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ABSTRACT 

The lack of reliable judgment on the choice of shape parameter is 

acknowledged as a drawback in the methodology of collocation meshfree 

by radial basis function (RBF). Some attempts have been proposed and 

tested only with specific classes of PDEs. Moreover, while most of this 

focusses on multiquadric (MQ) RBF, there has not been work done on 

invers-multiquadric (IMQ) RBF despite its’ increasing popularity. As a 

consequence, our main tasks in this work are, firstly, to numerically 

investigate the quality of each adaptive/variable RBF-shape parameter 

approaches presented in literature by applying them to the same type of 

problem, convection-diffusion class. Secondly, we proposed a new form of 

shape-parameter scheme to be used with the inverse-multiquadric (IMQ) 

type of RBF. The Kansa meshless method is implemented and it is 

interestingly found that the proposed form produces good results quality in 

terms of both matrix condition number, and the accuracy.  

 

 
1. INTRODUCTION  
Convection-diffusion equation describes phenomena including both convection and 
diffusion effects, and appears in various fields of natural sciences, e.g., heat transfer, 
weather prediction and atmospheric radioactivity propagation. It may also be treated as a 
simplified model of the system of the Navier-Stokes equations, which are representative 
equations in fluid dynamics. For this kind of physical phenomena, numerical studying of it 
is known as one of the great challenges due to the interaction between convective and 
diffusive processes normally giving rise to oscillatory and nonphysical solutions 
particularly when Peclet numbers are increasing or convective forces become dominant. 
Amongst several attempts and remedies; the enlargement of the local node adaptive, upwind 
scheme, the biased domain, and the nodal refinement and the adaptive analysis, for this 
challenge have been proposed, revisited, and nicely numerically demonstrated by Gu and 
Liu [1]. In this work, they concluded that with extra efforts included, the meshfree method 
has some attractive advantages over the traditional schemes such as finite element and finite 
volume. A modified finite-difference with the technique of elimination building up a new 
 
 
 
 

 
  

___________________________________ 
*Corresponding Author: sayan_kk@g.sut.ac.th 



360 

 
Solution to a Convection-Diffusion Problem Using a New Variable Inverse-Multiquadric  

Parameter in a Collocation Meshfree Scheme      

 

 
 

iterative scheme to solve the implicit difference equation was wonderfully presented in 
Zhang and Wang [2]. With compared to the Jacobi iteration, it was found that their new 
approach provides higher rate of convergence when dealing with moderate convective-
diffusive problems. Recently, in 2013, Sun and Li [3] proposed a method which combines 
a 6th-order compact difference scheme and 2nd-order Crank-Nicolson scheme called the 
alternating direction implicit method (ADI). Their numerical examples have proven that 
ADI preserves the higher order accuracy for convection-dominated problem. Moreover, one 
of our previous works, Chanthawara et.al [4], done under the context of the boundary 
element method has confirmed the difficulty encountered and this is the main reason for 
focusing on this challenging problem in this investigation. 

Initially invented and developed for multivariate data and function interpolation, radial 
basis function schemes have now become an attractive numerical tool for tackling engineering 
problems modelled in the form of partial differential equation (PDEs). While all the traditional 
numerical methods; finite volume (FV), finite element (FE), and finite difference (FD) are 
suffering from the grid/mesh generation process which consumes a great amount of effort, 
these radial basis function methods are classified as ‘meshfree’ or ‘meshless’ methods as no 
grid/mesh is not required in the discretization process. With this fact, the methods have gained 
their popularity for their simplicity to implement and, moreover, their capability of dealing 
with multi-dimensional problems. In early 1990s, Kansa [5] used a set of global approximation 
function to approximate the field variables on both the domain and the boundary when solving 
PDEs. This is of the following expression; 

 

( ) ( )
1 1

( )
N N

j j j j
j j

u c r cϕ ϕ
= =

= = −∑ ∑x x x                                          (1) 

 
Over some given scattered data nodes { }1 2, ,..., NX = ⊂Ωx x x , Ω  is the problem domain. 

The Radial Basis Functions (RBF), ϕ , are commonly found as multivariate functions whose 
values are dependent only on the distance from the origin and commonly assumed to be strictly 
positive definite. This means that ( ) ( )rϕ ϕ= ∈x   with n∈x 

 and r∈  ; or, in other 

words,  on the distance from a point of a given set { }jx , and ( ) ( )j jrϕ ϕ− = ∈x x   where 

it can normally be defined as follows; 
 

2 2 2( ) ( ) ... ( )1 1 2 22
r x x x x x xn n

Θ Θ Θ Θ= − = − + − + + −x x                   (2) 

 

For some fixed points n∈x  .  In this work, 
2j jr = −x x represents the Euclidean 

distance. The whole class of meshfree/meshless method can be categorized into three classes; 
weak forms, strong forms, and mixed, all nicely documented in [6]. Each of these has its own 
advantages/disadvantages depending on several factors involved including domain geometry, 
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governing equations, boundary/initial conditions, computer arithmetic, etc. For RBF-
collocation meshfree methods, in particular, it is a common fact that the accuracy depends 
heavily on the behavior of the radial basis function (RBF), ϕ , used itself. Many popular 
choices of RBFs have been proposed, studied, and developed during the past decades. Some 
of these are listed in Table 1.  
 

Table 1: Radial Basis Functions (RBF) widely-used in literature 
RBF types Mathematical Formula 

Linear (LR) 1 r+   

Gaussian (GU) 2exp( )rε−   

Cubic (CU) 3r   

Polyharmonic (PY) 2 1 ,nr n− ∈   

Polyharmonic (PY) 2 ln ,nr r n∈  

Multiquadric (MQ) 2 2r ε+   

Inverse Multiquadric (IMQ) 2 21/ [ ]r ε+  

Thin-plate Spline (TPS) 2 ln( )r r  

Matern/Sobolev (MS) *
( ) V

VK r r     
*

VK is an order modified Bessel function 
 

In this work, nevertheless, the RBF type being focused on is known as inverse-
multiquadric form expressed as follows; 

 

( )2 2( , )r r
β

ϕ ε ε= +                                                         (3) 

 
where ..., 3 / 2, 1/ 2, 1/ 2, 3 / 2, ...β = − − and ε  is the so-called ‘shape parameter’ is 
normally given in a ‘ad-hoc’ manner. This kind of radial basis function has been proven to 
be strictly positive definite as nicely documented in [7] for which the distance matrix of the 
interpolation problem is invertible. Nevertheless, throughout this work we focus on the most 
popular form of inverse-multiquadric, i.e. 1/ 2β = − , only.  

 
 

  



362 

 
Solution to a Convection-Diffusion Problem Using a New Variable Inverse-Multiquadric  

Parameter in a Collocation Meshfree Scheme      

 

 
 

 
Figure 1: Infinitely smooth inverse-multiquadric RBF; profile at different shape 
parameters 

 
This shape parameter is known to have a huge effect on the solution quality but it is, very 

often, given in an ‘ad-hoc’ manner. The essential effect of this parameter has been regarded 
as the main key leading to the final result quality [8, 9, 10]. Hardy [11] suggests that by fixing 

the shape at 1/ (0.815 )dε =  , where 
1

1 N

i
i

d d
N =

 =  
 

∑  , and id  is the distance from the node 

to its nearest neighbor, good results should be anticipated. Also, in the work of Franke [12] 

where the choice of a fixed shape of the form  0.8 N
D

ε =    where D  is the diameter of the 

smallest circle containing all data nodes can also be a good alternative. Rippa [10] studied the 
selection of optimal shape parameter for RBFs and oncluded that in order to obtain the so-
called ‘reliable shape parameter’, it is crucial to take in to consideration many factors; the 
number and distribution of data points, radial basis function, condition number of coefficient 
matrix and precision of computation into account.  For any particular interpolation problem, 
the radial basis function and precision of computation remains similar throughout the domain. 
However, if the distribution of data points is not uniform, the optimal value of shape parameter 
will differ for each data point in local RBFs and would depend upon the number and 
distribution of data points within its own influence domain. 
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Some recent attempts to pinpoint the optimal value of   involve the work of Zhang et al.  
[13] where they demonstrated and concluded that the optimal shape parameter is problem 
dependent. In 2002, Wang and Liu [14] pointed out that by analyzing the condition number 
of the collocation matrix, a suitable range of derivable values of   can be found. Later in 
2003, Lee et. al. [15] suggested that the final numerical solutions obtained are found to be 
less affected by the method when the approximation in equation (1) is applied locally rather 
than globally. 

Numerical studies referred to until now have been mostly on somewhat ‘fixed value’ of 
the parameter. Alternatively, some works have recently focused on developing this shape 
in adaptive- or variable-manner in which the detail is provided in Section (3) of this work. 
Our investigation carried out in this work aims to complete three main objectives. Firstly, 
it is to gather, numerically test, and compared against one another, some forms of variable 
shape parameters proposed in literature. Secondly, it is to propose another mathematical 
formula of variable shape aimed to apply with inverse-multiquadric RBF. Last but not least, 
in order to justify the effectiveness of our newly-proposed inverse-multiquadric shape 
parameter with those gathered from literature, we implement all forms to the same type of 
PDEs known as convection-diffusion via the RBF-collocation method. 

The layout of the work is as follows. We firstly introduce in Section (2) the methodology 
of the collocation methods using radial basis functions for partial differential equations. It 
is followed by the implementation of the method toward convection-diffusion type of PDEs. 
In Section (3), we provide a brief review on numerical works done on variable shape 
parameters. We also, in this section, propose a new form of parameter that behaves also 
variably. The main numerical experiment is then detailed in Section (4) together with all 
the results obtained and general discussion. The validation of the solutions produced from 
every forms of shape parameters is done via its analytical form. Some important findings or 
conclusions found in this work are then withdrawn in Section (5). 
 
2. RADIAL BASIS FUNCTION (RBF) COLLOCATION MESHFREE METHOD 
2.1 RBF-Collocation Scheme for PDEs 

For the methodology of RBF-collocation meshless method for numerically solving PDEs, 
it begins with considering a linear elliptic partial differential equation with boundary 
conditions, where ( )g x and ( )f x  are known. We seek ( )u x  from; 
 

( ) ( ) , inLu f= Ωx x x                                                    (4) 
 

( ) ( ) , onMu g= ∂Ωx x x                                                  (5) 
 
where dΩ∈ , ∂Ω denotes the boundary of domain Ω , L  and M  are the linear elliptic 
partial differential operators and operating on the domain Ω  and boundary domain ∂Ω , 

respectively. For Kansa’s method, it represents the approximate solution ( )u x  by the 
interpolation, using an RBF interpolation as expressed in equation (1). We can see that N   
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linear dependent equations are required for solving N  unknowns of jc . Substituting ( )u x  
into equation (4) and equation (5), we obtain the system of equations as follows; 

 

( ) ( )
1 1

,
I IN N

j j j j i
j j

L c c L fϕ ϕ
= =

 
− = − = 

 
∑ ∑x x x x x where 1, , Ii N= 

             (6) 

 

( ) ( )
1 1

,
I I

N N

j j j j i
j N j N

M c c M gϕ ϕ
= + = +

 
− = − = 

 
∑ ∑x x x x x where 1, ,Ii N N= + 

      (7) 

 
Above equations, we choose N collocation points on both domain Ω  and boundary 

domain ∂Ω , and divide it into IN  interior points and BN boundary points ( )I BN N N= + . Let 

{ }1 2, , , NX = x x x denotes the set of collocation points, { }1, ,
INI I I=  denotes the set of 

interior points and { }1, ,
BNB B B=  the set of boundary points. The centers jx  used in 

equation (6) and equation (7) are chosen as collocation points. The previous substituting yields 
a system of linear algebraic equations which can be solved for seeking coefficient ' sc  by 
rewriting equation (6) and equation (7) equation in matrix form as; 

 
=Ac F                                                     (8) 

 
where  

[ ]TL M=A A A , ( ) ( )L i jij Lϕ= −A x x , ,i jI X∈ ∈x x , 1, 2, , , 1, 2, ,Ii N j N= = 

( ) ( )M i jij Mϕ= −A x x , ,i jB X∈ ∈x x , 1, , , 1, 2, , ,Ii N N j N= + = 
and 

( ) ( ) T
i if g=   F x x , ( ); , 1, 2, , ,i i If I i N∈ =x x   ( ); , 1, , .i i Ig B i N N∈ = +x x   

Equation (8), the coefficient ' sc are computed from the following system; 
 

1−=c A F                                                   (9) 
 
Therefore, the matrix c  is substituted into equation (1) and the approximate solution of 

( )u x can be determined by; 
 

( ) ( )
1

N

j j
j

u c ϕ
=

= −∑x x x                                       (10) 

 
The system is known to provide solution if and only if the matrix A is non-singular, its 
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inverse exists. This aspect is related directly to its condition number, as can be defined as; 
 

1( ) , 1, 2,δ δ δ
δ−Λ = = ∞A A A                                                 (11) 

 
In the RBF-meshless method, it is well-known that this condition number is strongly 

affected by the magnitude of the shape parameter ε  and the number of nodes involved, N
. For this, the solutions obtained in this work are also monitored in terms of this condition 
number ensuring the solvability of the collocation matrix.  

 
2.2 Implementation towards Convection-Diffusion Type of PDE 

Consider the governing partial differential equation of convection diffusion problems 
expressed as; 

 
2 2

2 2

u u u u u R
t x yx y

α β
   ∂ ∂ ∂ ∂ ∂

− + + + =   ∂ ∂ ∂∂ ∂   
                                    (12) 

 
In this practice, its boundary condition is of Dirichlet type as follows: 
 

0 onu = ∂Ω                                                      (14) 
 
In order to implement the RBF-collocation meshless procedure, the above governing 

equation can be approximated using the summation and becomes; 
 

( ) ( ) ( ) ( )2 2

2 2
1

  ,
N i j i j i j i j

j
j

c R
x yx y

ϕ ϕ ϕ ϕ
α β

=

   ∂ − ∂ − ∂ − ∂ −
   − + + + =
  

 
 

∂ ∂∂ 
 

∂
   

∑
x x x x x x x x

     (15) 

 
for 1, , Ii N= …  and; 

This system can be written in the form of; 
 

[ ]2

1

 ,
N

j ijij
j

c Rα ϕ β ϕ
=

  − ∇ + ∇ =   ∑ for 1, , Ii N= …                              (16) 

 
and 

1

0, 
N

j ij
j

c ϕ
=

=∑  for 1, , .Ii N N= + …                                   (17) 

 
This system can be generated in matrix form and the approximate solutions then can be 

obtained by substituting the coefficients ,jc  obtained by solving the above matrix form, in 
equation (1). 
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3. THE PROPOSED IMQ VARIABLE SHAPE PARAMETER 
It is known that the effectiveness of the RBF-collocation method can well be influenced by 
the choice of the shape parameter. Many researchers have agreed that using variable shape 
parameters provides superior in solution quality (See [16] and references herein). The result 
of allowing the shape parameter to vary locally is that each column of the interpolation 
matrix, matrix A  in (8), no longer contains constant entries leading to lower condition 
number. Several strategies have been proposed for providing reliable numerical solution 
accuracy and they are revisited as shown in Table 2. 

The variable abbreviated as VAR-1 is clearly in an exponential manner and was used in 
Kansa [1] before its further modified version was later invented in Kansa and Carlson [17], 
noted as VAR-2. In their work, it was demonstrated that if 2

minε  and 2
maxε  varied by several 

orders of magnitude, then a very satisfactory result quality can well be expected. Later, a linear 
form of variable shape parameter was proposed and applied to both interpolation and some 
benchmark partial differential equations by Sarra [18] and Sarra and Sturgill [16], as noted in 
Table 2 by VAR-3 and VAR-4 respectively. Here, the command ‘rand’ is the MATLAB 
function that returns uniformly distributed pseudo-random numbers on the unit interval. It was 
proven in their work that the variable shape outperformed the fixed value of parameter 
especially when the scheme includes the information about the minimum distance of a center 
to its nearest neighbor, nh  , with also a user input value µ . In terms or the condition number 
produced by equation (11), it was also found to be considerable smaller over most of the 
average shape range.  

 
Table 2: Variable shaper parameter schemes proposed in literature 
Abbreviation 
used in this work Reference Formulation of ε  for jth-element 

VAR-1 Kansa [1]  

1
1 2

2 1
2 max
min 2

min

j
N

j
ε

ε ε
ε

−
−

 
  =      

 , 1, 2,...,j N=  

VAR-2 Kansa and 
Carlson [11]  

max min
min 1j j

N
ε ε

ε ε
− = +  − 

, 0,1, 2,..., 1j N= −  

VAR-3 Sarra [12]  ( )min max min (1, )j rand Nε ε ε ε= + − ×  

VAR-4 Sarra and 
Sturgill [10]  

( )min max min (1, )j
n

rand N
h
µε ε ε ε = + − ×   

 
In this work, we proposed a new form of variable shape parameter where both linear and 

exponential manners are taken into consideration, expressed as in equation (18).  
 

( )

1
22

2 max
min min max min2

min

(1 )j

ζ
ε

ε ζ ε ζ ε ε ε ζ
ε

  
  = + − + −      

                     (18) 
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where 1
1

j
N

ζ −
=

−
  and 1,2,...,j N= . The automatically self-adjusted parameter ζ is 

introduced and act as a weight function leading jε  to equal to the linear mode when 1j = . 

This weight then sets  jε  to become its exponential manner when j N= . This proposed 
variable shape, equation (18) is referred to as “ VAR-5 ” throughout the work.  

 
4. NUMERICAL EXPERIMENT AND RESULTS 
To demonstrate how effective the variables VAR-1, VAR-2, VAR-3, VAR-4 and VAR-5 
can be, let us consider a 2D convection-diffusion problem in steady state, as given and 
studied in Gu and Liu [19]. The governing equation is expressed as follows; 
 

( ) ( ) ( ) 0T TL u u u u qβ= ⋅∇ −∇ ∇ + − =v D x                                  (19) 

 

The computational domain is taken to be ( ) [ ] [ ], 0,1 0,1 ,x y ∈Ω= ×  and the coefficients 

are 0
,

0
γ

γ
 

=  
 

D { }3 ,4 ,x y= − −v and 1β =  in which γ is a given constant of diffusion 

coefficient. The boundary conditions are set with 0u = on all four sides.  The exact solution 
for this problem is given by; 

 

( ) ( )
( ) ( )2 1 3 1

2, sin 1 1
x y

u x y x e y eγ γ
− −

− −   
   = − −
   
   

                                (20) 

 
Throughout the experiment, all solution obtained are measured using the following error 

norms; 
 

Relative error  = num ext

ext

u u
u
−

                                         (21) 

And 
 

Root Mean Square (RMS) error =  

2

1
( )

N

num ext
i

u u

N
=

−∑
                    (22) 

 
In order to cover as wide aspect as possible, a large number of experiments were carried 

out but only some is presented here. Table 3 – Table 5 show the optimal shape parameter 
value obtained at different levels of diffusion coefficients ( γ ), the number of nodes ( N ), 
and the range of min max( , )ε ε . At relative high value of 10γ =  , it is found that the proposed 
form of variable shape yielded the same level of solutions quality as those obtained from 
other forms gathered from literatures. This is still the case even when the number of nodes 
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and the min max( , )ε ε  range are increasing.  It is interesting to see that the proposed variable 
shape is still numerically compatible with the others even when the problem becomes more 
convective-dominated, 1.0 0.1γ = − , where the same order of error norms magnitudes are 
found as seen in Table 4 and Table 5. 

 
Table 3: Solution quality comparison at different numbers of nodes (100 and 289), 
and the value of minε and maxε  for 10γ = , (Opt means optimal) 

Shape 
Type 

N = 100 
min max( , ) (1,10)ε ε =  min max( , ) (0.1, 20)ε ε =  

Opt Value RMS Relative Error Opt Value RMS Relative Error 
VAR-1 1.00E+00 1.27E-07 1.45E-02 6.51E-01 1.46E-03 1.28E-08 
VAR-2 1.09E+00 1.94E-07 2.22E-02 9.04E-01 8.48E-03 7.41E-08 
VAR-3 1.11E+00 2.08E-07 2.38E-02 7.94E-01 3.96E-03 3.46E-08 
VAR-4 9.38E-01 9.04E-08 1.03E-02 5.40E-01 3.81E-03 3.33E-08 
VAR-5 1.00E+00 1.27E-07 1.45E-02 7.33E-01 2.55E-03 2.22E-08 

Shape 
Type 

N = 289 
min max( , ) (1,10)ε ε =  min max( , ) (0.1,20)ε ε =  

Opt Value RMS Relative Error Opt Value RMS Relative Error 
VAR-1 1.38E+00 4.94E-09 5.66E-04 1.36E+00 3.93E-09 4.49E-04 
VAR-2 1.34E+00 8.27E-09 9.47E-04 1.41E+00 6.57E-09 7.52E-04 
VAR-3 1.19E+00 4.93E-09 5.65E-04 1.23E+00 4.35E-09 4.98E-04 
VAR-4 1.61E+00 1.46E-08 1.67E-03 1.32E+00 4.58E-09 5.24E-04 
VAR-5 1.40E+00 5.18E-09 5.93E-04 1.40E+00 7.23E-09 8.27E-04 

 
Table 4: Solution quality comparison at different numbers of nodes (100 and 289), 
and the value of minε and maxε for 1γ = ,(Opt means optimal) 

Shape 
Type 

N = 100 
min max( , ) (1,10)ε ε =  min max( , ) (0.1, 20)ε ε =  

Opt Value RMS Relative Error Opt Value RMS Relative Error 
VAR-1 1.00E+00 1.78E-05 4.56E-02 7.64E-01 6.12E-06 9.74E-03 
VAR-2 1.09E+00 2.48E-05 6.38E-02 9.04E-01 8.46E-06 1.95E-02 
VAR-3 1.02E+00 1.89E-05 4.87E-02 7.89E-01 6.17E-06 3.07E-02 
VAR-4 1.02E+00 1.91E-05 4.89E-02 7.57E-01 9.35E-06 1.25E-02 
VAR-5 1.00E+00 1.78E-05 4.56E-02 8.10E-01 6.49E-06 1.04E-02 

Shape 
Type 

N = 289 
min max( , ) (1,10)ε ε =  min max( , ) (0.1, 20)ε ε =  

Opt Value RMS Relative Error Opt Value RMS Relative Error 
VAR-1 1.30E+00 5.22E-07 1.34E-03 1.13E+00 6.14E-07 1.56E-03 
VAR-2 1.31E+00 4.39E-07 1.13E-03 1.41E+00 7.31E-07 1.86E-03 
VAR-3 1.17E+00 3.71E-07 9.53E-04 1.18E+00 6.51E-07 1.65E-03 
VAR-4 1.65E+00 1.50E-06 3.85E-03 1.60E+00 1.32E-06 3.35E-03 
VAR-5 1.33E+00 6.01E-07 1.54E-03 1.36E+00 4.95E-07 1.26E-03 
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Table 5: Solution quality comparison at different numbers of nodes (100 and 289), 
and the value of minε and maxε  for 0.1γ = ,(Opt means optimal) 

Shape 
Type 

N = 100 
min max( , ) (1,10)ε ε =  min max( , ) (0.1, 20)ε ε =  

Opt Value RMS Relative Error Opt Value RMS Relative Error 
VAR-1 1.00E+00 4.46E-02 2.51E+01 1.30E+01 2.89E-02 1.63E+01 
VAR-2 1.00E+00 4.46E-02 2.51E+01 1.32E+01 2.85E-02 1.60E+01 
VAR-3 9.35E-01 4.09E-02 2.30E+01 1.33E+01 2.86E-02 1.61E+01 
VAR-4 1.03E+00 4.65E-02 2.62E+01 1.33E+01 2.85E-02 1.60E+01 
VAR-5 1.09E+00 5.47E-02 3.08E+01 1.32E+01 2.85E-02 1.60E+01 

Shape 
Type 

N = 289 
min max( , ) (1,10)ε ε =  min max( , ) (0.1, 20)ε ε =  

Opt Value RMS Relative Error Opt Value RMS Relative Error 
VAR-1 1.58E+00 1.33E-03 7.49E-01 1.64E+00 1.32E-03 7.45E-01 
VAR-2 1.66E+00 1.47E-03 8.29E-01 1.62E+00 1.46E-03 8.22E-01 
VAR-3 1.71E+00 1.48E-03 8.32E-01 1.40E-02 1.42E-03 8.01E-01 
VAR-4 1.73E+00 1.51E-03 8.49E-01 1.67E+00 1.46E-03 8.22E-01 
VAR-5 1.57E+00 1.38E-03 7.75E-01 1.67E+00 1.50E-03 8.44E-01 

 
In terms of the condition number of the interpolation matrix, Figure 2 shows the plots 

where the condition number is seen to decrease around the optimal value of ε .  The larger 
ε  causes ( )δΛ A , as expected, to decrease meaning that the numerical process is farther 
from being affected by the ‘singularity’ problem. With high value of 1γ >  , solution profiles 
obtained from every variable shape under this investigation look similar, as shown in Figure 
2. The effect of the number of collocation nodes is shown in Figure 4. As expected, the 
clearest effect takes place at the corner of the domain, 0.9 , 1.0x y< < , where the boundary 
layers form and grow. The smoother solution profiles around this area as shown can be 
attributed to better support gained from local denser collocation nodes via. the collocation 
scheme used.  

In order to compare the results obtained in this study to one of the benchmarks in 
literature namely Gu and Liu [19], and also to some of our pervious works, a new error 
indicator (Err), is adopted and defined as;  

 

Err  
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2

1
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exact num
i i
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u u

u
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=

−
=

∑

∑
                                                 (23) 

 
Table 6 contains the error, defined in equation (23), comparing amongst those obtained 

from this study, from our previous work, and those from Gu and Liu [19]. NAA* and IMQ* 
represent respectively, errors produced by the use of another popular numerical method 
called ‘dual reciprocity boundary element method (DRBEM)’ in which RBF plays also a 
crucial role. In this work, the optimal shape parameter was obtained purely by performing 
a large number of numerical experiments.  It can be seen from Table 6 that when γ is 
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comparatively high, i.e. 1γ > , all solutions are in good agreement with the exact and close 
to one another. The error tends to get larger when the convective force becomes dominant, 
i.e. 1γ < , and this is well-known as the problem is encountering the instability problem. 
Nevertheless, it is interestingly to see that the variable shape proposed in this work produced 
a comparatively, slightly better quality than both Var-1, Var-3, and NAA*, IMQ*.  

 
Table 6: Comparison of Err at different levels of convection force, computed 
with 289 nodes and min max( , ) (0.1, 20)ε ε = , (Opt means optimal) 

γ  
Gu and Liu 
[19] 

NAA* 
(ε=10) 

IMQ* 
(ε =0.01) 

Var-1 
(Opt. ε ) 

Var-3 
(Opt. ε ) 

Var-5 
(Opt. ε ) 

100 0.245 0.435 0.990 0.598  
(ε =1.21 ) 

0.412  
(ε =1.32 ) 

0.355  
(ε =1.51 ) 

10 0.255 0.371 0.912 0.562  
(ε =1.36 ) 

0.514 
(ε =1. 23) 

0.398 
(ε =1. 40) 

1 0.346 0.589 3.849 0.512  
(ε =1. 13) 

0.551 
(ε =1. 18) 

0.420 
(ε =1.36 ) 

0.1 1.276 38.307 15.417 14.512 
(ε =1.64 ) 

13.236  
(ε =1. 40) 

10.251 
(ε =1.67 ) 

0.01 15.832 1970.006 67.072 28.236  
(ε =1. 76) 

36.254  
(ε =1.64 ) 

17.125  
(ε =1.81 ) 

*Adopted from Chanthawara et.al [4] 
 

 
Figure 2: Interpolation matrix condition number, equation (11), generated at 5γ = , 

361N = with different variable shape parameters and at a wide range of ε   
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Figure 3: Solution profile comparison computed with 100 computing nodes, 10γ =  
and min max( , ) (0.1, 20)ε ε = ; above) with VAR-1, and below) with VAR-5 
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Figure 4: Solution profile comparison between those computed with 100 
computing nodes (left column), and with 289 computing nodes (right column), at 

0.1γ =    

 
5. CONCLUSIONS 
In this investigation, three main objectives are aimed. Firstly, we have successfully applied 
the methodology of meshless method using radial basis function to PDE of convection-
diffusion type. Secondly, we have gathered variable shape parameters proposed in literature 
that are designed mostly for multiquadric type of RBF. We also performed numerical test 
on these shapes in conjunction with inverse multiquadric RBF. Last but not least, we have 
proposed in this work a new form of variable shape parameter that acts both linearly and 
exponentially, depending on the local distant norm. A large number of numerical 
experiments have been carried out in order to gather as much information as possible and 
some useful findings achieved in this work are as follows;  
• It is demonstrated that the RBF-collocation method can well be another alterative 

numerical tool for solving convection-diffusion type of PDEs.  
• All forms of shape parameters investigated here resulted in the same trend of condition 

number.  
• Observed from all forms under investigation, the optimal values of shape parameter ε   

is seen to be between 0.9 – 1.50 in most cases where the range of values of ε , i.e. 
min max( , )ε ε , is seen not to significantly influence the accuracy of the final results.   
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• The local node-density gives a notable effect where higher gradient in local problem 

parameters takes place.  
• The variable shape parameter proposed in this work is numerically proven to perform 

well when compared to those that are available in literature. A slightly better solution 
quality is also seen in the case where the problem becomes convective-dominated.   

In the case where the problem is even more convective-dominated (i.e. 1γ   ), 
nevertheless, the situation could be totally different, as encounter by many researchers. At 
this range it is well-known that the problem of instability can well ruin the whole simulation. 
From this, it is our further objective that some local feature such as the Peclet number should 
be taken into consideration when designing a new variable shape for inverse-multiquadric. 
This prompts the main objective of our future investigation.  
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