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ABSTRACT 

Corona discharge denotes the effect where an electrically non-conducting 

fluid is ionized under the influence of strong electrical fields in proximity of an 

emitting electrode. This technology is used in industry for a broad range of 

applications, e.g. the deposition of airborne particles. The electrodynamic 

nature of Corona discharge is often coupled with other physical 

phenomena, making it a key element of multiphysical problems. In order to 

accurately describe and set-up a model for Corona discharge processes a 

guideline is presented here. It can be implemented into codes which allow 

the user-input of custom partial differential equations. The governing 

equations of the approach developed are based on Maxwell’s equations. 

The delicate part of calculating in an efficient way the electrical field distortion 

due to space charges is implemented by a Lagrange Multiplier, which allows 

the integrated identification of the unknown initial space charge density on 

the electrode. By means of a simplified test-case the results have been 

analytically verified. Additionally, the results of the modelling approach 

presented have been compared to experimental data available in literature, 

showing a good agreement.  

 

 
1. INTRODUCTION  
Corona discharge denotes a well-established technology to generate a continuous flow of 
ions in a fluid. The physical nature of the Corona discharge emerges from excess surface 
charges on a high-voltage electrode, which enables the charging of molecules of the 
surrounding fluid. In practice, the Corona discharge covers a broad range of applications 
that require an electrically conductive fluid. In the light of worldwide renewable energy 
promotion efforts, the Corona discharge plays its role as anti-pollution technology for 
exhaust gases. E.g. it allows the charging and deposition of airborne particles arising from 
combustion processes by electrostatic precipitation [1]. Further improvement of Corona 
discharge based devices preferably makes use of numerical modeling, to avoid or reduce 
elevated development costs of test rigs. For this purpose a robust modelling approach is 
presented and subsequently verified and validated in this study. 
 
2. PHYSICAL MODEL 
Corona discharge being an electrodynamic phenomenon, the governing equations are based 
on Maxwell’s equations, assuming steady-state conditions without magnetic influence.  
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As a result from the combination of charge conservation condition with the charge transport 
equation, the Poisson-continuity coupled equations yield [1] 
 

∇2𝜙𝜙 = −𝜌𝜌𝑒𝑒𝑒𝑒
𝜀𝜀0

                                                            (1) 

 

𝐸𝐸�⃗ ∇𝜌𝜌𝑒𝑒𝑒𝑒 = −𝜌𝜌𝑒𝑒𝑒𝑒2

𝜀𝜀0
                                                         (2) 

 
with 𝜙𝜙 being the electric potential, 𝜌𝜌𝑒𝑒𝑒𝑒 the space charge density, 𝜀𝜀0 the vacuum permittivity 
and  𝐸𝐸�⃗ = −∇𝜙𝜙  being the electric field. 

Note that (2) is obtained when the contribution of a fluid flow velocity 𝑢𝑢�⃗  to the electric 
current density 𝚥𝚥 = 𝜌𝜌𝑒𝑒𝑒𝑒�𝑏𝑏𝐸𝐸�⃗ + 𝑢𝑢�⃗ �, where 𝑏𝑏 denotes the ion mobility, can be neglected. 

The two equations (1) to determine the electric potential 𝜙𝜙, based on a known distribution 
of 𝜌𝜌𝑒𝑒𝑒𝑒, and (2) to determine the electric charge density  𝜌𝜌𝑒𝑒𝑒𝑒 ,  based on a known distribution of 
𝜙𝜙 and 𝐸𝐸�⃗ = −∇𝜙𝜙 , respectively, need to be supplemented by appropriate boundary conditions. 

The equations (1) and (2) are coupled, their solutions are not independent from each other. 
In a similar way, the boundary conditions for 𝜙𝜙 and 𝜌𝜌𝑒𝑒𝑒𝑒  will not be independent from each 
other. For numerical purposes, the boundary condition are frequently formulated such that the 
electric field is limited by some Corona onset field strength 𝐸𝐸0 , in addition to the boundary 
conditions of the Dirichlet type that apply already to determine the distribution of the electric 
potential. In this way, the electric field at the electrode surface is smaller than 𝐸𝐸0 if ever no 
Corona is formed, i.e. when 𝜌𝜌𝑒𝑒𝑒𝑒 = 0  at that point, whereas �𝐸𝐸�⃗ � = 𝐸𝐸0 at the electrode when 
𝜌𝜌𝑒𝑒𝑒𝑒 ≠ 0 . It seems that from the mathematical point of view, existence and uniqueness of the 
solution are not clear for general situations of this kind of problem; practical experience based 
on analytical and numerical solutions indicate, though, that solutions exist and appear to be 
unique, giving strong hints that the kind of boundary conditions outlined above is meaningful. 

 

 
Figure 1: Physical interpretation and visualization of the Corona-onset field strength 
condition at the electrode 
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Figure 1 compares the boundary conditions at the electrode for the charge-free case 
without ionization processes with the Corona-case. An increasing electric potential gives a 
rise to the electric field strength up to the onset field strength 𝐸𝐸0. Beyond that threshold 
Corona develops, maintaining the field strength constant. 

The onset field strength 𝐸𝐸0 , measured expressed in [V/m], is primarily determined by 
the shape of the emitting electrode with the empirical correlation [1][6] 

 

𝐸𝐸0 �
𝑉𝑉
𝑚𝑚
� = 3 × 106𝑓𝑓𝑟𝑟 �𝑚𝑚𝑠𝑠 + 0.03�

𝑚𝑚𝑠𝑠
𝑟𝑟𝐸𝐸[𝑚𝑚]

�                                          (3) 

 
where 𝑓𝑓𝑟𝑟 is a dimensionless fatigue estimation (𝑓𝑓𝑟𝑟 = 0.6 for practical use), 𝑚𝑚𝑠𝑠 denotes the 
relative gas density and 𝑟𝑟𝐸𝐸[𝑚𝑚] the radius of the emitting electrode, measured in [m]. 

From the physical point of view, the notion is emphasized that the domain of interest will 
be set up by two parts, one of which is characterized by 𝜌𝜌𝑒𝑒𝑒𝑒 = 0, and the other part by 𝜌𝜌𝑒𝑒𝑒𝑒 ≠
0, containing all the streamlines of the electric current density 𝚥𝚥. These streamlines start 
from points on the electrode where Corona occurs, cf. Figure 2. 
 
3. NUMERICAL MODEL 
The numerical model approach described in this study is based on the interdependance of 
equations (1) and (2). Equation (1), by the boundary conditions outlined above, on a first 
view appears overdetermined, whereas (2), due to the lack of an information with respect 
to the charge density on the electrode, appears underdetermined. Therefore an appropiate 
workaround formulation by means of a Lagrange multiplier is implemented. 
 

 
Figure 2: Representative 2D-sketch for the numerical model including an emitting 
electrode and a plate. The notion is that the domain consists of a part with 
vanishing charge density, and a domain where  𝜌𝜌𝑒𝑒𝑒𝑒 ≠ 0. The latter is set up by the 
streamlines of the current density 𝚥𝚥 starting from places on the electrode where 
Corona occurs. 
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3.1 General Setup 
For successful convergence of the Corona calculation a two-step setup is recommended: 
 
1) Stationary calculation of the field for the charge-free, i.e. the Laplace case 
2) Poisson-coupled calculation of Corona 

 
The former is rather straightforward, it is described in Section 3.2. The latter is somewhat 

more delicate, it is described in Section 3.3. 
 

Table 1: Summary of the required boundary conditions and initial values for the 
charge-free case to determine the initial solution 
Entity PDE (1) PDE (2) Initial Value for 𝝓𝝓  
𝜕𝜕Ω1 Dirichlet type: Electric potential 𝜙𝜙1 n/a  
𝜕𝜕Ω2 Dirichlet type: Electric potential 𝜙𝜙2 n/a  
Ω   0 

 
3.2 Steady charge-free electric field 
Table 1 summarizes the relevant boundary and initial conditions to numerically investigate 
the charge-free case. This preliminary step reduces equation (1) to a Laplace equation by 
assuming a non-emitting electrode, therefore  𝜌𝜌𝑒𝑒𝑒𝑒 = 0 everywhere, and equation (2) is 
trivially satisfied in this step and does not need to be solved numerically. Two Dirichlet 
boundary conditions are used for the electric potential on the electrodes. The result of this 
calculation leads to a first guess for the electric field. 

 
3.3 Poisson-coupled calculation of Corona 
The resulting electric field from the previous step is taken as initial value for the Corona 
calculation to avoid the trivial zero solution for the space charge density. Table 2 
summarizes the boundary conditions and initial values used in this second step. As 
introduced above, particular attention needs to be given to the boundary conditions for the 
emitting electrode. To obtain a well-posed problem, equation (1) demands two boundary 
conditions, whereas equation (2)  asks for an a priori unknown value for the space charge 
density on the electrode. Due to the nature of equation (2), no additional boundary condition 
is to be given on the opposite electrode 𝜕𝜕Ω2 . 

To determine the unknown value of  𝜌𝜌𝑒𝑒𝑒𝑒 on 𝜕𝜕Ω1 an approach with a Lagrange Multiplier is 
recommended. In order to do so, it is necessary to split the space charge density variable into 
a space-dependent part 𝜌𝜌𝑒𝑒𝑒𝑒,𝑠𝑠𝑠𝑠 for the transport equation and a constant variable 𝜌𝜌𝑒𝑒𝑒𝑒,𝑐𝑐 which 
represents the dirichlet boundary condition for the transport equation [3]. The following list 
provides a step-by-step modelling guide for the boundary conditions setup for a fully coupled 
Corona calculation: 

 
1) Define electric potential 𝜙𝜙2 on 𝜕𝜕Ω2 (as a Dirichlet BC). 
2) Define electric displacement field on the electrode −𝜀𝜀0𝐸𝐸0𝑛𝑛�⃗   (as a Neumann type of BC). 
3) Enforce constraint for the electric potential on the electrode 𝜙𝜙|𝜕𝜕Ω1 = 𝜙𝜙1, i.e. the 

Dirichlet type BC. 
4) Define Lagrange Multiplier 𝜌𝜌𝑒𝑒𝑒𝑒,𝑐𝑐 to ensure the given constraint for the electric potential 

is respected. 
5) Set 𝜌𝜌𝑒𝑒𝑒𝑒,𝑐𝑐 as Dirichlet BC for the transport equation (2). 

 
  



379 Int. Jnl. of Multiphysics Volume 11 · Number 4 · 2017 

 

 
 

Steps 1) to 5) ensure the fully coupled solving process. In detail, Points 3) and 4) are the 
key elements of the coupling, as they loop the dependent variable for the electric potential 
𝜙𝜙 in equation (1) in an iterative way. On the electrode an electric potential 𝜙𝜙 = 𝜙𝜙1 and an 
electric field 𝐸𝐸0 are enforced. Consequently, the constant space charge density 𝜌𝜌𝑒𝑒𝑒𝑒,𝑐𝑐 - acting 
as Lagrange Multiplier - bridges the occurring discrepancy and interdependency of the 
given values. 
 
Table 2: Summary of the required boundary conditions and initial values for the 
Corona-discharge problem 
Entity PDE (1) PDE (2) Initial Value for 𝝓𝝓  
𝜕𝜕Ω1 Neumann type:−𝜀𝜀0𝐸𝐸0𝑛𝑛�⃗  Dirichlet type: 𝜌𝜌𝑒𝑒𝑒𝑒,𝑐𝑐  
𝜕𝜕Ω2 Dirichlet type: Electric potential 𝜙𝜙2 n/a  
Ω   𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
 
3.4 Mesh 

Figure 3 shows the geometry cutout in electrode proximity, for an electrode with tip radius 
0.15 mm. It is recommended to wrap the emitting electrode in boundary layers to handle the 
sharp gradients of the electric field. In this case, the thickness of the cell layer closest to the 
wall amounts to about 0.0015 times the radius of the electrode tip. 
 

 
Figure 3: Mesh cutout in electrode proximity. The color legend is based on the 
element quality, which is at its lowest on the electrode due to large aspect ratios. 
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4. ANALYTICAL VERIFICATION 
The numerical model is verified with a simplified test-case that includes two concentrically 
arranged spheres according to figure 4, with an outer to inner sphere radius ratio of 𝑅𝑅2/𝑅𝑅1 =
150. 
 

 
Figure 4: Simplified test-case geometry. The inner sphere is shown enlarged for 
illustration purposes. 
 

In this case the inner sphere represents the emitting electrode 𝜕𝜕Ω1 with an electric potential 
of 𝜙𝜙1 = 10𝑘𝑘𝑘𝑘, whereas the outer electrode is set to ground. 

Figure 5 shows the numerical result for the space charge density within the computed cross 
section. The direct comparison between the charge-free case and Corona discharge can be 
observed in figure 6. Due to the influence of the space charges the electric potential expands. 

For the simplified test-case geometry presented, analytical correlations for the 
dimensionless electric field 𝐸𝐸�  and space charge density 𝜌𝜌�𝑒𝑒𝑒𝑒 along the dimensionless radius 
𝑟̂𝑟 = 𝑟𝑟

𝑟𝑟𝐸𝐸
 can be derived as [4] 

 
𝐸𝐸(𝑟𝑟)
𝐸𝐸0

= 𝐸𝐸�(𝑟̂𝑟) = 1
𝑟̂𝑟2
�1 + 𝐴̂𝐴(𝑟̂𝑟3 − 1)                                              (4) 

 
𝜌𝜌𝑒𝑒𝑒𝑒(𝑟𝑟)
𝜀𝜀0𝐸𝐸0
𝑟𝑟𝐸𝐸

= 𝜌𝜌�𝑒𝑒𝑒𝑒(𝑟̂𝑟) = 3𝐴𝐴�

2�1+𝐴𝐴�(𝑟̂𝑟3−1)
                                                  (5) 

 
with the dimensionless current 𝐴̂𝐴: 

 
𝐴̂𝐴 = 𝐼𝐼

6𝜋𝜋𝜋𝜋𝜋𝜋∙𝐸𝐸02∙𝑟𝑟𝐸𝐸
                                                             (6) 

 
Where 𝐼𝐼 denotes the dimensional (integral) electrical current and 𝜀𝜀 the relative permittivity. 

As shown by the plots in figures 7 and 8 the numerical and analytical solutions are identical. 
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Figure 5: Result for the space charge density [C/m^3] 
 

 
Figure 6: Direct comparison of the charge-free case (top) and the Corona 
discharge case (bottom) for the electric potential in [V] 
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Figure 7: Analytical verification of the electric field along the radius for several 
values of 𝐴̂𝐴. The field strength scales as 𝑟̂𝑟−1/2 for large  𝑟̂𝑟. Curves corresponding to 
further values for the dimensionless current are plotted for comparison. 

 

 
Figure 8: Analytical verification of the space charge density along the radius for 
several values of 𝐴̂𝐴. The charge density scales as 𝑟̂𝑟−3/2 for large  𝑟̂𝑟. Curves 
corresponding to further values for the dimensionless current are plotted for 
comparison. 
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5. EXPERIMENTAL VALIDATION 
The present concept for the calculation of Corona discharge is numerically robust and 
accurate. It can be applied to other geometries using the same methodology. Figure 9 shows 
an experimental setup for the measurement of local electrical quantities [5]. It consists of 
an emitting needle and a grounded plate. In this experiment the electrical field strength, the 
space charge density, and the electric potential have been measured.  
 

 
Figure 9: Experimental setup used in [7] 

 
 
Figures 10 and 11 compare the results obtained with the present modeling concept to the 

data from the 2005 experiment [5,6]. It can be seen that the experimental and numerical 
data are in close agreement. One exception refers to the measurement of the electric field 
on line 1 towards the needle. The simulation correctly represents the sharp gradient of the 
electric field, whereas the measurement cannot handle the significant increase. Taking the 
limits of measurement devices into account, it can be stated that the analytical verification 
is an appropiate approach to confirm the calculations. 
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Figure 10: Comparison of simulation results (S) and measurements (M) for the 
electric field for each measurement line (I-III) 
 

 
Figure 11: As integral quantity, the experimental data shows closer agreement with 
the simulation 

 
 

  



385 Int. Jnl. of Multiphysics Volume 11 · Number 4 · 2017 

6. CONCLUSION
The numerical model presented to compute common Corona discharge problems is 
physically correct and numerically stable. By means of a Lagrange Multiplier the unknown 
bounday condition for the space charge density on the electrode can be computed within the 
set of governing equations using a constraint for the electric potential. Representation of 
steep electrical field gradients in close proximity to the electrode requires a fine grid 
resolution, a fact which can lead to significant computational efforts for complex cases and 
3D models. The model presented has been tested for two different geometries, and its results 
have been verified with a test-case and compared to measurement data. This approach to 
model Corona discharge problems can be seamlessly transferred to other related 
applications. 
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