 

𝜌𝜌𝑔𝑔 �
𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣𝑔𝑔.𝛻𝛻� 𝑣𝑣𝑔𝑔 = −𝛻𝛻. 𝑝𝑝𝑔𝑔,                                        (10) 
 
where 𝜌𝜌𝑔𝑔is the gas density, 𝑢𝑢𝑔𝑔 is gas velocity vector and 𝑝𝑝𝑔𝑔 is the gas pressure. 

For linear stability analysis of the liquid jets, the dependent variables for the pressures and 
velocities should be presented as the summation of the initial steady state and the unsteady 
disturbances terms (Equation (11) and Equation (12)). When the jet is disturbed, the gas-liquid 
interface will displace from the equilibrium position 𝑟𝑟 = 𝑎𝑎, such that the disturbed flow field 
becomes as Equation (13). 

 
𝑈𝑈𝑗𝑗 = 𝑈𝑈�𝑗𝑗 + 𝑢𝑢𝑗𝑗               𝑗𝑗:𝑔𝑔, 𝑙𝑙                                         (11) 

 
𝑝𝑝𝑗𝑗 = 𝑝̅𝑝𝑗𝑗 + 𝑝𝑝𝑗𝑗                                                   (12) 

 
𝑟𝑟 = 𝑎𝑎 + 𝜉𝜉                                                     (13) 

 
where 𝑟𝑟 = 𝑎𝑎 is the equilibrium position of the jet surface, i.e., the position without 
disturbances, and ξ is the displacement of a point on the surface. 

The following linearized equations (Equations (14-16)) are obtained after neglecting the 
nonlinear terms and gravitational effects. 

 
∇. 𝑣𝑣 = 0,                                                       (14) 

 
𝜌𝜌 � 𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑈𝑈� 𝜕𝜕

𝜕𝜕𝜕𝜕
� 𝑣𝑣 = −∇. (𝑝𝑝𝑝𝑝 + 𝜏𝜏)                                      (15) 

 
𝜏𝜏 + 𝜆𝜆1 �

𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑈𝑈� 𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝜏𝜏 = −𝜂𝜂0[𝛾̇𝛾 + 𝜆𝜆2 �

𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑈𝑈 𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝛾̇𝛾]                          (16) 

 

where 𝜂𝜂0 is described as the zero shear viscosity of the fluid and the ratio of 𝜆𝜆2 𝜆𝜆1�  is defined 
as time constant ratio.  

The disturbances are assumed in the forms of normal mode as Equation (17). 
 

(𝑣𝑣, 𝜏𝜏, 𝛾̇𝛾, 𝑝𝑝 , 𝜉𝜉) = (𝑣𝑣�(𝑟𝑟), 𝜏̂𝜏(𝑟𝑟), 𝛾𝛾�(𝑟𝑟), 𝑝̂𝑝(𝑟𝑟), 𝜉𝜉0)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖+𝛼𝛼𝛼𝛼                      (17) 
 
where ^ indicates the disturbance amplitude, which is presumed to be independent of t and 
z but dependent only to position r. 𝜉𝜉0 is the initial amplitude of the disturbance, which is 
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taken to be much smaller than the radius of the liquid jet. The wave number of disturbance k 
is related to the disturbance wave length by 𝑘𝑘 = 2𝜋𝜋

𝜆𝜆
. Also, 𝛼𝛼 is the complex frequency where 

the real part 𝛼𝛼𝑟𝑟 represents the rate of growth of disturbances with time, and the imaginary part 
𝛼𝛼𝑖𝑖 is 2𝜋𝜋 times the disturbance frequency. 

The flow field solutions of the above governing equations for both the liquid and gas phase 
have to satisfy the kinematic and dynamic boundary conditions at the gas-liquid interface, 
which can be taken at 𝑟𝑟 = 𝑎𝑎. The linearized kinematic boundary condition to the first order 
can be expressed as Equation (18) and Equation (19).  

 

𝑣𝑣𝑟𝑟,𝑙𝑙 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑈𝑈� 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

,                                    𝑟𝑟 = 𝑎𝑎                                       (18) 
 

𝑣𝑣𝑟𝑟,𝑔𝑔 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

                                          𝑟𝑟 = 𝑎𝑎                                      (19) 

 
And the dynamic boundary conditions require that can be expressed as Equation (20) and 

Equation (21). 
 

𝜏𝜏𝑟𝑟𝑟𝑟 = −𝜂𝜂(𝛼𝛼) �𝜕𝜕𝑣𝑣𝑧𝑧
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑣𝑣𝑟𝑟
𝜕𝜕𝜕𝜕
� = 0,                            𝑟𝑟 = 𝑎𝑎                                      (20) 

 
𝜋𝜋𝑟𝑟𝑟𝑟 − 𝜋𝜋𝐺𝐺,𝑟𝑟𝑟𝑟 + 𝑝𝑝𝜎𝜎 = 0,                                    𝑟𝑟 = 𝑎𝑎                                      (21) 

 
where 𝜋𝜋𝑟𝑟𝑟𝑟 is the liquid normal stress, 𝜋𝜋𝐺𝐺,𝑟𝑟𝑟𝑟 is the gas normal stress, and 𝑝𝑝𝜎𝜎  is the pressure 
induced by the surface tension and it can be expressed as Equation (22). 
 

𝑝𝑝𝜎𝜎 ≈ − 𝜎𝜎
𝑎𝑎2
�𝜂𝜂 + 𝑎𝑎2 𝜕𝜕

2𝜂𝜂
𝜕𝜕𝑧𝑧2

�                                                 (22) 

 
 

Moreover, the velocity and pressure must be finite at 𝑟𝑟 = 𝑎𝑎 for liquid. Note that Equation 
(4) is linearized as shown in Equation (23). 

 
𝜏̂𝜏 = 𝜂𝜂(𝜔𝜔)𝛾̇𝛾�                                                         (23) 

 
where the effective viscosity 𝜂𝜂(𝜔𝜔) can be expressed as Equation (24). 

 

𝜂𝜂(𝜔𝜔) = 𝜂𝜂0
1+𝜆𝜆2(𝜔𝜔+𝑖𝑖𝑖𝑖𝑖𝑖)
1+𝜆𝜆2(𝜔𝜔+𝑖𝑖𝑖𝑖𝑖𝑖)

                                               (24) 

 
Substituting Equation (23) into Equation (15) and expressing the continuity and 

momentum equations in a suitable component will yield the following governing equations. 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 1
𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0                                                      (25) 
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𝜌𝜌 �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑈𝑈 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� = −𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜂𝜂(𝜔𝜔) �2𝑖𝑖𝑖𝑖 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 1

𝑟𝑟
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� + 𝑖𝑖𝑖𝑖 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜕𝜕2𝑢𝑢

𝜕𝜕𝑟𝑟2
�               (26) 

 

𝜌𝜌 �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑈𝑈 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� = −𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜂𝜂(𝜔𝜔) �− �𝑘𝑘2 + 1

𝑟𝑟2
� 𝑣𝑣 + 1

𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕2𝑣𝑣
𝜕𝜕𝑟𝑟2

�                     (27) 
 

The substitution of Equation (17) into the above equations of motion yields ordinary 
differential equations for the amplitude functions which are dependent on the radial coordinate 
only.  

 
𝑖𝑖𝑖𝑖𝑢𝑢� + 𝑣𝑣�

𝑟𝑟
+ 𝑑𝑑𝑣𝑣�

𝑑𝑑𝑑𝑑
= 0                                                       (28) 

 
(𝜔𝜔 + 𝑖𝑖𝑖𝑖𝑖𝑖)𝑢𝑢� = − (𝑖𝑖𝑖𝑖)𝑝́𝑝

𝜌𝜌
+ 𝜂𝜂(𝜔𝜔)

𝜌𝜌
�−2𝑘𝑘2𝑢𝑢� + 𝑖𝑖𝑖𝑖 �𝑣𝑣�

𝑟𝑟
+ 𝑑𝑑𝑣𝑣�

𝑑𝑑𝑑𝑑
� + 1

𝑟𝑟
𝑑𝑑𝑢𝑢�
𝑑𝑑𝑑𝑑

+ 𝑑𝑑2𝑢𝑢�
𝑑𝑑𝑟𝑟2

�                 (29) 

 
(𝜔𝜔 + 𝑖𝑖𝑖𝑖𝑖𝑖)𝑣𝑣� = − 1

𝜌𝜌
𝑑𝑑𝑝́𝑝
𝑑𝑑𝑑𝑑

+ 𝜂𝜂(𝜔𝜔)
𝜌𝜌
�− �𝑘𝑘2 + 1

𝑟𝑟2
� 𝑣𝑣� + 1

𝑟𝑟
𝑑𝑑𝑣𝑣�
𝑑𝑑𝑑𝑑

+ 𝑑𝑑2𝑣𝑣�
𝑑𝑑𝑟𝑟2

�                      (30) 

 
The application of the boundary conditions allows for the calculation of the integration 

constants which appear in the solutions of these differential equations. The final forms of the 
velocity and pressure profiles in the liquid jet read as follows: 

 

𝑣𝑣𝑟𝑟 = �𝑙𝑙
2+𝑘𝑘2

𝐼𝐼1(𝑘𝑘𝑘𝑘)
𝐼𝐼1(𝑘𝑘𝑘𝑘) − 2𝑘𝑘2

𝐼𝐼1(𝑙𝑙𝑙𝑙)
𝐼𝐼1(𝑙𝑙𝑙𝑙)� 𝜂𝜂(𝛼𝛼)

𝜌𝜌
𝜉𝜉0𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖+𝛼𝛼𝛼𝛼                          𝑟𝑟 ≤ 𝑎𝑎          (31) 

 

𝑣𝑣𝑧𝑧 = 𝑖𝑖 �𝑙𝑙
2+𝑘𝑘2

𝐼𝐼1(𝑘𝑘𝑘𝑘)
𝐼𝐼0(𝑘𝑘𝑘𝑘) − 2𝑘𝑘𝑘𝑘

𝐼𝐼1(𝑙𝑙𝑙𝑙)
𝐼𝐼0(𝑙𝑙𝑙𝑙)� 𝜂𝜂(𝛼𝛼)

𝜌𝜌
𝜉𝜉0𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖+𝛼𝛼𝛼𝛼                       𝑟𝑟 ≤ 𝑎𝑎          (32) 

 

𝑝𝑝 = −𝜌𝜌(𝛼𝛼+𝑖𝑖𝑖𝑖𝑈𝑈�)2�𝑙𝑙2+𝑘𝑘2�
𝑘𝑘(𝑙𝑙2−𝑘𝑘2)𝐼𝐼1(𝑘𝑘𝑎𝑎)

𝐼𝐼0(𝑘𝑘𝑘𝑘)𝜂𝜂(𝛼𝛼)𝜉𝜉0𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖+𝛼𝛼𝛼𝛼                             𝑟𝑟 ≤ 𝑎𝑎          (33) 

 
where 

 
𝑙𝑙2 = 𝑘𝑘2 + 𝜌𝜌(𝛼𝛼+𝑖𝑖𝑖𝑖𝑈𝑈�)

𝜂𝜂(𝛼𝛼)
                                                     (34) 

 
𝜂𝜂(𝛼𝛼) = 𝜂𝜂0

1+𝜆𝜆2(𝛼𝛼+𝑖𝑖𝑖𝑖𝑈𝑈�)
1+𝜆𝜆1(𝛼𝛼+𝑖𝑖𝑖𝑖𝑈𝑈�)

                                                  (35) 

 
And 𝐼𝐼(𝑘𝑘𝑘𝑘) is the modified Bessel function of the first kind. Then, the normal stress in the 

liquid jet can be obtained. 
 

𝜋𝜋𝑟𝑟𝑟𝑟 = 𝑝𝑝 + 2𝜂𝜂(𝜔𝜔) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

                                                 (36) 
 
In the present analysis, the gas around the moving liquid jet is assumed to be inviscid and 

incompressible; it moves at a velocity 𝑈𝑈�𝐺𝐺 in the same direction as the flow of the liquid jet.  
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Similar to the liquid phase, the governing equations for the gas phase are expressed in a 
linearized form as follows: 
 

1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑟𝑟𝑣𝑣𝑟𝑟,𝐺𝐺� + 𝜕𝜕𝑣𝑣𝑧𝑧,𝐺𝐺

𝜕𝜕𝜕𝜕
= 0                                              (37) 

 

𝜌𝜌𝐺𝐺 �
𝜕𝜕𝑣𝑣𝑟𝑟,𝐺𝐺
𝜕𝜕𝜕𝜕

+ 𝑈𝑈�𝐺𝐺
𝜕𝜕𝑣𝑣𝑟𝑟,𝐺𝐺
𝜕𝜕𝜕𝜕

� = −𝜕𝜕𝑝𝑝𝐺𝐺
𝜕𝜕𝜕𝜕

                                          (38) 

 

𝜌𝜌𝐺𝐺 �
𝜕𝜕𝑣𝑣𝑧𝑧,𝐺𝐺
𝜕𝜕𝜕𝜕

+ 𝑈𝑈�𝐺𝐺
𝜕𝜕𝑣𝑣𝑧𝑧,𝐺𝐺
𝜕𝜕𝜕𝜕

� = −𝜕𝜕𝑝𝑝𝐺𝐺
𝜕𝜕𝜕𝜕

                                          (39) 

 
where Equation (37) is the gas phase continuity equation, and Equation (38) and Equation (39) 
are the gas phase momentum equations. The linearized boundary conditions for the gas phase 
are: 

 

𝑣𝑣𝑟𝑟,𝐺𝐺 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑈𝑈�𝐺𝐺
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

        𝑟𝑟 = 𝑎𝑎                                          (40) 
 

𝑣𝑣𝑟𝑟,𝐺𝐺 = 0              𝑟𝑟 → ∞                                         (41) 
 
Similar to the governing differential equations for the liquid phase, the solutions for the 

velocity and pressure profiles in the gas phase are sought in the following form: 
 

�𝑢𝑢𝑔𝑔, 𝑣𝑣𝑔𝑔, 𝑝́𝑝𝑔𝑔, 𝜉𝜉� = �𝑢𝑢�𝑔𝑔(𝑟𝑟), 𝑣𝑣�𝑔𝑔(𝑟𝑟), 𝑝̂𝑝𝑔𝑔(𝑟𝑟), 𝜉𝜉0�𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖+𝛼𝛼𝛼𝛼                  (42) 
 
The same calculation as for the liquid phase leads to the final form of the profiles of the 

two velocity components and the pressure in the gas phase. The equations read 
 

𝑣𝑣𝑟𝑟,𝐺𝐺 = 𝛼𝛼+𝑖𝑖𝑖𝑖𝑈𝑈�𝐺𝐺
𝐾𝐾0
΄ (𝑘𝑘𝑘𝑘)

𝐾𝐾0΄(𝑘𝑘𝑘𝑘)𝜉𝜉0𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖+𝛼𝛼𝛼𝛼                                   𝑟𝑟 ≥ 𝑎𝑎                         (43) 

 

𝑣𝑣𝑧𝑧,𝐺𝐺 = 𝑖𝑖 𝛼𝛼+𝑖𝑖𝑖𝑖𝑈𝑈
�𝐺𝐺

𝐾𝐾0
΄ (𝑘𝑘𝑘𝑘)

𝐾𝐾0(𝑘𝑘𝑘𝑘)𝜉𝜉0𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖+𝛼𝛼𝛼𝛼                                𝑟𝑟 ≥ 𝑎𝑎                         (44) 

 

𝑝𝑝𝐺𝐺 = −𝜌𝜌𝐺𝐺
𝑘𝑘

(𝛼𝛼+𝑖𝑖𝑖𝑖𝑈𝑈�𝐺𝐺)2

𝐾𝐾0
΄ (𝑘𝑘𝑘𝑘)

𝐾𝐾0(𝑘𝑘𝑘𝑘)𝜉𝜉0𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖+𝛼𝛼𝛼𝛼                     𝑟𝑟 ≥ 𝑎𝑎                         (45) 

 
where 𝐾𝐾(𝑘𝑘𝑘𝑘) is the modified Bessel function of the second kind and the normal stress in gas 
is obtained from 𝜋𝜋𝐺𝐺,𝑟𝑟𝑟𝑟 = 𝑝𝑝𝐺𝐺 . 

Substituting the values found for 𝜋𝜋𝑟𝑟𝑟𝑟 ,𝜋𝜋𝐺𝐺,𝑟𝑟𝑟𝑟 and 𝑝𝑝𝜎𝜎  into the boundary condition of Equation 
(21) leads to the following dispersion relation for an axisymmetric non-Newtonian 
viscoelastic liquid jet: 
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−
𝜌𝜌(𝛼𝛼 + 𝑖𝑖𝑖𝑖𝑈𝑈�)2(𝑙𝑙2 + 𝑘𝑘2)𝜂𝜂(𝛼𝛼)𝜉𝜉0

𝑘𝑘(𝑙𝑙2 − 𝑘𝑘2)
𝐼𝐼0(𝑘𝑘𝑘𝑘)
𝐼𝐼1(𝑘𝑘𝑘𝑘) +

𝜌𝜌𝐺𝐺𝜉𝜉0(𝛼𝛼 + 𝑖𝑖𝑖𝑖𝑈𝑈�𝐺𝐺)2

𝑘𝑘
𝐾𝐾0(𝑘𝑘𝑘𝑘)
𝐾𝐾0΄(𝑘𝑘𝑘𝑘)

+ 𝜎𝜎 �
1
𝑎𝑎2

− 𝑘𝑘2� 𝜉𝜉0 + 

2𝜂𝜂(𝜔𝜔) �
�𝑙𝑙2+𝑘𝑘2��𝐼𝐼0(𝑘𝑘𝑘𝑘)− 1

𝑘𝑘𝑘𝑘𝐼𝐼1(𝑘𝑘𝑘𝑘)�

𝐼𝐼1(𝑘𝑘𝑘𝑘)
−

2𝑘𝑘2𝑙𝑙�𝐼𝐼0(𝑙𝑙𝑙𝑙)− 1
𝑙𝑙𝑙𝑙𝐼𝐼1(𝑙𝑙𝑙𝑙)�

𝐼𝐼1(𝑙𝑙𝑙𝑙)
� 𝜂𝜂(𝜔𝜔)𝜉𝜉0

𝜌𝜌
= 0         (46) 

 
Equation (46) relates the complex frequency of a disturbance to its real wave number k. In 

order to solve the equation for 𝜔𝜔, keep in mind that the parameter 𝑙𝑙 is a function of 𝜔𝜔. 
It is convenient that the dispersion relation is expressed in non-dimensional form. After 

non-dimensionalizing and rearranging, we get the final dispersion equation as Equation (47). 
On solving for variable dimensionless wave number k, we get the real part of the solution as 
dimensionless growth rate ϖ for a set of values of other dimensionless parameters such as We, 
El, Z, 𝜌̅𝜌 and 𝜆𝜆̅. 

 

− �𝜔𝜔�+𝑖𝑖𝑘𝑘�√𝑊𝑊𝑊𝑊�𝐼𝐼0(𝑘𝑘� )
𝑘𝑘� 𝐼𝐼1(𝑘𝑘� )

�2𝑘𝑘
� 𝑧𝑧�𝑧𝑧+𝜆𝜆�𝜔𝜔�𝐸𝐸𝐸𝐸�

(𝑧𝑧+𝜔𝜔�𝐸𝐸𝐸𝐸)
+ �𝜔𝜔� + 𝑖𝑖𝑘𝑘�√𝑊𝑊𝑊𝑊�� − 𝜌𝜌�

𝑘𝑘�
�𝜔𝜔� + 𝑖𝑖𝑘𝑘�𝑈𝑈𝑟𝑟√𝑊𝑊𝑊𝑊�

2 𝐾𝐾1(𝑘𝑘� )

𝐾𝐾0(𝑘𝑘� )+1𝑘𝑘�𝐾𝐾1(𝑘𝑘� )
+

�1 − 𝑘𝑘�2� − 2𝑧𝑧2�𝑧𝑧+𝜆𝜆�𝜔𝜔�𝐸𝐸𝐸𝐸�
2

(𝑧𝑧+𝜔𝜔�𝐸𝐸𝐸𝐸)2

⎣
⎢
⎢
⎢
⎡�2𝑘𝑘�2 + �𝜔𝜔�+𝑖𝑖𝑘𝑘�√𝑊𝑊𝑊𝑊�(𝑧𝑧+𝜔𝜔�𝐸𝐸𝐸𝐸)

𝑧𝑧�𝑧𝑧+𝜆𝜆�𝜔𝜔�𝐸𝐸𝐸𝐸�
� �𝐼𝐼0(𝑘𝑘� )

𝐼𝐼1(𝑘𝑘� )
− 1

𝑘𝑘
� −

2𝑘𝑘2 �𝐼𝐼0(𝑙𝑙𝑙𝑙)
𝐼𝐼1(𝑙𝑙𝑙𝑙)

− 1

𝑘𝑘�2+
�𝜔𝜔�+𝑖𝑖𝑘𝑘�√𝑊𝑊𝑊𝑊�(𝑧𝑧+𝜔𝜔�𝐸𝐸𝐸𝐸)

𝑧𝑧�𝑧𝑧+𝜆𝜆�𝜔𝜔�𝐸𝐸𝐸𝐸�

�
⎦
⎥
⎥
⎥
⎤

= 0      (47) 

 

where 𝐾𝐾 = 𝑘𝑘𝑘𝑘 is the dimensionless wave number and 𝑊𝑊𝑊𝑊 = 𝜌𝜌𝑈𝑈2𝑎𝑎
𝛾𝛾

 is the liquid Weber 
number, which expresses the ratio of inertia forces to tension surface forces. The Ohnesorge 
number 𝑧𝑧 = 𝜂𝜂0

�(𝜌𝜌𝜌𝜌𝜌𝜌)
 denotes the ratio of viscous forces to surface tension forces. The 

elasticity number 𝐸𝐸𝐸𝐸 = 𝜆𝜆1𝜂𝜂0
(𝜌𝜌𝑎𝑎2)

 is used to describe the relationship between viscous and elastic 

effects in the liquid jet. In Equation (47), 𝜌̅𝜌 = 𝜌𝜌𝐺𝐺
𝜌𝜌

 is the ratio of gas-to-liquid density, 𝜆̅𝜆 = 𝜆𝜆2
𝜆𝜆1

 

is the ratio of deformation retardation time to stress relaxation time, 𝑈𝑈𝑟𝑟 = 𝑈𝑈𝐺𝐺
𝑈𝑈

 is the ratio of 
gas-to-liquid axial velocity, and 𝜔𝜔� = 𝜔𝜔

�
𝜎𝜎

𝜌𝜌𝑎𝑎3
 is the dimensionless growth rate. When 𝜆𝜆1 = 𝜆𝜆2 =

0, the jet of a viscoelastic fluid is transformed into that of Newtonian fluid. At this condition, 
𝜂𝜂0 = 𝜇𝜇, where 𝜇𝜇, is the dynamic viscosity of Newtonian fluid. The Newtonian fluid 
distribution equation is obtained by rewriting Eqution (47) with the mentioned assumptions:  

 

− �𝜔𝜔�+𝑖𝑖𝑘𝑘�√𝑊𝑊𝑊𝑊�𝐼𝐼0(𝑘𝑘� )
𝑘𝑘� 𝐼𝐼1(𝑘𝑘� )

�2𝑘𝑘�𝑧𝑧 + �𝜔𝜔� + 𝑖𝑖𝑘𝑘�√𝑊𝑊𝑊𝑊�� − 𝜌𝜌�
𝑘𝑘�
�𝜔𝜔� + 𝑖𝑖𝑘𝑘�𝑈𝑈𝑟𝑟√𝑊𝑊𝑊𝑊�

2 𝐾𝐾1(𝑘𝑘� )

𝐾𝐾0(𝑘𝑘� )+1𝑘𝑘�𝐾𝐾1(𝑘𝑘� )
+

�1 − 𝑘𝑘�2� − 2𝑧𝑧2 ��2𝑘𝑘�2 + �𝜔𝜔�+𝑖𝑖𝑘𝑘�√𝑊𝑊𝑊𝑊�
𝑧𝑧

� �𝐼𝐼0(𝑘𝑘� )
𝐼𝐼1(𝑘𝑘� )

− 1
𝑘𝑘
� − 2𝑘𝑘2 �𝐼𝐼0(𝑙𝑙𝑙𝑙)

𝐼𝐼1(𝑙𝑙𝑙𝑙)
− 1

𝑘𝑘�2+
�𝜔𝜔�+𝑖𝑖𝑘𝑘�√𝑊𝑊𝑊𝑊�

𝑧𝑧

�� = 0      (48) 

 
when the liquid viscosity vanishes, the jet of the Newtonian fluid is transformed into that 
of an inviscid fluid, and the dispersion Equation (48) reduces to the results for an inviscid 
fluid:   
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− �𝜔𝜔�+𝑖𝑖𝑘𝑘�√𝑊𝑊𝑊𝑊�𝐼𝐼0(𝑘𝑘� )
𝑘𝑘� 𝐼𝐼1(𝑘𝑘� )

�𝜔𝜔� + 𝑖𝑖𝑘𝑘�√𝑊𝑊𝑊𝑊� − 𝜌𝜌�
𝑘𝑘�
�𝜔𝜔� + 𝑖𝑖𝑘𝑘�𝑈𝑈𝑟𝑟√𝑊𝑊𝑊𝑊�

2 𝐾𝐾1(𝑘𝑘� )

𝐾𝐾0(𝑘𝑘� )+1𝑘𝑘�𝐾𝐾1(𝑘𝑘� )
+ �1 − 𝑘𝑘�2� = 0        (49) 

 
3. PRIMARY BREAKUP THEORY 
In order to prove the theory of this paper, non-dimensional breakup lengths were calculated 
to investigate the effects of each of the liquid properties on the breakup length. According to 
Brenn et al. [20], the non-dimensional breakup length 𝐿𝐿𝑏𝑏

2𝑎𝑎
 can be calculated using the 

dimensional maximum growth rates of the disturbances in the Equation (50).  
 

𝐿𝐿𝑏𝑏
2𝑎𝑎

= 𝑐𝑐1
𝑈𝑈

2𝑎𝑎𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
                                                   (50) 

 
In the above equation, U is the absolute velocity of the liquid, 𝐿𝐿𝑏𝑏 is the primary breakup 

length of the liquid jet, and 𝑐𝑐1 is an empirical coefficient. Brenn et al. (20) indicate that based 
on the fit of the experiment results, this coefficient is set to be 3.6. 

 
4. RESULT 
The dimensionless growth rates were obtained by solving the dispersion equation (Equation 
(47)) using Muller’s Secant method, which searches for a numerical solution to a given 
equation with initialized values for the independent variable. The positive real part of the 
complex number of wave frequency represents the degree of the jet instability.  
 
4.1. Comparison with other theories 
In order to validate the present model, the results were obtained for the cases considered by 
Brenn et al. [20] for non-Newtonian viscoelastic liquid jet instability in stagnant air. The 
dimensional growth rates were calculated as a function of dimensionless wave number for, 

 
𝑈𝑈𝑟𝑟 = 0 𝑚𝑚

𝑠𝑠
, 𝑎𝑎 =  0.921 𝑚𝑚𝑚𝑚,𝜌𝜌 = 1000 𝑘𝑘𝑘𝑘

𝑚𝑚3 ,𝜌𝜌𝐺𝐺 = 1.2 𝑘𝑘𝑘𝑘
𝑚𝑚3 ,𝜎𝜎 = 0.07 𝑁𝑁

𝑚𝑚
, 𝜂𝜂0 = 0.11 𝑃𝑃𝑃𝑃. 𝑠𝑠,

𝜆𝜆1 = 0.1 𝑚𝑚𝑚𝑚, 𝜆𝜆2 = 0.01 𝑚𝑚𝑚𝑚. 
 

From Figure 2, it can be seen that the results match well with the results from Brenn et al. 
(20).  

Figure 3 shows the comparison of dimensionless growth rate 𝜔𝜔 ��� as a function of the 
dimensionless wave number K for inviscid, non-Newtonian and Newtonian liquid jet in 
stagnant air under axisymmetric disturbances. The parameters are fixed at 𝜌̅𝜌 = 0.001, 𝑈𝑈� = 0, 
𝜆𝜆̅ = 0.1, 𝐸𝐸𝐸𝐸 = 1, 𝑧𝑧 = 0.5, 𝑊𝑊𝑊𝑊𝑙𝑙 = 100. It can be seen from Figure 3 that the growth rate of 
disturbances for non-Newtonian fluid is more significant than that of the Newtonian fluid and 
smaller than that of an inviscid fluid. The inviscid liquid jet is more unstable than the 
viscoelastic liquid, which again has a higher growth rate or instability compared to the viscous 
Newtonian liquid. This can be explained by the elastic nature of these two types of viscous 
liquids. In a viscoelastic jet, the elastic freedom is higher; consequently, the Newtonian jet 
appears more stable or rigid, and the viscoelastic jet is more prone to deformation. Similar 
results were reported by Liu et al. (21) in their studies of the axisymmetric instability of non-
Newtonian jets. Because of additional elastic freedom for deformation, a non-Newtonian 
liquid jet is more unstable than a Newtonian liquid jet.  
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Figure 2: Variation of Dimensional Growth Rate with Dimensionless Wave Number 
in stagnant gas surrounding using data of Brenn et al. [20]. 
 

 
Figure 3: Dimensionless Wave Number versus Dimensionless Growth Rate for 
different liquid jets 
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In Figure 4, the non-dimensional breakup length 𝐿𝐿𝑏𝑏

2𝑎𝑎
 is shown as a function of the Weber 

number for non-Newtonian, Newtonian and inviscid liquid jets. The inspection of this figure 
shows that the non-dimensional breakup length for Newtonian fluid was more significant than 
that for non-Newtonian and inviscid fluids with the same Weber number; therefore, it can be 
concluded that elasticity exhibits a destabilization effect in the breakup process of non-
Newtonian jets. While Newtonian jets appear rigid, non-Newtonian jets have the additional 
freedom for elastic deformation. Other authors have also reported similar results [20-22]. 

 

 
Figure 4: Effects of Weber number on non-dimensional breakup length for 
different liquid jets 

 
4.2. Effects of fluid properties 
The breakup mechanism from a jet into drops, the breakup length, and the resultant drop 
diameter are influenced by the fluid properties, primarily by the viscoelastic nature of the 
liquid. The effects of various fluid properties in non-dimensional forms such as the Weber 
number, ratio of liquid to gas densities, and time constant ratio on the growth rate and breakup 
of non-Newtonian liquid jets are studied. 
 
4.2.1. Effects of elasticity and time constant ratio 
The elasticity number (El) is directly proportional to the elastic force and inversely 
proportional to the inertial force. Figure 5 show the results for We= 30, Z= 0.5, 𝜆𝜆̅= 0.1 and the 
elasticity number is varied from 0.5 to 5. It is observed that increasing the elasticity number 
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raises the disturbance growth rate. The liquid elasticity characteristic always tends to 
increase the wave growth rate in non-Newtonian viscoelastic liquid jets for axisymmetric 
disturbances. Thus, it could be said that non-Newtonian fluids are more unstable than their 
Newtonian counterparts because of El=0 for Newtonian fluids. 
 

 
Figure 5: Effects of Elasticity number on the dimensionless growth rate 𝜔𝜔� of 
disturbance on different non-Newtonian viscoelastic liquid jets vs. the 
dimensionless wave number K 

 
The time constant ratio (𝜆𝜆̅) is the ratio of deformation retardation time to the stress 

relaxation time. The time constant ratio can be changed by either changing the deformation 
retardation time (𝜆𝜆2) or the stress relaxation time (𝜆𝜆1) or both. Changing the retardation time 
(𝜆𝜆2) changes the time constant ratio alone and keeps the elasticity number constant, while any 
change in the relaxation time (𝜆𝜆1) changes both the time constant ratio and elasticity number. 
Therefore, the relaxation time is held constant, while the retardation time increases. To see 
the effects of time constant ratio on the growth rate of non-Newtonian viscoelastic liquid jets 
instabilities, the time constant ratio is varied from 0.1 to 0.7 while other parameters were kept 
at We= 30, Z= 0.5, and 𝐸𝐸𝐸𝐸= 4. The results are shown in Figure 7. It is evident that as the time 
constant ratio is reduced, the growth rates of disturbances increase correspondingly. Because 
of the increasing stress tensor of the viscoelastic liquid jet due to increasing the deformation 
retardation time, the liquid jet dissipates more energy and will become more stable. Also, with 
the varying time constant ratio, the instability range remains the same. 

An increase in the time constant ratio results in increasing the breakup length of the liquid 
jet, irrespective of a change in the elasticity number. The effects of the time constant ratio on 
the non-dimensional breakup length of the viscoelastic liquid jet with the same parameters as 
mentioned above are shown in Figure 8. 
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Figure 6: Effects of Elasticity number on the dimensionless breakup length  

 
To see the effects of the time constant ratio on the breakup of the liquid jet, two different 

cases are assumed as tabulated in Table 1. In the first case, the relaxation time is held constant, 
while the retardation time is increased. It can be seen from Table 1 that by increasing the 
retardation time (𝜆𝜆2), the elasticity number remains constant. However, there is an apparent 
increase in the breakup length of the liquid jet. Also, it can be inferred that there is a decrease 
in almost all of the wave numbers as the time constant ratio increases. In the second case, 
retardation time is held constant, while the relaxation time is increased. It can be seen from 
Table 1 that by increasing the relaxation time (𝜆𝜆1) the elasticity number decreases. However, 
there is a clear increase in the breakup length of the liquid jet; there is no change in the most 
dominant wave number as the time constant ratio increases. It can be inferred that the time 
constant ratio has a significant effect on determining the breakup length of the jet. With an 
increase in the time constant rate, the breakup length of the liquid jet is stretched out. This has 
also been reported by many researchers [15, 19]. 
 

Table 1: Effect of deformation retardation time and stress relaxation 
time on breakup length 
 Case 1 Case 2 

𝝀𝝀�  0.1 0.3 0.5 0.7 0.083 0.0625 0.05 0.033 
𝝀𝝀𝟏𝟏(ms) 10 10 10 10 12 16 20 30 
𝝀𝝀𝟐𝟐(ms) 1 3 5 7 1 1 1 1 

El 4 4 4 4 0.77 1.3 1.52 2.75 
𝑳𝑳𝒃𝒃
𝟐𝟐𝒂𝒂

 31.2 38.7 42.3 49.1 41.6 39.8 37.2 35.4 
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Figure 7: Effects of time constant ratio on the dimensionless growth rate 𝜔𝜔� of 
disturbance on different non-Newtonian viscoelastic liquid jet vs. the 
dimensionless wave number K 

 

 
Figure 8: Effects of time constant ratio on the dimensionless breakup length 
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4.2.2. Effects of Weber number 
The Weber number defines the relation between the inertial force and the surface tension force 
of the fluids. An increase of the Weber number may be caused either by a rise in the jet 
velocity, radius or density or by decreasing surface tension. In fluid dynamics for this case, if 
the surface tension, jet radius, and density are constant, then this number signifies the effects 
of jet velocity on the fluid. The aerodynamic interaction between the liquid and gas medium 
that cause the instability of liquid jet can be increased by increasing the jet velocity. On the 
other hand, the surface tension resists the onset and development of short-wave instability on 
non-Newtonian viscoelastic liquid jets. It smoothens the disturbances on the interface between 
the liquid and the gas. 

It can be shown that a jet with a higher Weber number is more unstable than the same jet 
at a lower Weber number. The Weber number affects the growth rate of unstable waves 
directly so that the most unstable wave number and the instability range become widespread. 
The reason for this behavior is attributed to the velocity and the surface tension of the liquid 
jet. The surface tension stabilizes the liquid jet; it inhibits the onset and growth of the 
disturbance. At a lower Weber number, i.e., when the velocity of the jet is low, the surface 
tension tends to play the more significant role. On the other hand, at a higher Weber number, 
the disturbances freely overcome the surface tension and makes the jet unstable. This result 
indicates that by increasing the jet velocity, the stability of the non-Newtonian viscoelastic 
liquid jet is reduced as shown in Figure 9. As the disturbance grows, the unstable wave 
amplitude becomes higher and thus leads to the breakup of the liquid jet. 

 

 

Figure 9: Effects of Weber number on the dimensionless growth rate 𝜔𝜔� of 
disturbance on different non-Newtonian viscoelastic liquid jets vs. the 
dimensionless wave number K 
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Figure 10 shows the effect of the Weber number on the resultant breakup length for all 

parameters that were fixed the same as mentioned earlier. It is seen that as the Weber number 
increased, the breakup length of the viscoelastic jet increased which has been reported by other 
authors. Increasing the velocity of the liquid jet resulted in reducing the amplitude of unstable 
waves at the near-nozzle region. The breakup length growth showed that the aerodynamic 
interaction with the liquid jet column was dominant at the far from the near-nozzle area. 

 

 
Figure 10: Effects of Weber number on the dimensionless breakup length 
 
4.2.3. Effects of Ohnesorge number 
The Ohnesorge number (Z) is a dimensionless number that relates the viscous force to the 
inertial and surface tension forces. It can be expressed as the ratio of the square root of the 
Weber number over the Reynolds number. If the velocity and surface tension of the jet is 
held constant for any given liquid jet, then any change in this number is attributed to the 
effects of viscosity alone. Thus, changing the Ohnesorge number reflects a change in the 
inherent fluid viscosity. Hence, the higher Ohnesorge number corresponds to higher 
viscosity. In the physical sense, if the viscosity of the liquid undergoing atomization 
increases, then one would expect a higher breakup length compared to a liquid of lesser 
viscosity because the time taken for the disturbance to propagate is higher for the same 
Weber number. 

Figure 11 is obtained for 𝑊𝑊𝑊𝑊 = 30,𝐸𝐸𝐸𝐸 = 4.4, 𝜆𝜆̅ = 0.1 and the Ohnesorge number varies 
from 0.5 to 2. From Figure 11 we can deduce that as the Ohnesorge number increases from 
0.5 to 2, the jet becomes more and more stable. Furthermore, a rise in the Ohnesorge number 
could decrease the growth rate as well as the most dominant wave number. While velocity 
acts as an aiding force by increasing the disturbance growth rate, the liquid viscosity acts as a 
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restraining force by increasing the stability of the liquid jet. The viscosity dampens the growth 
of the surface disturbances thus preventing it from breaking up. Also, it can be concluded from 
Figure 11 that even though there is a change in the most dominant wave number, the instability 
range does not change with the Ohnesorge number. 

 

 
Figure 11: Effects of Ohnesorge number on the dimensionless growth rate 𝜔𝜔� of 
disturbance on different non-Newtonian viscoelastic liquid jets vs. the 
dimensionless wave number K 

 
Figure 12 shows the effect of the Ohnesorge number, which is primarily due to liquid 

viscosity, on the resultant non-dimensional breakup length. The breakup length for 
viscoelastic liquid jet increases as the Ohnesorge number increases, which is a clear indication 
that the viscosity dampens the growth of the disturbance. From Figure 12, we can also 
conclude that as the viscosity increases, the length of the breakup increases. Thus, the viscosity 
of the liquid plays a vital role in the dynamics of the liquid jet breakup. 
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Figure 12: Effects of Ohnesorge number on the dimensionless breakup length 

 
4.2.4. Effects of the gas-to-liquid density ratio 
The effects of the gas-to-liquid density ratio on the disturbance growth rates are shown in 
Figure 13 at 𝑊𝑊𝑊𝑊 = 500,𝐸𝐸𝐸𝐸 = 4, 𝑧𝑧 = 0.5 and 𝜆𝜆̅ = 0.1. Figure 13 indicates the effect of 
ambient gas to liquid density ratio on disturbance growth rates. Increasing the gas-to-liquid 
density ratio leads to increased growth rates, which means the gas to liquid density ratio can 
accelerate the disturbance. The aerodynamic force of the surrounding gas is related to gas 
density. By increasing the gas density, the aerodynamic interaction that exist at the interface 
of the liquid jet will become stronger and lead to more instability of the viscoelastic liquid 
jet. Therefore, the ambient gas with higher density could result in the enhancement of the 
non-Newtonian viscoelastic liquid jet instability. It should be noted that gas density can be 
improved by increasing the gas pressure. Thus, a high gas pressure may be beneficial for 
jet instability. 

Figure 14 shows the effect of the gas-to-liquid density ratio on the non-dimensional 
breakup length by varying the gas density from 1 kg/m3 to 5 kg/m3 and keeping the other 
parameters constant. It can be seen from Figure 14 that by increasing the gas-to-liquid density 
ratio, the non-dimensional breakup length of the viscoelastic liquid jet decreases. It is found 
that increasing gas density can accelerate the breakup of a viscoelastic liquid jet to an equal 
degree in all the reachable ranges. 
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Figure 13: Effects of the gas-to-liquid density ratio on the dimensionless growth 
rate 𝜔𝜔� of disturbance on different non-Newtonian viscoelastic liquid jets vs. the 
dimensionless wave number K 

 

 
Figure 14: Effects of the gas-to-liquid density ratio on the dimensionless breakup 
length  
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5. CONCLUSION 
The instability and breakup of non-Newtonian viscoelastic liquid jets with axisymmetric 
disturbances moving in an inviscid gaseous environment was investigated in this article. A 
dispersion relation for axisymmetric disturbances on a non-Newtonian viscoelastic liquid 
jet was derived from linearized governing equations and the constitutive equation of the 
non-Newtonian fluid. Moreover, the dispersion relation of Newtonian and inviscid liquid 
jet was obtained. The model developed was validated by comparing the results with other 
theoretical models available in the literature. The results showed that inviscid liquid jet was 
more unstable than the viscoelastic liquid which again had a higher growth rate or instability 
compared to the viscous Newtonian liquid jets. This phenomenon can be explained by the 
elastic behaviors of the two types of viscous liquids. The elastic freedom in a viscoelastic 
jet was more than the others. Hence, the Newtonian jet appeared more stable or rigid, and 
the viscoelastic jet was more prone to deformation. This result has been obtained by other 
authors. To prove the theory of this paper, the non-dimensional breakup lengths of the 
viscoelastic liquid jet were calculated, and the effects of fluid properties on the breakup of 
the liquid jet were investigated. 

The results showed that increasing the elasticity number and decreasing the time constant 
ratio 𝜆𝜆̅ led to increased maximum growth rates of axisymmetrical disturbances on the jets and 
therefore, decreased the non-dimensional breakup length. Increasing the relative velocity 
between the jet and the ambient gas was the source of increased growth rates of instabilities. 
Increasing the Weber number of the liquid jet resulted in the enhancement of the 
disturbances growth rate. Similar results were previously obtained for inviscid and 
Newtonian liquid jets by many other authors. An increase of the ratio of gas-to-liquid 
density or the Weber number enhanced both the growth rate and the instability range of the 
non-Newtonian viscoelastic liquid jets for the conditions investigated here. The results 
indicated that a high-density environment led to an enhancement of the instability and lower 
breakup length of the jet. The effects of viscosity on the instability of viscoelastic liquid jet 
were shown in terms of the Ohnesorge number, and the results indicated that viscosity 
dampens the growth rates of instability and led to a longer breakup length. 
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