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ABSTRACT 
The paper presents a study of the deposition of submicron charged 

spherical particles caused by convection, Brownian and turbulent diffusion 

in a pipe with a smooth wall and with a cartilaginous ring wall structure. The 

model is supposed to describe deposition of charged particles in generation 

0 (trachea) of the human respiratory airways. The flow is modeled with a 

SST-turbulence model combined with a convective-diffusion equation 

including electric field migration for the particles, and Poisson’s equation for 

the determination of the electrostatic potential in terms of the space-charge 

density of the particles. An approximate analytical solution is derived for the 

case of a smooth pipe which is used to verify the numerical solutions 

obtained from using the commercial software Comsol Multiphysics. 

Numerical results of deposition rates are also provided for the case of a pipe 

with a cartilaginous ring wall structure.  

 

 
1. INTRODUCTION  
Studies on particle transport of submicron particles are of high importance in the analysis 
of particle deposition in the respiratory airways, both for assessing health effects of inhaled 
toxic matter and for evaluating the efficacy of drug delivery with pharmaceutical aerosols. 
Transport and deposition in the human lungs can be described in terms of gravitational 
settling, diffusion, interception, inertial effects and electrostatic effects. Here our focus is 
on the least studied among these effects the effect of electrostatically charged particles. Both 
theoretical and experimental studies have demonstrated that electrostatic charge enhances 
deposition in the lungs, throat, and nasal passages for particles with diameters in the range 
0.005–30 µm (Melandri et al.[1,2]). Computational models of the deposition of charged 
particles in the lung have been developed by Bailey et al.[3,4] and Balachandran et al.[5]. 
The electrostatic effect on particle deposition was explained either due to space charge 
effects or image charge forces. The space charge effect is predominant in the upper airways 
while the image charge effect dominates in the smaller airways.   

A more recent theoretical study by Xi et al.[6] consider electrostatic charge effects on 
pharmaceutical aerosol deposition in the human Nasal-Laryngeal airways. The flow is 
turbulent and a k-ε turbulence model is applied. The electrostatic effect is treated by using 
the image charge method so space charge effects are not included. Deposition rates of an 
order of magnitude larger than no-charge deposition rates were found for particle diameters  
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of about 1µm, while lower deposition rates were found for ultra-fine particles. Another recent 
study by Koullapis et al.[7] considers a realistic air way model from mouth to the end of 
trachea, simulating the turbulent flow using a LES turbulence model. The effect of 
electrostatic particles is included using the image charge method. Here it was also found that 
for particles larger than 1µm the electrostatic effect increases the deposition rate considerably, 
especially in the mouth-throat region. Studies by Åkerstedt[8] also included the space charge 
effect for nanoparticles in the lower airways (generation>4) of the human lung in which the 
flow is laminar. The effect of the wall structure called cartilaginous rings was also included, 
giving a somewhat smaller deposition. 

In the present paper we extend this analysis to charged submicron particles and to the upper 
airways, especially the first airway called trachea where the flow is usually turbulent. To find 
the transport and deposition in a given flow geometry there are essentially two methods. A 
Lagrangian approach and an Eulerian approach. In the Lagrangian approach the equations of 
motion for each particle are solved including all the forces acting on the particle, the drag 
force from the fluid, the force by gravity, the force from Brownian motion, electrostatic forces 
and the force from the fluctuating part of the turbulent motion. For laminar flow and 
uncharged particles this method has been applied to several studies of the transport of non-
spherical particles in the human respiratory airways [9-12]. For the case of charged particles 
and if only one single particle at a time is launched the force can be calculated by the image 
force method mentioned above. However if several particles are launched at a time the 
Coulomb interaction between the particles is also important and since the Coulomb interaction 
acts over large distance where all particles interact at the same time this is a problem especially 
since in practice for instance in drug delivery to the human ling the number of particles is 
huge. Therefore here an Eulerian description is chosen with a space charge distribution of 
particles related to the particle concentration. The concentration is then governed by a 
convective diffusion equation including effects from Brownian motion and migration in the 
self-consistent electric field caused by the charged particles. To include effects from a 
turbulent flow, turbulent diffusion 𝐷𝐷𝑡𝑡  is added. For particles of size smaller than about one 
micrometer, turbulent diffusion is the only effect from the turbulence. For larger particles 
experiments by Liu and Agarwal[13] shows a tremendous increase in deposition for particles 
beyond diameters around one micrometer. Theoretical models for such large particles 
including the effect from turbophoresis gives rather good agreement with experiments 
(Guha[14], Derevich & Zaichik[15]). 

From the turbulence point of view this is a more difficult problem to model, since 
anisotropy near wall effects then become important. This means that the turbulence cannot be 
modeled by the standard turbulent two-equation models. Here a modification of the  
𝑘𝑘 − 𝜀𝜀 model that includes the anisotropy near the wall, the 𝑘𝑘 − 𝜀𝜀 − 𝑣𝑣2 − 𝑓𝑓 model by 
Durbin[16] can be applied. The paper is organized as follows. In section 2 the set of governing 
equations of the physical model is introduced, combining the turbulence model equations of 
the flow with the convective-diffusion equation for the concentration of particles including 
the migration of charged particles from the electric field. Finally the set of equations is closed 
by Poisson’s equation the equation governing the connection between the space charge density 
and the electric field. 

In section 3 an approximate analytic solution of the model is considered for the case of 
a smooth pipe and fully developed turbulence. Here an analytic expression for the  
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deposition rate is derived. This analytic solution is used in section 4 to verify a numerical 
solution of the model using the commercial software Comsol multiphysics. Finally in 
section 4 a pipe with a cartilaginous ring structure, supposed to be a model of the trachea of 
the human lung, is analyzed numerically.  

 

 
Figure 1. Axisymmetric pipe geometry with a cartilaginous ring wall structure. 
Radius of Trachea a=0.008[m] length 0.096[m]. Amplitude of rings 0.0008[m]. 

 
2. MODEL 
The morphology of the respiratory airways of the human lung is represented by a bifurcating 
system of pipes where each pipe belongs to a certain generation. The uppermost airway 
(generation0) is a single pipe called trachea. The upper airways have a certain wall structure 
called cartilaginous rings, located in the upper airways of the lung see figure 1. In this paper 
we only consider results for this single pipe, the trachea.  

For the analysis we assume a pipe with axial symmetry. The main flow is then in the x-
direction and r is the coordinate in the radial direction. The flow in trachea is turbulent with 
a typical Reynolds number ranging from 2000 to 10000. 

The fluid flow is then assumed to be modeled with the equations for turbulent viscosity 
models of the form 

 

( ) (( )( ( ) ))

0

Tp tρ µ µ⋅∇ = −∇ + ∇ ⋅ + ∇ + ∇

∇ ⋅ =

u u u u

u
                 (2.1) 

 
Here ρ  and p  are the density and pressure of the air, u  the fluid velocity, µ the 

viscosity and tµ  the turbulent viscosity.   
The convective-diffusion equation including effects from a concentration c of charged 

particles with charge q and the electrostatic electric field E is of the form  
 

( ) ( ) (( ) ) 0
qD

c c D D ctTκ
⋅∇ + ∇ ⋅ − ∇ ⋅ + ∇ =u E                       (2.2) 

 
where the migration velocity from the electric field is given by 
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qD
Tκ

=v E                 (2.3) 

 
Here D is the Brownian diffusion coefficient given by 

 

3

1 (2.34 1.05exp( 0.39 ))

T Cu
D

d
d

Cu
d

κ
πµ

λ
λ

=

= + + −

                                (2.4) 

where Cu is the Cunningham factor which is a correction factor needed to bridge the gap 
between the continuum limit and the free molecular limit for the flow past a spherical particle. 
λ  is the collision mean free path and d is the particle diameter, κ is Boltzmann’s constant 
and T the temperature.  

The turbulent diffusion coefficient is related to the turbulent viscosity as 
 

t
tD

µ
ρ

=                                                               (2.5) 

It is also convenient to introduce the dimensionless number α which is here called the 
electrostatic parameter  

 
2 2

0

0

(0)1
4

C q a
T

α
ε κ

=                                                    (2.6) 

 
Here 0 (0)C  is the concentration at the inlet of the pipe and a the radius of the pipe. The 

electric field is determined by Poisson’s equation with electrostatic potential φ 
 

0

2 qcφ
ε

∇ = −                                                           (2.7) 

 
which is the equation providing the connection between the space charge distribution and the 
electrostatic potential. 
 
3. THEORY FOR SMOOTH PIPE 
To verify the results of numerical calculations to be presented later using the commercial 
software Comsol Multiphysics an approximate analytic solution for the deposition of 
charged particles in a fully-developed turbulent flow in a simple smooth pipe with no 
cartilaginous rings is considered. 

The concentration is then assumed to be uniform across the flow except in a very thin layer 
close to the boundary. In the main part of the cross section the concentration 0 ( )C x is assumed 
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to be a function only of the stream-wise coordinate x. It is assumed to be a weakly varying 
function of coordinate x, i.e. a boundary layer approximation is assumed.  An approximate 
solution of Poisson’s equation disregarding the very thin layer in which the concentration 
is varying very quickly is then simply 
 

0 2 2

0

( )
( , ) ( )

4
C x q

r x a rφ
ε

= −                 (3.1) 

 
The wall is considered to be an ideal conductor so the boundary condition for the 

potential is zero at the wall, which is fulfilled by (3.1). Introduce the dimensionless 
coordinates /x x a=  and /r aη = . In dimensionless units equation (2.2) becomes  
 

2
0 ( )1 1( ) ( ) ( ) ( (1 ) )t

c cu C x cPe Pex ηαη η η χη ηη η η
∂ ∂ ∂ ∂+ = +∂ ∂ ∂ ∂

              (3.2) 

 
where we have introduced the Peclet numbers Pe ,  

tPe   and tχ   defined as 

0

0
t

t

t
t

U aPe
D

U aPe
D

Pe
Pe

χ

=

=

=
                                                     (3.3) 

 
Here 𝑈𝑈𝑜𝑜 is the mean velocity and the dimensionless velocity ( )u η  is defined as  
 

0

( )( ) uu
U
ηη =  .                                                   (3.4) 

 
For the case of diffusion dominated by Brownian motion the ordinary Peclet number is 

the relevant dimensionless number in equation (3.2), while in the case of dominating 
turbulent diffusion the turbulent Peclet number is more relevant. Since both diffusion terms 
are included in the analysis that follow, the only place where using tPe as the relevant 
dimensionless number is in the estimate of the concentration boundary layer thickness 
defined below.  The concentration c is normalized as 
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0 0 0

0

( ) (0) ( )
( , ) (0) ( , )

C x C C x
c x C c xη η

=

=
                                            (3.5) 

 
The limit of large Pe  is considered. The diffusion term on the right hand side (3.2) is 

then important only in a boundary layer close to the wall. Neglecting the diffusion term 
equation (3.2) becomes  
 

2
0

1( ) ( ) ( ) 0cu C x c
x Pe

αη η
η η

∂ ∂
+ =

∂ ∂
                                  (3.6) 

 
If / 1Peα <<  then (3.6) reduces to 0c x∂ ∂ = . Therefore if  c  is uniform except 

for a small boundary layer at the inlet then c is uniform in the main part of the flow. The 
condition 0c x∂ ∂ = means that c  is does not vary over a stream-wise distance of the 
order of the pipe radius but may vary on a longer length scale X , a scale to be determined 
from the analysis to follow.  

This solution obviously does not satisfy the boundary condition ( ,0) 0c x =   at the wall 
so therefore a boundary layer analysis treating the behavior near the wall is considered. 
Introduce a boundary layer coordinate Y   
 

(1 )Y Peνη= −                                                       (3.7) 
 

It is assumed that α is large but / Peα  small so that Peβα α=  is chosen with 1β < . 
Rewriting equation (3.2) in the new coordinate gives 

 

2 1
0(1 ) ( ) ((1 ) )t

c Pe c cu Pe Y C x Pe
x Pe Y Y Y

β ν
ν να χ

+
− −∂ ∂ ∂ ∂

− + = +
∂ ∂ ∂ ∂

                (3.8) 

 
To estimate the first term on the left hand side we use the properties of the turbulent 

velocity near the wall (Schlichting and Gersten[17]) i.e. 
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Equation (3.8) then becomes 
 

2
2 1*

0
2 ( ) ((1 ) )t

Re c Pe c cPe Y C x Pe
Re x Pe Y Y Y

β ν
ν να χ

+
− −∂ ∂ ∂ ∂

= + +
∂ ∂ ∂ ∂

     (3.10) 

 
Balancing the order of magnitude of the terms on the right hand side givesν β= . Since

*Re Re Pe<< << , the term on the left hand side can be neglected in the boundary layer 
and equation (3.10) is then reduced to 

 

0 ( ) ((1 ) ) 0t
c cC x
Y Y Y

α χ∂ ∂ ∂
+ + =

∂ ∂ ∂
                               (3.11) 

 

The boundary layer thickness then scales as ( )O Pe β− where 1β <  or 1( )O α − . The 

boundary layer thickness without electrostatic effects scales as 1/3( )O Pe− , provided that 
2
* (1)Re Re O .So the electrostatic effects lead to thinner boundary layers for 1 3β > . In 

the case turbulent diffusion is dominating the estimate of boundary layer thickness should 
be based upon tPe  instead of Pe .  Integrating (3.11) once gives  

 

0 0( ) (1 ) ( ) ( )t dep
cC x c C x V x
Y

α χ ∂
+ + =

∂
                            (3.12) 

 
Where 

 

0

( )
( ) dep

dep

V x Pe
V x

PeU β
=                                                 (3.13) 

 
is defined as a dimensionless deposition velocity which is so far an unknown function of 
x . Integration of (3.12) leads to the solution 

 

0

( )
( , ) (1 exp( ( ) ( )))depV x

c x Y C x Z Yα
α

= − −         (3.14) 

 
where  
 

0

( ) ( )
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Y
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Y
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In the limit Y → ∞ the concentration should approach 0 ( )C x , from (3.14) it then follows 

that 
 

0

0

( )( )
1 exp( ( ) ( ))dep

C xV x
C x Z

α
α

=
− − ∞

                                (3.16) 

 
To obtain an equation for the development of the mean concentration 0 ( )C x , equation 

(3.2) is multiplied by η  and integrated from zero to unity with the result 
 

1
1 0

00 1

2( )( , ) 1( )
1 exp( ( ) ( ))

C xc x cu d Pe
x Pe C x Zη

αη η η η
η α

−

=

∂ ∂
= = −

∂ ∂ − − ∞∫   (3.17) 

 
Evaluating the left hand side exact analytically is hard but an approximate estimate shows 

that a good approximation is to take ( , )c x η uniform in the integral across the flow. Since 
the concentration ( , )c x η  varies rapidly only in a very thin boundary layer and in which 
the mean velocity ( )u η is small a rather good approximation to (3.17) is 

 

10 0

0

22 ( )
1 exp( ( ) ( ))

dC C xPe
dx C x Z

α
α

−= −
− − ∞

                          (3.18) 

 
From (3.18) it is noted that the evolution of the mean concentration is on a slow length 

scale X Pe xα=  as discussed earlier.  

In the integral 
0

( )
1 ( )t

dY
Z

Yχ

∞

∞ =
+∫  where t t Dχ ν=  we use the turbulent viscosity 

from the indirect turbulence model by Schlichting and Gerstin[17]. However the dominant 
contribution to the integral comes from the region close to the wall in which the behavior 
of the turbulent diffusivity is simple given by 

 

3

4

0

6.1 10

t
t tD A y as y

A

νν
ν

+ + + +

−

= = ⋅ →

= ×



  (3.19) 

 
The integral can then be evaluated analytically with the result 
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In the limit of no electrostatic effects 0α →  (3.18) becomes 

 
1/3

0 0 *
2/3 1/3 0

2 18
( ) 2 3

dC C A Re
dx Pe Z Pe Re

C
π

= − = −
∞

                       (3.21) 

 

leading to an exponential decay of concentration on the length scale 2/3 1/3
*( )O Pe Re Re .  

In the opposite limit if α  is large such that  0exp( ( ) ( ))C x Zα− ∞  is small then the 
development of the mean concentration is governed by the equation 

 

0
2
02 CdC

dx Pe
α

= −        (3.22) 

 
leading to a solution of the form 
 

0
1( ) 21

C x
x

Pe
α=

+
.                                           (3.23) 

 
The amount of deposition ( )P x after a length x  can now be defined as 
 

0( ) 1 ( )P x C x= −                                                  (3.24) 

 

For a short pipe of length L  an approximate expression for the deposition is 
 

1 2( )
1 exp( ( ))

LP L Pe
Z

α
α

−=
− − ∞

                                   (3.25) 

 
The conclusion from this theoretical study regarding the electrostatic effect is that 

deposition is linear in the electrostatic parameter  
 

2 2
0

0

(0)1
4

C q a
T

α
ε κ

=                                               (3.26) 

 

Deposition is thus proportional to concentration at the inlet 0 (0)C and quadratic in 
charge q. The most powerful method to vary deposition is thus varying the charge. A similar 
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scaling has been found for the case of laminar flow by Yu[18]  with a correction later given 
by Hashish et al[19]. However Yu does not include effects from Brownian diffusion. 
 
4. COMPARISON BETWEEN THEORETICAL AND NUMERICAL 
RESULTS 
In this section the theoretical results obtained in the previous section are compared with 
numerical solutions for the case of a smooth pipe. This means that equations (1.1-1.5) are 
solved for a pipe of length 0.12m and radius a=0.008m, which are typical dimensions of the 
trachea. 

Especially consider the case of a mean velocity of 4 m/s and particle size ranging from 
10nm to 1000nm. The charge of the particles considered range from 0 to 50 elementary 
charge units. For the numerical solution we use the commercial software Comsol 
Multiphysics 5.2a using the SST-turbulence model for the flow. For the diffusion of 
particles we use the Chemical species transport module for the case of diluted species and 
for the electrostatics we use the AC/DC module.  

In all the numerical results the mesh is refined until the result becomes independent of 
the mesh. 

To compare with the theoretical analysis we choose as velocity field corresponding to a 
fully developed turbulent flow.  

 

 

 
Figure. 2. Evolution of concentration boundary layers for different values of the 
charge number z0 and particles with diameter 10nm. 
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In the comparison first consider the development of the concentration distributions for 

different values for the electrostatic parameter α.The distribution of c is chosen uniform 
at the inlet 0x = . 

The development of the concentration boundary layer is shown in figure 2 for different 
values of the charge 0z corresponding to different values of the electrostatic parameterα . 
The size of the particles is small equal to 10 nm. The Reynolds number is then Re=4129 
and the Peclet number is 55.8 10Pe = × . The influence of the electrostatic particles and 
fields is clearly observed in which the boundary layer thickness decreases with increasing 
charge and the electrostatic parameterα . As a second example in figure 3 the 
corresponding concentration boundary layers are presented for particle diameter 100nm. 
The Peclet number is then higher 74.6 10Pe = × leading to even thinner boundary layers. It 
is also seen that increasing the parameter α leads to thinner layers.   
 

 
Figure 3. Evolution of concentration boundary layers for different values of the 
charge number z0 and particle diameter 100nm 

 
For larger particles the boundary layer is very thin especially in the limit of large z0 and

α . When comparing the numerically calculated concentration boundary layers with the 
corresponding boundary layers found from theory there is a difference, the numerical 
solution gives the evolution of the concentration boundary layer from a uniform distribution 
at inlet, while the theoretical boundary layer solution cannot cope with a uniform 
distribution at inlet. The numerical solution however develops very quickly from the initial 
uniform conditions at inlet. As will be seen however this difference is not so important when 
considering the corresponding deposition rates. 

The fraction of deposited particles after a length L is defined numerically as 
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Results comparing the theory and the numerical method are shown in figure 4.  The 
theoretical result is calculated from equation (3.25). Results for three different sizes of the 
particles with diameters 10nm, 100nm and 1000nm are provided. Overall the agreement 
between theoretical and numerical results is quite good. Some deviation is found for 
particles with diameter 10nm and largeα .The theory was developed for small Peα  and 
the value of this parameter for the maximum value of α is around 0.01 which although 
small nevertheless seems to give some difference. For particles of size 100nm the maximum 
value of the parameter Peα  is around 0.001 i.e. much smaller than for 10nm particles and 
here the agreement between theoretical and numerical results is somewhat better. It should 
also be noted that there may be some difference in the details of the behavior of the turbulent 
viscosity for the analytical model and the SST turbulence model close to the wall which 
also may lead to some difference. 

 

 
Figure 4. Deposition rate from theory (solid) and numerical calculation (dashed, o) 
as function of the electrostatic parameter α and for different particle diameters. 

 
Thus for a smooth pipe the theoretical and numerical results overall agree quite well and 

therefore the theoretical model can be useful for other parameters than presented, especially 
for prediction of deposition for much larger values of α for which the numerical method is 
expected to lead to numerical difficulties due to extremely thin boundary layers. The 
analytical result can then also be applied to the higher generations 1-3 of the human lung. 
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Since the numerical model also shows good agreement with the theoretical model for a 
smooth pipe the numerical model is expected to be reliable also for more complex 
geometries.  

In the next section the numerical model will be applied to a pipe with a specific wall 
structure characterizing the trachea the so called cartilaginous rings. Studies of deposition 
of charged and uncharged particles in the human lungs with cartilaginous geometry have 
been conducted in previous studies for the case of laminar flow (Åkerstedt[8]). This is 
applicable only for the higher generations beyond generation 4. For the first three 
generations the flow is mainly turbulent. 

 
5. DEPOSITION IN A PIPE WITH CARTILAGINOUS RINGS 
Since the numerical method works well for particles with diameters less than about 1µm the 
method is adopted to a pipe with a cartilaginous ring structure as in figure 1, thus modeling 
the first generation of the human respiratory airways called the trachea. 

The flow parameters are the same as for the smooth pipe with a mean velocity of 4 m/s 
a pipe diameter of 16mm and a length of 12cm. A difference from the previous section is 
that here the flow field is chosen uniform at the inlet, i.e. the velocity field is not fully 
developed as in section 2-3. The amplitude of the rings is chosen as 0.1 of the radius. The 
typical flow is seen in figures 5a where the flow starts from the top. From the streamlines it 
is observed that the flow separates in the regions between the rings which may cause some 
particles to be trapped inside this domain. Of interest is also the electric field line 
distribution. In figure 5b the electric field lines are shown for the case with particle size 
10nm and electrostatic parameter α=216. The electric field is stronger at the position of the 
rings leading to locally larger deposition. Considering the concentration field in figure 5c 
the concentration boundary layers are extremely thin and are not clearly visible.  

In figure 6 the effect of the cartilaginous rings on the amount of deposited particles is 
presented together with the deposition for the case of a smooth pipe. Comparing figure 6 
and 4 for the smooth pipe case there is a slight difference in deposition rates especially for 
the larger particles of 1000nm. This difference comes from the fully developed velocity 
profile assumed for the data in figure 4 and the developing flow assumption used for the 
data in figure 6. Considering the effect of the cartilaginous rings there is a considerable 
increase in deposition for small values of the electrostatic parameter. For large values the 
effect of the rings is smaller and seems to approach the result with no rings.  
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Figure 5. a) Streamlines with color bar indicating velocity magnitude , b) Electric 
field lines and color bar indicating electric field magnitude, c) Streamlines with 

color bar indicating concentration 
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Figure 6. Deposition rate for a smooth pipe (solid) and for a pipe with ring structure 
(dashed) for different values of the electrostatic parameter 

 
6. CONCLUSION 
The paper addresses the effect of space charge distribution of particles on the deposition in 
a turbulent flow with a smooth wall and a pipe with a wall structure. For the case of a smooth 
pipe and fully developed flow an approximate analytic solution is presented. The analytical 
solution is used to verify a numerical solution using the commercial software Comsol 
Multiphysics. The numerical model includes a combination of an SST-turbulence model for 
the flow, a convective diffusion equation including migration in electric field for the 
charged particles and Poissons equation modeling the connection with the space charge 
density and the electrostatic potential. 

The study is restricted to particles smaller than the order of one micrometer. Brownian 
and turbulent diffusion are included and for smaller particles Brownian diffusion dominates 
while for larger particles turbulent diffusion becomes more important. Typically the amount 
of deposition decreases with the size of the particles with a several orders of magnitude 
difference between particles with diameter 10nm and 1000nm. 
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The effect of the electrostatic particles is to create an electric field in which the particles 
migrate towards the wall. This effect may increase deposition by orders of magnitude. 
Generally it is found that the deposition depends on the electrostatic parameter a parameter 
which is proportional to concentration of particles at the inlet and proportional to the square 
of the charge of the particles. From the numerical solution including the effect of the 
cartilaginous rings there is also an increase in deposition especially for the larger particles. 
The reason for this is the separation of the flow that occurs between the rings. 

The present results are only valid for particles smaller than about one micrometer. 
Experiments indicate that for particles large than one micrometer there is a several order of 
magnitude increase in deposition. This effect has been explained by the inclusion of the 
turbophoresis effect which was mentioned in section 1. In this process particles migrate 
towards regions with smaller turbulent fluctuations i.e. towards the near wall region. The 

effect is proportional to the Reynolds stress of the wall normal velocity 2v+ and behaves as 
4( )O y+  near the wall. Since other Reynolds stresses for instance 2u+  behaves as 2( )O y+  

an anisotropic turbulence model is needed, for instance the 2k v fε− − − model by Durbin 
mentioned in the introduction. Standard two-equation turbulence models are therefore not 
useful. The effects of anisotropy, turbophoresis and electrostatic particles on deposition will 
be considered in future work. 
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