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ABSTRACT 
In the present work, an improved double-distribution-function thermal lattice 

Boltzmann method (LBM) is developed for analyzing the effect of viscous 

heat dissipation and compression work on microscale Rayleigh–Bénard 

convection. In the proposed method a temperature change is introduced 

into the LB momentum equation in the form of a momentum source to 

realize the coupling between the momentum and the energy fields; two sets 

of evolution equations are established, one for the mass and momentum 

conservation and the other for the total energy that incorporates viscous 

heat dissipation and compression work. Numerical results show that the 

effect of viscous heat dissipation and compression work on the temperature 

distribution, flow distribution, and average Nusselt number at some Rayleigh 

numbers and aspect ratios is significant. 

 

 
1. INTRODUCTION 
Rayleigh–Bénard convection [1] is a thermally induced flow between two horizontal plates 
that are heated from below. As one of benchmark problems of hydrodynamic instability, 
Rayleigh–Bénard convection is of considerable scientific and engineering importance. 
Moreover, Rayleigh–Bénard convection involves in various technological applications such 
as nuclear reactor insulation, solar collectors, crystal growth in liquids, heat exchangers, and 
cooling of electronic equipment, and particularly the cooling of electronic circuits in 
microelectromechanical systems [2]. Therefore, much effort has been spent on investigating 
Rayleigh–Bénard convection. Zhou et al. studied the geometric and physical properties of 
thermal plumes in turbulent Rayleigh–Bénard convection [3]. A high-resolution measurement 
of the velocity and temperature boundary layers in Rayleigh–Bénard convection was 
conducted by Sun et al. with applying the particle image velocimetry technique [4]. Sharif and 
Mohammad investigated the natural convection within cavities with different inclination 
angles and cavity aspect ratios [5]. Valencia et al. measured the velocity field and time-
averaged flow structures in a cubical cavity that was heated from below and cooled from above 
[6]. Kao et al. investigated the nonlinear phenomena of two-dimensional (2D) natural 
convection in enclosed rectangular cavities and systematically examined the relationship  
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between the Nusselt number (Nu) and the reference Rayleigh number (Ra) [7]. Chakraborty 
and Chatterjee studied the Rayleigh–Bénard convection occurring in directional 
solidification by using a novel hybrid lattice Boltzmann method (LBM) [8]. 

The aforementioned investigations showed that the formation of flow structures due to 
Rayleigh–Bénard convection are affected by the boundary conditions, aspect ratio of the 
cavity, and direction of the gravitational effect. However, few of the studies, except that 
presented in [9], have considered the effect of viscous heat dissipation and compression work 
on microscale Rayleigh–Bénard convection. In the model developed in Ref. 9 the temperature 
equilibrium distribution function always takes negative values, and this model is more 
complicated than other double-distribution-function (DDF) models, even when the viscous 
heat dissipation and compression work are negligible. 

With a decrease of the system size, the effect of viscous dissipation [10] and compression 
work [11,12] on the thermal and hydrodynamic behavior is more significant and should not 
be neglected [13]. 

The kinetic-based LBM [14], due to its advantages, such as high computational efficiency, 
easy implementation, and use of parallel algorithms, has become a powerful numerical 
technique for simulating fluid flows and modeling the physics of fluids [15,16,17]. Various 
thermal LB models or Boltzmann-based schemes have been employed to investigate natural 
convection problems [18,19,20]. The multispeed LBM is a straightforward extension of the 
isothermal LBM; however, it usually suffers from severe numerical instability, and the 
simulation of the temperature variation is limited to a narrow range [21]. In the hybrid LBM, 
the flow simulation is performed by using the LBM; however, the energy equation is solved 
through conventional numerical methods. Therefore, this method has not demonstrated the 
advantages of the standard LBM [19]. The DDF-LBM uses two distribution functions, one for 
the velocity field and the other for the temperature or internal energy field. And it takes into 
account the viscous heat dissipation and compression work [22,23]. However, most of the 
DDF-LBM models are decoupling models in the sense that the change of temperature cannot 
influence the velocity field [14]. Hence, the decoupling models are only applicable to 
Boussinesq flows in which the temperature variation is minor. When these models are applied 
to the thermal problems in which the temperature field has significant effects on the flow field, 
the decoupling between the momentum and the energy transports causes considerable errors. 
To overcome this problem, on the basis of the total energy DDF-LBM [24], we attempt to 
propose a coupled DDF thermal LBM (coupled DDF-TLBM) [25] that incorporates viscous 
heat dissipation and compression work. In order to realize the coupling between the 
momentum and the energy fields, this method introduces the temperature change into the LB 
momentum equation in the form of a momentum source, which affects the distribution of flow 
velocity and density. Although numerous studies have demonstrated the capabilities of LB 
models in simulating natural convection, an appropriate model for reflecting the effect of 
viscous heat dissipation and compression work is still desirable for microscale Rayleigh–
Bénard convection without the Boussinesq approximation. 

 
2. METHODS 
2.1 The Microscale Rayleigh–Bénard Convection 
As shown in figure 1, the microscale Rayleigh–Bénard convection occurs in a 2D 
rectangular cavity with thermally insulated sidewalls filled with a viscous incompressible 
static fluid with an initial temperature T0. The temperatures of the top and bottom plates 
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are constant but different. Specifically the top plate is cold with a temperature Tc, and the 
bottom plate is hot with a temperature Th. The height, width and aspect ratio of the rectangular 
cavity are denoted as H, L and A with A=H / L. 

The Ra [26] and Prandlt number (Pr) [27] are dimensionless parameters that are associated 
with Rayleigh–Bénard convection flow. Ra is the ratio of buoyancy to viscosity forces 
multiplied by the ratio of momentum to thermal diffusivities. It characterizes the transition 
between the conduction- and convection-dominated flows. Pr is the ratio of viscous diffusion 
to thermal diffusion. 

 

pPr cµ κ=                                                             (1) 
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where cp is the specific heat coefficient at constant pressure, cp=(D+2)R/2 with D being the 
spatial dimension and R the gas constant, g is the acceleration of gravity, β is the isobaric 
coefficient of thermal expansion, µ is the dynamic viscosity, κ is the thermal conductivity, and 
ρ is the fluid density. 

 

 
Figure 1: Diagram of microscale Rayleigh–Bénard convection 

 
2.2 The Coupled DDF-TLBM 
In 2007, Guo et al. [24] proposed the decoupling DDF-TLBM to solve low Mach number 
thermal flow with viscous dissipation and compression. The decoupling DDF-TLBM consists  
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of two sets of evolution equations: one for the mass and momentum conservation, and the 
other for the total energy that incorporates viscous heat dissipation and compression work. 
The evolution equations can be written as follows: 
 

1
( , ) ( , ) [ ( , ) ( , )] (1 )

2
feq

i i i i i t i
f

w
f t t t f t f t f t Fδ

τ
+ ∆ + ∆ = − − + − ⋅x e x x x              (3) 

 

2

( , ) ( , ) [ ( , ) ( , )]

( )[ ( , ) ( , ) ]( ) (1 )
2 2 2

eq
i i i h i i

eq t h
h f i i i i t i

h t t t h t w h t h t

w
w w f t f t F q

δ
δ

+ ∆ + ∆ = − −

+ − − + ⋅ − + −

x e x x x

u
x x e u

   (4) 

 
where x is the position of the lattice node; δt is the time step; 2 (2 )f t f tw δ τ δ= + , 

2 (2 )h t h tw δ τ δ= + , where fτ  and hτ are the dimensionless relaxation times for momentum 

and total energy, respectively; if  and ih  are respectively the density distribution function 

and total energy distribution function; eq
if and eq

ih are the equilibrium distribution 
functions; ie  and u are the discrete velocities of the fluid particles and macroscopic 
velocity, respectively; and iF and iq   are two terms related to the external force: 
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where a is the external force acceleration, 0,x ya a gρ= = −  for the microscale Rayleigh–

Bénard convection model, T0 is the reference temperature ( 0 = ( ) 2h cT T T+  for the 
Rayleigh-Bénard convection model). In the following we use the D2Q9 lattice model. Thus 
the local fluid density and energy equilibrium distribution functions and the discrete 
velocities of the fluid particles ie  are given by 
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where 03c RT=  is the particle streaming speed, 0 0p RTρ=  , iω  is the weighting factor 

for the various lattice links, and 0 4 9ω = / , 1 2 3 4 1 9ω = ω = ω = ω = / ,

5 6 7 8 1 36ω = ω = ω = ω = / . 
According to the conservation of the collision operator, the macroscopic variable velocity 

and total energy are directly calculated by using the distribution functions: 
 

,
2 2

i i i
i t i t

i i
i i

f h
E

f f
δ δ

= + = + ⋅
∑ ∑
∑ ∑

e
u a u a                                (10) 

 
Through a Chapman-Enskog analysis, it is found that the pressure p0 is the dynamic 

pressure rather than the thermodynamic pressure, and the change of the temperature field 
cannot influence the velocity field [24]. 

In order to realize the coupling between the momentum field and energy field, the coupled 
DDF-TLBM presented in this paper introduces the temperature change into the LB momentum 
equation in the form of the momentum source Ki, which affects the distribution of flow 
velocity and density. It is form of 
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In accordance with the definition of the total energy 2 2vE c T= + u  , where / 2vc DR=  

is the specific heat at constant volume, the temperature T at the lattice x and moment t is given 
by 
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The temperature difference ( , )iT tx  between the lattice x and the surrounding lattice point 

in the direction ie  is given by 
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The momentum source Ki produced by the temperature change is written as follows: 
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The temperature change in Ki includes two parts: one for the same lattice at different times 

that affects the thermal diffusion coefficient and viscosity coefficient of the fluid; and the 
other for different lattices at same time that affects the velocity distribution of the flow field. 
The temperature change is introduced into the LB equation in the form of the momentum 
source and influences the flow field through collision and migration. This coupled DDF-
TLBM can realize the coupling between the momentum field and energy field, and overcome 
the limitation of the Boussinesq approximation. Hence it extends the application range of the 
thermal LBM. fτ  and hτ  are expressed by the dimensionless characteristic parameters Pr, 

Ra, and Mach number (Ma) ( c sMa u c=  with cu g THβ= ∆ , 0sc RT= ), that is 
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In practical applications, the flow boundary conditions are usually specified in terms of the 

fluid variables. The nonequilibrium-extrapolation approach [24] is employed to transform 
thermos-hydrodynamic boundary conditions to the boundary conditions of the distribution 
functions due to its simplicity, second-order accuracy, and good robustness. In this method, 
the distribution function at a boundary node is separated into the equilibrium and 
nonequilibrium components. The equilibrium component is determined by using the 
macroscopic variables of the boundary, and the nonequilibrium component is identified by 
using the distribution function at the nearest node in the fluid region [14]. According to this 
approach, the density and energy distribution function at a boundary node bx  can be expressed 
as 
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The aforementioned equations constitute the coupled DDF-TLBM that incorporates 
viscous heat dissipation and compression work. For the flow model without the viscous heat 
dissipation and compression work, an internal energy distribution function ig  is used in the 
temperature field, and the evolution equation is expressed as follows: 
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3. RESULTS AND DISCUSSION 
By using the method discussed above, two models will be employed to describe the Rayleigh–
Bénard convection. One considers the viscous heat dissipation and compression work (model 
I) and the other does not take into account the viscous heat dissipation and compression work 
(model II). The numerical-simulation experiments are conducted to investigate the effect of 
the viscous heat dissipation and compression work on the temperature distribution, flow 
distribution, and average Nu [28] for various values of the parameters, such as Ra and the 
aspect ratio A. In the computations 128×64 lattices is employed to divide the flow domain 
(128µm×64µm). Table 1 lists the default values of the parameters used in the simulations.   

 
Table 1. Default Values of the Basic Parameter Variables Used in the Simulations 

Parameters Value 
H 64 (µm) 
L 128 (µm) 
A 1/2 
Tc 305(K) 
Th 315(K) 
Pr 0.7 
Ra 105 
Ma 0.1 

 
3.1 Impact of Ra on the Flow Field and Temperature Distribution  
Figure 2 shows the velocity profiles of the flow field at a steady state for Ra = 103, 104, 105, 
and 106 where figure 2 (a1)–(a4) is for the mode Ι and figure 2 (b1)–(b4) for the model Π. 
Figure 3 displays the isotherms corresponding to the velocity profiles. 

As shown in figures 2 and 3, when Ra = 103, the heat conduction plays a crucial role in 
the two models, and the convection effect is weak. The effect of the viscous heat dissipation 
and compression work is minor. Consequently, the velocity profiles and isotherms of the two 
models are similar. When Ra = 104, the convection effect is enhanced, and the effect of the 
viscous heat dissipation and compression work becomes apparent. Therefore, the differences 
between the two models are evident. The velocity profile in figure 2 (a2) has larger vortexes 
and a clearer boundary than that in figure 2 (b2). Figure 3 (a2) and (b2) illustrates the 
differences in temperature distribution. When Ra = 105, the differences between the two 
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models are significant. In figure 2 (a3), the shape of the vortex is upside down. The 
convective heat transfer plays a crucial role in the model Ι. For the model Π, the role of heat 
conduction is the same as that of thermal convection. When Ra = 106, the convection heat 
transfer plays a dominant role in both models; however, the model Ι has clearer velocity and 
temperature boundary layers. 

This result shows that the effect of the viscous heat dissipation and compression work can 
promote convection heat transfer, which considerably affects the velocity and thermal 
distribution of microscale Rayleigh–Bénard convection. 

 

 
Figure 2: Velocity profiles: ((a1)–(a4)) for the model Ι; ((b1)–(b4)) for the model Π 
with Ra = 103, 104, 105, and 106, respectively 
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Figure 3: Isothermal diagrams: ((a1)–(a4)) for the model Ι; ((b1)–(b4)) for the model 
Π for Ra = 103, 104, 105, and 106, respectively 

 
In heat transfer at a boundary (surface) within a fluid, Nu is the ratio of convective to 

conductive heat transfer across (normal to) the boundary. When the Nu is higher, the effect of 
the convective heat is more evident. To further explore the effect of viscous heat dissipation 
and compression work, Table 2 lists the average values of Nu ( Nu ) of the two models for 
various values of Ra, which are calculated as follows: 
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As shown in Table 2, Nu  increases with the increase of Ra. The total amount of heat 
transferring to the cold wall from the hot wall is increased; in other words, the convection 
resistance decreases, and the thermal conductivity resistance increases. For the same Ra 
number, Nu  of the model Ι is higher than that of the model Π. This suggests that the viscous 
heat dissipation and compression work enhances the convective heat transfer. Therefore, the 
effect of viscous heat dissipation and compression work is crucial to Rayleigh–Bénard 
convection and should not be ignored. 

 
Table 2: Nu  of the Two Numerical Models for Various Values of Ra 

Ra Nu  
model Ι model Π 

103 1.7121 1.2562 
104 4.6522 2.4536 
105 8.5368 5.1989 
106 14.374 9.465 

 
3.2 Impact of Aspect Ratios (A) on the Flow Field and Temperature 
Distribution Temperature Distribution 
Next consider the effect of viscous heat dissipation and compression work on the flow field 
and temperature distribution of the microscale Rayleigh–Bénard convection with different 
geometries. With the length fixed, the height of the flow domain is adjusted to obtain 
different aspect ratios (A). Figure 4 shows the velocity distribution profiles of the flow field 
at a steady state for A = 1, 1/2, 1/3, 1/4, 1/5, and 1/6. Figure 4 (a1)–(a6) is for the velocity 
distribution profiles of the mode Ι, and figure 4 (b1)–(b6) for the velocity distribution 
profiles of the model Π. Figure 5 displays the corresponding isotherm diagrams. 

From figure 4 one can see that when A = 1, the velocity distributions and isotherms of the 
two models are similar. For the velocity field, a large eddy is formed in the square cavity. 
Note that the eddy of the model Ι is more intense than that of the model Π. The case for A = 
1/2 has been discussed in Sect. 3.1. The decrease in the system size enhances the effect of 
viscous heat dissipation and compression work. When A = 1/3, 1/4, 1/5, and 1/6, the 
differences between the two models are clearer. For the model Π, when A = 1/3, 1/4, 1/5, and 
1/6 there are 3, 4, 5, and 6 eddies, respectively; in other words, the number of vortexes is 
inversely proportional to the aspect ratio A. By contrast, for the model Ι, when A = 1/3, 1/4, 
1/5, and 1/6 there are 4, 6, 8, and 10 eddies, respectively. From figure 5, the similar phenomena 
are observed in the isothermal diagrams. As the aspect ratio decreases, the size of the flow 
domain decreases, and the effect of the viscous heat dissipation and compression work 
increases; the number of eddies increases linearly, and their shape is also changed. For the 
model Π, the eddies are elliptical, and the long axis of the eddies is tilted. For the model Ι, the 
long axis of the elliptical spiral is vertical. Therefore, the effect of viscous heat dissipation and 
compression work should be considered for the microscale flow.  

The temperature profiles along the height of cavity for Ra=104 and A=1 are shown in figure 
6. The blue lines are for the result obtained based on the model Ι and the red lines for the 
model Π. Figure 6 shows that the temperature gradient near the wall is large and the 
 

 
  



111 Int. Jnl. of Multiphysics Volume 12 · Number 2 · 2018 

 

 
 
temperature change becomes smooth in the middle region, and the smooth region of model Ι 
is larger than that of model Π. Therefore, the convection effect is significant in the model Π 
due to the viscous heat dissipation and compression work. 

 

 
Figure 4: Velocity distribution Profiles ((a1)–(a6)) of the model Ι and those ((b1)–(b6)) 
of the model Π for A = 1, 1/2, 1/3, 1/4, 1/5, and 1/6, respectively 
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Figure 5: Isothermal diagrams ((a1)–(a6)) of the model Ι and those ((b1)–(b6)) of the 
model Π for A = 1, 1/2, 1/3, 1/4, 1/5, 1/6, respectively 
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Figure 6: The normalized temperature profiles along the height of the cavity at 
Ra=104 and A=1, the blue line denotes the model Ι and the red line denotes the 
model Π 

 
Figure 7 illustrates the relationship between the Nu  and the aspect ratio (A); the blue □ 

line denotes the model Ι, and the green ○ line denotes the model Π. As the aspect ratio (A) 
decreases, the average number increases. However, the growth trends of the two models are 
different. For the model Π, the Nu  increases more slowly than that of the model Ι. 

 

Figure 7: Relationship between the average Nu ( Nu ) and the aspect Ratio (A); the 
blue □ line denotes the model Ι, and the green ○ line denotes the model Π 

 
 

  



114 

 
Numerical Study of the Effect of Viscous Heat Dissipation and Compression Work on Microscale 

Rayleigh–Bénard Convection Based on a Coupled Thermal Lattice Boltzmann Method  

 

 
 

4. CONCLUSIONS 
In order to investigate the effect of viscous heat dissipation and compression work, the 
coupled DDF-TLBM is applied to two microscale Rayleigh–Bénard convection numerical 
models, one considering the viscous heat dissipation and compression work and the other 
not considering the viscous heat dissipation and compression work. The numerical-
simulation experiments were conducted to study the effect of the viscous heat dissipation 
and compression work on the temperature distribution, flow distribution, and average Nu at 
different values of Ra and aspect ratios (A). It is found that when Ra > 104, the effect of 
viscous heat dissipation and compression work promote the convection heat transfer and 
have a profound effect on the Rayleigh–Bénard convection model; as the size of the flow 
domain decreases, the number of eddies increases linearly and their shape is also changed 
in the model that takes into account the viscous heat dissipation and compression work. 

This study demonstrated that the coupled DDF-TLBM can provide a new sight for the 
microscale flow that incorporates viscous heat dissipation and compression work. Moreover, 
we demonstrated that viscous heat dissipation and compression work can promote the 
convection heat transfer and increase the number of vortexes, which is crucial for the 
microscale flow and therefore should be considered. These findings are crucial, and the model 
constructed in this study will be useful in promoting the development of microfluidic systems 
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