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ABSTRACT 
The Doppler shift of the near and far Waves due to the electromagnetic 

source in motion is investigated. Using the decomposition of Green’s 

function for the wave in the case of classical oscillating electron motion, it is 

found that there are some regulative conditions of the phenomena. The 

present theory proves that the shift is undefined in the adjacent area. In fact, 

in the vicinity of the source the wave number is very small so that the delay 

effects become negligible and the phase is imprecise. Actually, the 

spectrum of the radiation field in the adjacent area is ambiguous. The current 

theory establishes a regular Doppler effect in the distant area. In fact, the 

wave number can never be achieved. Taking account of the source motion, 

the immobile observer can in all way stay sometime in the far field zone to 

obtain all the information on the field. Bearing in mind that the propagator 

coupled with the electric field takes a shifted frequency. Once, the 

relationship between the far-field frequency, the oscillating dynamic source 

have been established, the spectrum exists and can be analyzed.. 

 

 
1. INTRODUCTION  
Consider an observer in free space is immobile relative to a classical oscillating electron 
motion; the apparent color of the source is changed by its motion. The motion of the source 
causes the waves in the face of the source to be compressed whereas behind it to be 
extended. The electric field frequency measured by the observer will be upper than the 
source frequency. It tends to blue shift when approaching each other. Being lower, it tends 
to red shift particularly when it is more widely spaced. This effect is known as the Doppler 
effect [1]. As an invention it has mainly offered a subject for researchers with various 
applications ranging from the electromagnetic to acoustic domain [2]. The Doppler effect 
is essentially applicable to astronomy. It enables astronauts to calculate the speed of the 
light-emitting objects such as galaxies and Extra Solar Planets like Gliese 581c [3] was 
discovered in April 2007 by Doppler spectroscopy through the use of the HARPS 
spectrograph. This discovery is important in the domain of the free electron laser [4,5]. In 
fact, the oscillating electrons can be observed as an oscillating electric dipole. It offers 
radiation with the same frequency of oscillation, Doppler shifted when changed back to the 
laboratory frame. The most important result of such an effect is the dependence of the 
wavelength on the electron beam energy. Then, the FEL can be tunable over a large 
bandwidth. 

As it is a known phenomenon in physics, the Doppler effect has been considered with 
diverse processes [6,7]. David Erzen simulating single charged particle motion in external 
magnetic and electric fields without take account the radiation created by the electron in 
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case of the vicinity and far from the source [8]. The majority of these processes are simply 
involved in the way of how to determine the calculated frequency, regardless the electric field, 
despite it is recognized that the frequency of the electric field can not in any circumstances be 
measured prior to the finding of the field itself. Consequently, these processes can’t explain, 
quantitatively, the physical method that causes classical oscillating electron motion which is 
expressed in the source of the electric field frequency. Since they do not address the electric 
field, these methods can’t respond to the inquiry of knowing whether the Doppler effect is 
constantly regular or it is only applicable when some surroundings are fulfilled. The inquiry 
denotes that the present understanding about the Doppler effect is unfinished and a further 
research is needed. To implement this examination of Doppler effect, the dyadic Green’s 
function for the electric field is useful. The standard dyadic Green function description of the 
electromagnetic field generated by an electric point source is modified and corrected by Keller 
[9]. Instead of dividing the field itself, Arnoldus [10] splits the dyadic Green’s function 
through linking the field to its source. The result is conducive to any electric field whatever 
its source is. Different approaches are used to study the Doppler effect. First, the radiative 
term of Green’s function which permits the calculation of the far electric field spectrum in 
integral form is only taken from the splitting. In this respect, the relationship between the far 
field frequency, the oscillating dynamic source is established. This relationship does not only 
clarify the physics in line with the Doppler effect quantitatively but also highlights the 
circumstances in which the effect is applicable. Second, the splitting is restricted to a quasi-
static Green function where the retardation effects are entirely neglected. 

In the current article, a general method is applied to examine the conditions in which the 
Doppler effect is appropriate. Maxwell's equations, in free space which means an absence of 
dielectric are combined, to form the second order electric vector wave equation. This equation 
is solved with the help of a matrix approach recognized as the dyadic Green's function. The 
Green's-function formalism grants a suitable straightforward method to calculate the electric 
field. The electric wave equation and the Green's-function method are introduced at first. 
Within this context, the electrons distributive charge is in motion, it is localized in space much 
smaller than the wavelength. Under these conditions, It is possible to develop, in space at a 
fixed time, the Dirac delta function in the Taylor series of the associated current density 𝑱𝑱(𝒓𝒓𝟏𝟏,t) 
about the origin. In addition, in the vicinity of the source the wave number is very small so 
that the delay effects become negligible and the phase is imprecise. Thereafter, after some 
tedious algebra we demonstrate how this approach is used to show Doppler effect is regular 
only in far zone.  

 
2. THE PHYSICAL PROBLEM AND CHOICE OF GREEN FUNCTION 
Within the classical electromagnetic theory, the recognized solution of Maxwell's equations 
is discussed by the incoming of the dyadic Green's function. Our basic assumption is the 
inhomogeneous Maxwell's equations in free space which means an absence of dielectric or 
permeable media: 

 

𝛁𝛁 × 𝑩𝑩 − 𝜀𝜀0𝜇𝜇0
𝜕𝜕𝑬𝑬
𝜕𝜕𝜕𝜕

= 𝜇𝜇0𝑱𝑱 (1) 
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𝛁𝛁 × 𝑬𝑬 +
𝜕𝜕𝑩𝑩
𝜕𝜕𝜕𝜕

= 0 (2) 

 
It is frequently suitable to work with the Fourier transform and its inverse of an arbitrary 

function F which are defined as follows: 
 

𝐹𝐹(𝒓𝒓,𝜔𝜔) = �𝐹𝐹(𝒓𝒓, 𝑡𝑡)
∞

−∞

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑 (3) 

 

𝐹𝐹(𝒓𝒓, 𝑡𝑡) =
1

2𝜋𝜋
� 𝐹𝐹(𝒓𝒓,𝜔𝜔)
∞

−∞

𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑 (4) 

 
By combining the two Maxwell equations and eliminating the magnetic field, the second 

order equation for the electric field is obtained. A simple calculation establishes the wave 
equation in the following form, 
 

�𝛁𝛁2 −
1
𝑐𝑐2

𝜕𝜕2

𝜕𝜕𝑡𝑡2
�𝑬𝑬(𝒓𝒓, 𝑡𝑡) − 𝛁𝛁𝛁𝛁.𝑬𝑬(𝒓𝒓, 𝑡𝑡) = 𝜇𝜇0

𝜕𝜕𝑱𝑱(𝒓𝒓, 𝑡𝑡)
𝜕𝜕𝜕𝜕

 (5) 

 
Applying Eq. (1) to the time dependent quantities in Eq. (5) gives wave equation in terms 

of the electric field in a complex form, 
 

�𝛁𝛁2 +
𝜔𝜔2

𝑐𝑐2
�𝑬𝑬(𝒓𝒓,𝜔𝜔) − 𝛁𝛁𝛁𝛁.𝑬𝑬(𝒓𝒓,𝜔𝜔) = −𝑖𝑖𝑖𝑖0𝜔𝜔𝑱𝑱(𝒓𝒓,𝜔𝜔) (6) 

 
Where 𝜇𝜇0 and c are the vacuum magnetic permeability and the speed of light respectively. 
𝑬𝑬(𝒓𝒓, 𝑡𝑡) and 𝑱𝑱(𝒓𝒓, 𝑡𝑡) quantities are Fourier transformable. They can be substituted into wave 

equation to obtain 
 

𝓛𝓛𝓛𝓛(𝒓𝒓,𝜔𝜔) = −𝑖𝑖𝜇𝜇0𝜔𝜔𝑱𝑱(𝒓𝒓,𝜔𝜔) (7) 

 
Where 𝓛𝓛 = 𝛁𝛁2 + 𝐿𝐿02 𝑰⃡𝑰 − 𝛁𝛁𝛁𝛁 is the linear operator relating 𝑱𝑱 and 𝑬𝑬 at a fixed frequency. 𝛁𝛁 

is the derivative operator, 𝒓𝒓 is the radius vector, 𝐿𝐿0  is the scalar wave number, 𝑰⃡𝑰 is the 
identity dyadic and 𝛁𝛁𝛁𝛁 is a double gradient which in a cartesian system of coordinates are 
defined by , 
 

𝑰⃡𝑰 = � �𝒆𝒆𝒎𝒎𝒆𝒆𝒏𝒏𝛿𝛿𝑚𝑚𝑚𝑚

3

𝑛𝑛=1

3

𝑚𝑚=1
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𝛁𝛁𝛁𝛁 = � �𝒆𝒆𝒎𝒎𝒆𝒆𝒏𝒏
𝜕𝜕
𝜕𝜕𝑥𝑥𝑚𝑚

𝜕𝜕
𝜕𝜕𝑥𝑥𝑛𝑛

3

𝑛𝑛=1

3

𝑚𝑚=1

  

 
Where 𝑥𝑥𝑖𝑖  (i = 1, 2, 3) are the Cartesian coordinates,𝒆𝒆𝒊𝒊 (i = 1, 2, 3) are the unit base vectors, 

and the symbol 𝛿𝛿𝑚𝑚𝑚𝑚 is the Kronecker delta, which is 1 for m = n and 0 for m ≠n. 
The inverse linear operator 𝓛𝓛−1 with the kernel 𝑮⃖𝑮�⃗ 𝜔𝜔(𝒓𝒓) can participate to calculate the field 

𝑬𝑬(𝒓𝒓,𝜔𝜔) by the following relational equation 
 

𝑬𝑬(𝒓𝒓,𝜔𝜔) = −𝑖𝑖𝜇𝜇0𝜔𝜔𝓛𝓛−1𝑱𝑱(𝒓𝒓,𝜔𝜔) (8) 

 
The physical meaning of 𝑮⃖𝑮�⃗ 𝜔𝜔(𝒓𝒓, 𝒓𝒓0) is a field, measured at point 𝒓𝒓, due to a unit point source 

δ(𝒓𝒓 − 𝒓𝒓0) localized at 𝒓𝒓0. Then it can be considered by 
 

𝑮⃖𝑮�⃗ 𝜔𝜔(𝒓𝒓, 𝒓𝒓0) = 𝓛𝓛−1 δ(𝒓𝒓 − 𝒓𝒓0) (9) 

 
In free space an integral solution of the electric field 𝑬𝑬(𝒓𝒓,𝜔𝜔) is obtained from Eq.(9) 
 

𝑬𝑬(𝒓𝒓,𝜔𝜔) = −𝑖𝑖𝜇𝜇0𝜔𝜔� 𝑮⃖𝑮�⃗ 𝜔𝜔(𝒓𝒓, 𝒓𝒓0). 𝑱𝑱(𝒓𝒓0,𝜔𝜔)𝑑𝑑3𝒓𝒓0 (10) 

 
𝑮⃖𝑮�⃗ (𝒓𝒓, 𝒓𝒓0) is a 3 × 3 tensor of second order. It is so called dyadic Green function. When the 

electric field is considered as a vector, the equivalent of the Green function is more complex. 
However, in the construction of  𝑮⃖𝑮�⃗ 𝜔𝜔(𝒓𝒓, 𝒓𝒓0) , in free space, is much simpler when the wave 
equation is used for the vector field 𝑬𝑬(𝒓𝒓,𝜔𝜔). Moreover, it eliminates the selection of any 
fastidious gauge in the solution as Eq. (10) relates the source straightforwardly to the field. 
The solution of Eq. (9) in dyadic Green function is given by 

 

𝑮⃖𝑮�⃗ 𝜔𝜔(𝒓𝒓, 𝒓𝒓0) = −�𝑰⃡𝑰 +
𝛁𝛁𝛁𝛁
𝐿𝐿02

 �  𝑔𝑔𝜔𝜔(𝒓𝒓 − 𝒓𝒓0) (11) 

 
In free space scalar Green function satisfies the Eq (A6). A spherical symmetric suitable 

solution can be accorded [11], 
 

𝑔𝑔𝜔𝜔(𝒓𝒓 − 𝒓𝒓0) =
𝑒𝑒𝑖𝑖𝑙𝑙0𝑅𝑅

4𝜋𝜋𝜋𝜋
 (12) 

 
Where 𝑅𝑅 = |𝒓𝒓 − 𝒓𝒓0|, the Eq(11) can be written in the form 
 

𝑮⃖𝑮�⃗ 𝜔𝜔(𝒓𝒓, 𝒓𝒓0) = −�𝑰⃡𝑰 +
𝛁𝛁𝛁𝛁
𝐿𝐿02

 �  
𝑒𝑒𝑖𝑖𝑙𝑙0𝑅𝑅

4𝜋𝜋𝜋𝜋
 (13) 
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The solution of the electric field can be expressed in terms of the dyadic Green’s function 
𝑮⃖𝑮�⃗ 𝜔𝜔(𝒓𝒓, 𝒓𝒓0) as 
 

𝑬𝑬(𝒓𝒓,𝜔𝜔) = 𝑖𝑖𝜇𝜇0𝜔𝜔��𝑰⃡𝑰 +
𝛁𝛁𝛁𝛁
𝐿𝐿02

 �  𝑔𝑔𝜔𝜔(𝒓𝒓 − 𝒓𝒓0). 𝑱𝑱(𝒓𝒓0,𝜔𝜔)𝑑𝑑3𝒓𝒓0 (14) 

 
If the electrons distributive charge is in motion, it is localized in space much smaller than 

the wavelength. It is possible to develop, in space at a fixed time, the Dirac delta function 
in the Taylor series of the associated current density 𝑱𝑱(𝒓𝒓𝟏𝟏,t) around the center of the 
distribution.  It is located at 𝒓𝒓𝟎𝟎  
 

𝑱𝑱(𝒓𝒓𝟏𝟏, 𝑡𝑡) = �� 𝑱𝑱(𝒓𝒓′, 𝑡𝑡) 𝑑𝑑3𝒓𝒓′�  δ(𝒓𝒓𝟏𝟏 − 𝒓𝒓𝟎𝟎)

− ��𝑱𝑱(𝒓𝒓′, 𝑡𝑡) (𝒓𝒓′ − 𝒓𝒓𝟎𝟎)𝑑𝑑3𝒓𝒓′� .𝛁𝛁δ(𝒓𝒓𝟏𝟏 − 𝒓𝒓𝟎𝟎) + ⋯ 
(15) 

 
What is retained is the simplified first term in the series such that 𝑱𝑱𝟎𝟎(𝑡𝑡)δ(𝒓𝒓𝟏𝟏 − 𝒓𝒓𝟎𝟎). In 

this stage it is convenient to express 𝑱𝑱(𝒓𝒓𝟏𝟏,𝜔𝜔) in terms of the Fourier transform of 𝑱𝑱(𝒓𝒓𝟏𝟏, 𝑡𝑡), 
 

𝑱𝑱(𝒓𝒓𝟏𝟏,𝜔𝜔) = � 𝑱𝑱(𝒓𝒓𝟏𝟏, 𝑡𝑡)
∞

−∞

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑 (16) 

 
By substituting the first term in integral of Eq. (16), the following equation is obtained 

 

𝑱𝑱(𝒓𝒓𝟏𝟏,𝜔𝜔) = � 𝑱𝑱𝟎𝟎(𝑡𝑡)δ(𝒓𝒓𝟏𝟏 − 𝒓𝒓𝟎𝟎)
∞

−∞

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑 (17) 

 
where 𝑱𝑱𝟎𝟎(𝑡𝑡) represents the Fourier transform inverse of  𝑱𝑱𝟎𝟎(𝜔𝜔1), the latter substituted in 
Eq(17) which can be fructuously written as, 
 

𝑱𝑱(𝒓𝒓𝟏𝟏,𝜔𝜔) =
1

2𝜋𝜋
�𝑱𝑱0(𝜔𝜔1)δ�𝒓𝒓𝟏𝟏 − 𝒓𝒓𝟎𝟎(𝑡𝑡)�
∞

−∞

𝑒𝑒𝑖𝑖(𝜔𝜔−𝜔𝜔1)𝑡𝑡𝑑𝑑𝜔𝜔1𝑑𝑑𝑑𝑑 (18) 

 
Where 𝜔𝜔 and 𝜔𝜔1 are the radiative and oscillation frequencies respectively. 
when Eq.(18) is substituted in Eq.(10) with regard to the Green’s function propriety, it 

leads to the equation as follows, 
 

𝑬𝑬(𝒓𝒓,𝜔𝜔) = −
𝑖𝑖𝜇𝜇0𝜔𝜔

2𝜋𝜋
� 𝑒𝑒𝑖𝑖(𝜔𝜔−𝜔𝜔1)𝑡𝑡𝑑𝑑𝑑𝑑
∞

−∞

�𝑮⃖𝑮�⃗ 𝜔𝜔�𝒓𝒓, 𝒓𝒓𝟎𝟎(𝑡𝑡)�𝑱𝑱0(𝜔𝜔1)  𝑑𝑑𝜔𝜔1 (19) 
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Where 𝑱𝑱0(𝜔𝜔1) is the current density oscillates with a singularly principal frequency 𝜔𝜔0 and 

can be written in the form 𝑱𝑱0𝛿𝛿(𝜔𝜔1 − 𝜔𝜔0). The electric field is radiated at position vector 
𝒓𝒓𝟎𝟎(𝑡𝑡) (in the source charge distribution), and an observer at position 𝒓𝒓 measures the field 
radiation  at time t, the time delay for the field to travel from the source to the observer is 
�𝒓𝒓−𝒓𝒓𝟎𝟎�𝑡𝑡 ′��

𝑐𝑐
, then  the retarded time is 𝑡𝑡 ′ = 𝑡𝑡 − �𝒓𝒓−𝒓𝒓𝟎𝟎�𝑡𝑡 ′��

𝑐𝑐
. Inserting Eq. (13) into Eq. (19) gives 

 
𝑬𝑬(𝒓𝒓,𝜔𝜔)

= −
𝑖𝑖𝜇𝜇0𝜔𝜔

2𝜋𝜋
� 𝑒𝑒𝑖𝑖(𝜔𝜔−𝜔𝜔1)𝑡𝑡

∞

−∞

𝑑𝑑𝑑𝑑 �

 

−�𝑰𝑰 +
𝛁𝛁𝛁𝛁
𝐿𝐿02

 �  
𝑒𝑒𝑖𝑖𝑙𝑙0�𝒓𝒓−𝒓𝒓𝟎𝟎�𝑡𝑡 ′��

4𝜋𝜋|𝒓𝒓 − 𝒓𝒓𝟎𝟎(𝑡𝑡 ′)|

∞

−∞

𝑱𝑱0(𝜔𝜔1) 𝑑𝑑𝜔𝜔1 (20) 

 
The electric field in Eq. (20) is the total field from the source, including both radiative and 

non-radiative terms. In this integral, there is a dyadic form  �𝑰⃡𝑰 + 𝛁𝛁𝛁𝛁
𝐿𝐿0
2  � applied at the scalar 

Green function 𝑔𝑔𝜔𝜔�𝒓𝒓 − 𝒓𝒓𝟎𝟎(𝑡𝑡 ′)�which can be simplified. It can indicate the only far radiative 
Green function related to 𝒓𝒓𝟎𝟎(𝑡𝑡 ′) electron trajectory  

 

𝑮⃖𝑮�⃗ 𝜔𝜔(𝒓𝒓, 𝒓𝒓𝟎𝟎) = −
1

4𝜋𝜋
�𝑰⃡𝑰 −

�𝒓𝒓 − 𝒓𝒓𝟎𝟎(𝑡𝑡 ′)��𝒓𝒓 − 𝒓𝒓𝟎𝟎(𝑡𝑡 ′)�
|𝒓𝒓 − 𝒓𝒓𝟎𝟎(𝑡𝑡 ′)|𝟐𝟐 �

𝑒𝑒𝑖𝑖𝑙𝑙0�𝒓𝒓−𝒓𝒓𝟎𝟎�𝑡𝑡 ′��

|𝒓𝒓 − 𝒓𝒓𝟎𝟎(𝑡𝑡 ′)|

+ 𝓞𝓞��𝒓𝒓 − 𝒓𝒓𝟎𝟎(𝑡𝑡 ′)�
−𝟐𝟐
� 

(21) 

 
The Terms which are of the following superior order �𝒓𝒓 − 𝒓𝒓𝟎𝟎(𝑡𝑡 ′)�−1 are ignored. They do 

not contributed to the radiation field. The unit vector in this expression 𝒓𝒓−𝒓𝒓𝟎𝟎�𝑡𝑡
′�

�𝒓𝒓−𝒓𝒓𝟎𝟎�𝑡𝑡 ′��
= 𝒏𝒏, is the 

direction from the retarded position of the electron to the observer as is located(𝒓𝒓). Under this 
statement the observer is situated in the far-zone which falls off as 1

|𝒓𝒓−𝒓𝒓𝟎𝟎|
. As a consequence,  

in accordance with [11], it is  rewritten as  𝑒𝑒
𝑖𝑖𝑙𝑙0�𝒓𝒓−𝒓𝒓𝟎𝟎�𝑡𝑡′��

�𝒓𝒓−𝒓𝒓𝟎𝟎�𝑡𝑡 ′��
≈ 𝑒𝑒𝑖𝑖𝑙𝑙0|𝒓𝒓|

|𝒓𝒓|
. Changing the variable from the 

observation time t to the emission time  𝑡𝑡 ′ after substituting Eq. (21) into  Eq. (20) the field in 
dyadic notation is obtained accordingly as, 

 

𝑬𝑬(𝒓𝒓,𝜔𝜔) =
𝑖𝑖𝜇𝜇0𝜔𝜔
8𝜋𝜋2

𝑒𝑒𝑖𝑖𝑙𝑙0(|𝒓𝒓|)

|𝒓𝒓| ��𝑰⃡𝑰 − 𝒏𝒏(𝑡𝑡 ′)𝒏𝒏(𝑡𝑡 ′)� 𝑱𝑱0𝑒𝑒
𝑖𝑖[(𝜔𝜔−𝜔𝜔0)(𝑡𝑡′+

�𝒓𝒓−𝒓𝒓𝟎𝟎�𝑡𝑡′��
𝑐𝑐 )]

∞

−∞

(1− 𝒏𝒏(𝑡𝑡 ′).𝜷𝜷(𝑡𝑡 ′))𝑑𝑑𝑡𝑡 ′ (22) 

 
While the study point is assumed to be distant from the area of space, the unit vector 𝒏𝒏 is 

nearly constant in time. Moreover the distance�𝒓𝒓 − 𝒓𝒓𝟎𝟎(𝑡𝑡 ′)� is almost written by �𝒓𝒓 − 𝒓𝒓𝟎𝟎(𝑡𝑡 ′)� ≈
|𝒓𝒓| −  𝒏𝒏(𝑡𝑡 ′). 𝒓𝒓𝟎𝟎(𝑡𝑡 ′). 
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According to the electromagnetic theory, dyadic details are often used succinctly. If the 
reader becomes customary with the notations, it can be used in some circumstances once 
manipulated by vector operations. A simple example given in current work is the 
operator�𝑰⃡𝑰 − 𝒏𝒏𝒏𝒏 � which is applied to 𝑱𝑱0. It gathers the componential current transversely 
directed to the furthest sight. The latter operator which appears in the electric field integrals 
can be represented by 𝑱𝑱0 − (𝒏𝒏. 𝑱𝑱0)𝒏𝒏. Then Eq. (22) can be written as 
 

𝑬𝑬(𝒓𝒓,𝜔𝜔) =
𝑖𝑖𝜇𝜇0𝜔𝜔
8𝜋𝜋2

𝑒𝑒𝑖𝑖𝑙𝑙0(|𝒓𝒓|)

|𝒓𝒓| �[𝑱𝑱0 − (𝒏𝒏. 𝑱𝑱0)𝒏𝒏]𝑒𝑒
𝑖𝑖�(𝜔𝜔−𝜔𝜔0)�𝑡𝑡′+

�𝒓𝒓−𝒓𝒓𝟎𝟎�𝑡𝑡′��
𝑐𝑐 ��

∞

−∞

(1− 𝒏𝒏(𝑡𝑡 ′).𝜷𝜷(𝑡𝑡 ′))𝑑𝑑𝑡𝑡 ′ (23) 

 
3. REGULAR AND ANOMALOUS DOPPLER EFFECT 
Obviously, the integral in time of Eq. (23) accounts for the frequency 𝜔𝜔 of the radiative 
field which is not the same as the oscillation frequency 𝜔𝜔0 of the source. This difference is 
caused by the motion of the source characterized by its velocity 𝑣𝑣0(𝑡𝑡 ′). If the argument of 
the exponential term of the latter expression is developed in the far field region of the source 
the following equation is attained, 
 

(𝜔𝜔−𝜔𝜔0)(𝑡𝑡 ′ + �𝒓𝒓−𝒓𝒓𝟎𝟎�𝑡𝑡 ′��
𝑐𝑐

)= (𝜔𝜔−𝜔𝜔0)(𝑡𝑡 ′ + |𝒓𝒓|
𝑐𝑐

)- ∫(𝜔𝜔−𝜔𝜔0) 𝒏𝒏(𝑡𝑡 ′). 𝒗𝒗𝟎𝟎(𝑡𝑡 ′)
𝑐𝑐

𝑑𝑑𝑡𝑡 ′ (24) 

 
The phase of the integral form of the electric field shows that it is affected by the source 

velocity. This expression shows that any motion of the source makes the radiative Green 

function be related to 𝒓𝒓𝟎𝟎(𝑡𝑡 ′) in order to take an oscillation frequency (𝜔𝜔−𝜔𝜔0) 𝒏𝒏(𝑡𝑡 ′). 𝒗𝒗𝟎𝟎(𝑡𝑡 ′)
𝑐𝑐

 
which surely yields the electric field frequency. It is accountable for the Doppler effect  
inducing  a retarded time. Defining a condition for the far-field zone by assuming that n 
does not vary with time(𝑑𝑑𝒏𝒏

𝑑𝑑𝑡𝑡 ′
= 0) the Eq. (24) can be written this way, 

 

𝑬𝑬(𝒓𝒓,𝜔𝜔) =
𝑖𝑖𝜇𝜇0𝜔𝜔
8𝜋𝜋2

𝑒𝑒𝑖𝑖𝑙𝑙0(|𝒓𝒓|)

|𝒓𝒓| [𝑱𝑱0 − (𝒏𝒏. 𝑱𝑱0)𝒏𝒏] � 𝑒𝑒
𝑖𝑖�(𝜔𝜔−𝜔𝜔0)�𝑡𝑡′+|𝒓𝒓|

𝑐𝑐 �− ∫(𝜔𝜔−𝜔𝜔0) 𝒏𝒏.
𝒗𝒗𝟎𝟎�𝑡𝑡 ′�
𝑐𝑐 𝒅𝒅𝑡𝑡′�

∞

−∞

(1 − 𝒏𝒏.𝜷𝜷(𝑡𝑡 ′))𝑑𝑑𝑡𝑡 ′ (25) 

 
Any type of the source trajectory can be applied. For example an electric point source 

characterized by uniform motion can be chosen. The Fourier transform of the electric field 
in this case is  
 

𝑬𝑬(𝒓𝒓,𝜔𝜔) =
𝑖𝑖𝜇𝜇0𝜔𝜔

4𝜋𝜋
𝑒𝑒𝑖𝑖𝑙𝑙0(|𝒓𝒓|)

|𝒓𝒓| [𝑱𝑱0 − (𝒏𝒏. 𝑱𝑱0)𝒏𝒏] �1 − 𝒏𝒏.
𝒗𝒗𝟎𝟎
𝑐𝑐 � 𝛿𝛿(𝜔𝜔�1 − 𝒏𝒏.

𝒗𝒗𝟎𝟎
𝑐𝑐 � − 𝜔𝜔0) (26) 

 
The Dirac delta function exit only if the frequency takes the following value 

 

𝜔𝜔 =
𝜔𝜔0

�1 − 𝒏𝒏.𝒗𝒗𝟎𝟎𝑐𝑐 �
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which is the celebrated relation for the usual or ordinary Doppler effect. Besides, in the far 
region, the local of the constant phase is considered as spherical surfaces, approximated by 
the plane ones which are equidistant. 

In the near zone, 𝑙𝑙0�𝒓𝒓 − 𝒓𝒓𝟎𝟎(𝑡𝑡 ′)� ≪ 1 is necessarily attained. The wavelength is much bigger 
than the space where the electric field is relatively calculated in proportion to the source 
position. The radiative Green function in the near zone becomes  

 

𝑮⃖𝑮�⃗ 𝜔𝜔(𝒓𝒓, 𝒓𝒓𝟎𝟎) =
1

4𝜋𝜋𝑙𝑙02
�𝑰⃡𝑰 −

𝟑𝟑�𝒓𝒓 − 𝒓𝒓𝟎𝟎(𝑡𝑡 ′)��𝒓𝒓 − 𝒓𝒓𝟎𝟎(𝑡𝑡 ′)�
|𝒓𝒓 − 𝒓𝒓𝟎𝟎(𝑡𝑡 ′)|𝟐𝟐 �

𝑒𝑒𝑖𝑖𝑙𝑙0�𝒓𝒓−𝒓𝒓𝟎𝟎�𝑡𝑡 ′��

|𝒓𝒓 − 𝒓𝒓𝟎𝟎(𝑡𝑡 ′)|𝟑𝟑 (27) 

 
If the small distance dependent phase shift is contained in the 𝑒𝑒𝑖𝑖𝑙𝑙0�𝒓𝒓−𝒓𝒓𝟎𝟎�𝑡𝑡 ′�� factor, it can be 

neglected. It will be discussed later. Then the near zone Green function is perhaps described 
as a quasi-static Green function. It crops up as the following, 

 

𝑮⃖𝑮�⃗ 𝜔𝜔(𝒓𝒓, 𝒓𝒓𝟎𝟎) =
1

4𝜋𝜋𝑙𝑙02
�𝑰⃡𝑰 − 3𝒏𝒏𝒏𝒏�

|𝒓𝒓 − 𝒓𝒓𝟎𝟎(𝑡𝑡 ′)|𝟑𝟑 (28) 

 
In the near-field interactions based on Eq.(28), inducing  retardation effects are neglected 

Eq. (20) becomes 
 

𝑬𝑬(𝒓𝒓,𝜔𝜔) = −
𝑖𝑖𝜇𝜇0𝜔𝜔

2𝜋𝜋 � 𝑒𝑒𝑖𝑖(𝜔𝜔−𝜔𝜔1)𝑡𝑡

∞

−∞

𝑑𝑑𝑑𝑑 �
1

4𝜋𝜋𝑙𝑙02
�−𝑰𝑰�⃖��⃗ + 3𝒏𝒏𝒏𝒏�

|𝒓𝒓 − 𝒓𝒓𝟎𝟎|𝟑𝟑

∞

−∞

𝑱𝑱0𝛿𝛿(𝜔𝜔1 − 𝜔𝜔0) 𝑑𝑑𝜔𝜔1 (29) 

 

𝑬𝑬(𝒓𝒓,𝜔𝜔) =
𝑖𝑖𝜇𝜇0𝜔𝜔

2𝜋𝜋
1

4𝜋𝜋𝑙𝑙02
� 𝑒𝑒𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡

 

△𝒕𝒕

�𝑰⃡𝑰 − 3𝒏𝒏𝒏𝒏�
|𝒓𝒓 − 𝒓𝒓𝟎𝟎|𝟑𝟑 𝑱𝑱0𝑑𝑑𝑑𝑑 (29) 

 
where △ 𝑡𝑡 is the set times during which the integration is accomplished. While △ 𝑡𝑡 has to 
gratify the obligation  |𝒓𝒓 − 𝒗𝒗𝟎𝟎𝑡𝑡| ≪

𝜆𝜆
2𝜋𝜋

 , its duration does not possess a definite significant 
value, namely that the integral in Eq. (30) which is not adequately defined. In addition, the 
wave number 𝑙𝑙0 = 2𝜋𝜋

𝜆𝜆
= 𝜔𝜔

𝑐𝑐
→ 0 so that the delay effects become negligible and the phase is 

imprecise. It is essentially responsible for the irregular characteristics of the near-region 
Doppler effect. Under these conditions, we are in the limit of the electrostatic approximation.  
In other terms, the spectrum of the radiation field in the near zone is ambiguous. The field 
which varies as 1

|𝒓𝒓−𝒓𝒓𝟎𝟎|𝟑𝟑
 is the electrostatic field. This field is dominant in the close vicinity of 

the source while its amplitude diminishes quickly as a function of distance. Actually, this 
finding is construed as follows: taking account of the source motion, the immobile observer 
can in no way stay sometime in the near field zone to obtain all the information on the field 
spectrum. Similarly, the spectrum of the radiative field in the middle zone, where  |𝒓𝒓 − 𝒗𝒗𝟎𝟎𝑡𝑡| ≈
𝜆𝜆
2𝜋𝜋

 , can never be achieved. In this respect, the variation of the dominant field is as  1
|𝒓𝒓−𝒓𝒓𝟎𝟎|𝟐𝟐

. 
This field is prolonged a little beyond the electrostatic field. Nevertheless, it decreases rapidly 
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with distance. Thus, although the radiation electric field exists in the regions near and 
middle field, their spectrum cannot be obtained in both regions. Hence, the Doppler effect 
is justified restrictively in the far-field area. 
 
4. CONCLUSION  
The fields may be split into three kinds depending on their variation in distance. Briefly, in 
the vicinity of the source, it is an electrostatic field. In fact, the wavelength is much bigger 
than the space where the electric field is relatively calculated in proportion to the source 
position A little beyond the latter, is the induction field. The critical region affects the 
propagation of electromagnetic field. In fact, both fields combined together in an EM wave 
are needed to transport energy from one position to another. But, induction fields can, pass 
no energy as they consist of magnetic or electric field only.  Once it is defined far away 
from the source, it is the radiated field. Solely, in the far field the Fourier transform exists. 
It is the origin of the existence of the phase of a plane wave. Principally, the Doppler effect 
is a result of the source motion and explains the condition of its existence. 

When the observer is in the source’s far-zone field, the Doppler effect is entirely regular. 
It signifies that the Doppler shift is identical to all the field components and it is independent 
of space with the source as a point of departure. When the observer is in the near-zone field 
the Doppler effect is anomalous. 

In the further research, it is possible to concentrate on the differences rather than the 
similarities between the emission of the electric field in the free and the undulated bounded 
space. 
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