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ABSTRACT

We apply a new Euler-Lagrange coupling method to 3-D parachute

problems, which generally involve fluid-structure interactions between a

flexible, elastic, porous parachute canopy and a high-speed airflow. The

method presented couples an Arbitrary Lagrange Euler formulation for the

fluid dynamics and an updated Lagrangian finite element formulation for the

parachute canopy. The Euler-Lagrange coupling handles fluid-structure

interaction without matching the fluid and structure meshes. In order to

take account of the effect of the parachute permeability, this coupling

computes interaction forces based on the Ergun porous flow model. This

paper provides validations for the technique when considering parachute

applications and discusses the interest of this development to the

parachute designer.

Keywords: Euler-Lagrange coupling, porous canopy, Ergun equation, ALE1

formulation, fluid-structure interaction

INTRODUCTION
The parachute design needs to take account of four phases in the airdrop: deployment,
inflation, terminal descent and impact. 

The deployment depends on how the parachute is packed into the bag. It also depends on
the pilot which is a small parachute deployed first to pull the main parachute out of the bag.
Another way of deploying a parachute directly after leaving the aircraft is the static line.

The second phase begins as soon as the parachute canopy is pulled free from the
deployment bag. When air flows into the canopy, the major part is trapped which increases
the pressure differential and inflates the canopy. The remaining part of air that enters the
parachute canopy flows out through the vent, the gaps between the ribbons and the natural
porosity of the fabric. Two forms of porosity are considered in parachute design: geometric
porosity and fabric permeability. Geometric porosity is defined as the ratio of all open areas
or physical gaps to the total canopy area. Fabric air-permeability is defined as the airflow
through the canopy cloth in CFM/ft2 (cubic feet per minute per square foot = 0.00508m/s),
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at 1⁄2 inch water pressure (=0.249082kPa). When considering parachutes consisting of both
geometric porosity and fabric permeability, a term referred to as equivalent porosity is often
used. The Space Shuttle Orbiter landing-brake parachute, and fighter aircraft spin/stall
recovery parachutes, see Figure 1, are examples of parachutes containing high geometric
porosity.  

Figure 1  Parachutes Exhibiting High Geometric Porosity

Parachute porosity, whether geometric or permeability based is an important matter in the
design of a parachute canopy. It affects drag performance, stability and opening forces.
Parachute drag performance, maximum oscillation angle, and opening forces all reduce with
increasing porosity. In the majority of applications, the reduction in stability and opening
forces is advantageous but the decrease in drag is not. Further, a parachute that is too porous
will not open at all. The substitution of an impervious material with a highly permeable
fabric can turn a parachute from a wandering sloth into a plummeting stabilizer. An accurate
consideration of fabric permeability has long eluded the parachute designer. The
permeability of the canopy is devised to limit the “wake recontact phenomenon” or better
known as “canopy collapse”.  Spahr & Wolf [1] first discussed the phenomenon of wake
recontact using wake momentum considerations. They noticed that if the deceleration of the
canopy is too important, the axial velocities in the wake region may be much larger than the
parachute velocity, thus allowing the wake to catch up and collapse the parachute.
Consequently, blowing through a porous fabric to push the wake away is important to
prevent the parachute from collapsing. 

After the inflation process is over, the parachute drops vertically at a speed determined by
the payload weight and the parachute drag characteristics. Terminal descent is close to a
steady-state process and the numerical applications in this paper focus on this phase, for
which experimental results are available in the database of Irvin Aerospace. The last phase,
the impact, is not studied in this paper.

The numerical simulation of the porous parachute problem is a complex fluid-structure
interaction phenomenon. To appropriately simulate, and therefore understand and predict,
this behavior requires an accurate method of assessing this complex relationship. Analysis of
a parachute or a flow field without its associated partner is excluding the inherent interaction
between the two. A general parachute code that can accurately predict three-dimensional FSI

for various parachute systems under the different stages described previously was
developed by T*AFSM (Team for Advanced Flow Simulation and Modeling) [2][3][4].
However, in these approaches, the canopies were impermeable. In the literature, the canopy
permeability in the computation of the fluid-structure interaction can be taken into account
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by vortex element methods [5][6] and grid-based models like the immersed boundary
methods [7] [8] [9] or the Euler-Lagrange coupling formulation [10][11], which was chosen
to carry out the study in this paper.

The first method places vortex elements in regions, where vorticity has been shed from
the canopy surface. These vortex are usually convected, stretched, and diffused in the flow
by solving the vorticity-transport equation derived from the rotational of the Navier-Stokes
momentum equation. Strickland [12] implemented, in a code named VPARA, a vortex
method solving the flow field over axisymmetric bluff bodies. Using this code,  Higuchi et
al [13] modeled the flow behind an accelerating and decelerating disk. In the case of severe
decelerations, the wake rapidly overtook the disk what involved an important reduction of
the drag force; this force could even be negative. Sarpkaya et al. [14] investigated the effects
of the porosity on the wake recontact, through the use of the vortex element method.
However the structure in this study was rigid. For solving the fluid-structure interaction
problem other investigations couples the vortex methods to a finite element method for the
canopy. 

Sundberg [15] successfully coupled the VPARA code [12] with the structural dynamics
code PRONTO2D [16]. Later a similar code, VIPAR [17] (Vortex Inflation Parachute), was
fully coupled to a structural dynamics code for predicting flow past deformable bluff
structure. During the terminal descent the vortex element method accurately models the
wake behind the parachute. However a final model for routine design work should be able to
perform complete numerical simulations of parachute deployment, inflation, and steady
descent. An ALE formulation [18][19] can handle the deployment process, which involves,
in most cases, a fast-transient and unsteady fluid-structure interaction problem whereas the
vortex element method is not designed for this purpose. This method supposes also a
divergence-free flow but in some parachute applications [20] the Mach number can be
enough high to call the assumption of an incompressible flow in question. 

In the grid-based models, the immersed boundary method [7] [8] assumes also an
incompressible flow and the numerical approach is based on a finite difference discretization
of the Navier-Stokes equations. The canopy is a massless boundary required to move at the
local fluid velocity, which takes account of the flux through the pores of the canopy. To
compute the inertia effect of the parachute, the massless boundary is related to a massive
boundary by penalty springs [9]. In this formulation, the action of the elastic canopy on the
fluid is a local body force in the Navier-Stokes momentum equation. A Darcy’s law computes
the body force. Actually the method proposed in this paper is close to the immersed boundary
method. The parachute meshed by Lagrangian finite elements is also immersed in an ALE
grid, which modeled the air fluid flow. However this latter is not supposed divergence-free.
The fluid-structure interaction force computed by an Euler-Lagrange coupling is based on a
law close to the Darcy’s one, the Ergun equation [21]. A description of the method employed
in this paper is detailed in the following parts. First the governing equations for the fluid and
parachute problems are formulated together with boundary conditions. Then a description of
the porous Euler-Lagrange coupling algorithm is presented. Further, this numerical method
is validated by several porous parachute applications with a comparison to experimental
data.    

2. DESCRIPTION OF THE FLUID AND STRUCTURE PROBLEMS
The fluid is solved by using an Eulerian formulation [22] on a Cartesian grid that overlaps
the porous structure, while this latter is discretised by Lagrangian shells based on the
Belytschko-Lin-Tsay formulation [23] . The equations in the following paragraphs are based
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on the Farhat’s formalism [19], which divides the coupled problem in three fields : the fluid,
the structure and the mesh. 

2.1. EULERIAN DESCRIPTION OF NAVIER-STOKES EQUATIONS
For simplicity, the numerical simulations in this paper have been restricted to an Eulerian
formulation for the fluid, although the formulation can be extended to an ALE formulation.
The Eulerian formulation is a particular case of the ALE finite element formulation. Thus a
general ALE point of view is first adopted to solve the Navier-Stokes equations before
presenting the Eulerian formulation.

In the ALE description of motion, an arbitrary referential coordinate is introduced in
addition to the Lagrangian and Eulerian coordinates [24], [25]. The total time derivative of
a variable f with respect to a reference coordinate can be described as Eqn.(1):

(1)

where X� is the Lagrangian coordinate, x� is the ALE coordinate, v� is the particle velocity and
w� is the velocity of the reference coordinate, which will represent the grid velocity for the
numerical simulation, and the system of reference will be later the ALE grid. Thus
substituting the relationship between the total time derivative and the reference configuration
time derivative derives the ALE equations.

Let Ωf �R3, represent the domain occupied by the fluid, and let ∂Ωf denote its boundary.
The equations of mass, momentum and energy conservation for a Newtonian fluid in ALE
formulation in the reference domain, are given by: 

(2)

(3)

(4)

where ρ is the density and σ
=

is the total Cauchy stress given by: 

(5)

where p is the pressure and µ is the dynamic viscosity.  Equations (2)-(4) are completed with
appropriate boundary conditions. The part of the boundary at which the velocity is assumed
to be specified is denoted by ∂Ωf

1. The inflow boundary condition is: 
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(6)

The traction boundary condition associated with Eqn.(4) are the conditions on stress
components. These conditions are assumed to be imposed on the remaining part of the
boundary.

(7)

One of the major difficulties in time integration of the ALE Navier-Stokes equations (2)-
(4) is due to the nonlinear term related to the relative velocity (v� – w� ). For some ALE
formulations, the mesh velocity can be solved using a remeshing and smoothing process. In
the Eulerian formulation, the mesh velocity w� = 0� , this assumption eliminates the remeshing
and smoothing process, but does not simplify the Navier-Stokes equations (2)-(4). To solve
equations (2)-(4), the split approach detailed in [22], [24] and implemented in most
hydrocodes such as LS-DYNA® is adopted in this paper. Operator splitting is a convenient
method for breaking complicated problems into series of less complicated problems. In this
approach, first a Lagrangian phase is performed, using an explicit finite element method, in
which the mesh moves with the fluid particle. In the CFD community, this phase is referred
to as a linear Stokes problem. In this phase, the changes in velocity, pressure and internal
energy due to external and internal forces are computed. The equilibrium equations for the
Lagrangian phase are:

(8)

(9)

The mass conservation equation is used in its integrated form Eqn.(10) rather than as a
partial differential equation [26]. Although the continuity equation can be used to obtain the
density in a Lagrangian formulation, it is simpler and more accurate to use the integrated
form Eqn.(10) in order to compute the current density ρ:

(10)

where ρ0 is the initial density and J is the volumetric strain given by the Jacobian:

(11)
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In the second phase, called advection or transport phase, the transportation of mass,
momentum and energy across element boundaries are computed. This may be thought of as
remapping the displaced mesh at the Lagrangian phase back to its initial position. The
transport equations for the advection phase are:

(12)

where c� = v� – w� is the difference between the fluid velocity v� , and the velocity of the
computational domain w� , which will represent the mesh velocity in the finite element
formulation. In some papers [22], [26] c� is referred as the convective velocity. The
hyperbolic equation system (12) is solved by using a finite volume method. Either a first
order upwind method or second order Van Leer advection algorithm [27] can be used to solve
Eqn.(12). The advection method is successively applied for the conservative variables: mass,
momentum and energy with initial condition φ0(x), which is the solution from the Lagrangian
calculation of equations (8)-(9) at the current time. In Eqn.(12), the time t is a fictitious time:
in this paper, time step is not updated when solving for the transport equation. There are
different ways of splitting the Navier-Stokes problems. In some split methods, each of the
Stokes problem and transport equation are solved successively for half time step. The
following paragraph presents the description of the structure. 

2.2. LAGRANGIAN DESCRIPTION OF THE POROUS CANOPY
In this paragraph the porous structure problem is described at the macroscopic scale and the
Belytschko-Lin-Tsay shell formulation [23] employed to  model the thin porous medium is
compared to the Hughes Liu shell formulation [28].

Let Ωs �R3, the domain occupied by the porous structure, and let ∂Ωs denote its boundary.
An updated Lagrangian finite element formulation is considered: the movement of the thin
porous medium Ωs described by xi (t),(i = 1,2,3) can be expressed in terms of the reference
coordinates Xi (t),(i = 1,2,3) and time t: 

(13)

The momentum equation is given by Eqn.(16) in which σ= is the Cauchy stress, ρ is the
density, f is the force density, is acceleration and n� is the unit normal oriented outward 

at the boundary ∂Ωs : 

(14)

(15)

58 Euler-Lagrange coupling for porous parachute canopy analysis



The solution of Eqn.(14)-(15) satisfies the displacement boundary condition Eqn.(16) on
the boundary ∂Ωs

1 and the traction boundary condition  Eqn.(17) on the boundary ∂Ωs
2. 

(15)

(16)

In this paper, the shell formulation used to model the parachute canopy is the Belytschko-
Lin-Tsay formulation [17]. The Belytschko-Lin-Tsay shell 4-node element is based on a co-
rotational coordinate system and a constitutive computation using a rate of deformation. The
embedded element coordinate system that deforms with the element is defined in term of
four corner nodes. As the element deforms, an angle may exist between the fiber direction
and the unit normal of the element coordinate system. The magnitude of this angle is limited
in order to keep a plane shell geometry. In this local system, the Reissner-Mindlin theory
gives the velocity of any point in the shell according to the velocity of mid-surface and the
rotations of the element’s fibers. Then the rates of deformation are computed at the center of
the element. The new Cauchy stresses are computed by using the material model and by
accounting for the incremental rotation, ∆R= .

For the Hughes-Liu family of shell elements [28], ∆R= is estimated by using an
approximation of the Jaumann rate. Therefore, in every integration points, the instantaneous
rotation field is computed. Moreover, since the Jaumann rate update is performed in the
global system, the stresses and the rates of deformations are rotated from the global
coordinate system to the local coordinate system and, after the update, the new stresses are
rotated back to the global system. Thus, the Jaumann rate rotation requires the most
operation cost in the Hughes-Liu shell process. For the Belytschko family of elements, the
incremental rotation is obtained by expressing the element base vectors at t(n+1) in the local
system at t(n). Since the material rotation is equal to the rotation of the local system, ∆R= is
the identity matrix. This involves the Belytschko-Lin-Tsay shell element is a
computationally efficient alternative to the Hughes-Liu shell element. Then, the element-
centered resultant forces and moments are obtained by integrating the stresses through the
thickness of the shell. The relations between these forces and moments and the local nodal
forces and moments are obtained by performing the principle of virtual power with one point
quadrature.  Finally, the global nodal forces and moments are derived by using the
transformation relations defined by the global components of the corotational unit vectors.
The following section presents the porous Euler-Lagrange coupling method, which handles
the fluid - porous structure problem.

3. FLUID-STRUCTURE INTERACTION
The Lagrangian finite element formulation uses a computational mesh that follows the
material deformation. This approach is efficient and accurate for problems involving
moderate deformations like structure motions or flows that are essentially smooth. When this
latter departs from this kind of smoothness, the ALE or Eulerian formulation must be used
because the finite element mesh is independent from the material flow. This takes away all
problems associated with distorted mesh that are commonly encountered with a Lagrangian
approach. In this paper the Euler Lagrange coupling using a Eulerian formulation for the
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fluid, is more suitable for solving parachute problems and more generally, fast transient
porous fluid-structure interaction problems. First, the Eulerian formulation is able to
simulate fluid large deformations and second, the coupling can handle the interaction
between the fluid and thin porous medium. This method can be described as Eulerian
contact. The following paragraph presents the principle of the coupling .

3.1. POROUS EULER-LAGRANGE COUPLING
In an explicit time integration problem, the main part of the procedure in the time step is the
calculation of the nodal forces. After computation of fluid and structure nodal forces, we
compute the forces due to the coupling, these will only affect nodes that are on the fluid -
porous structure interface. For each structure node, a depth penetration d� is incrementally
updated at each time step, using the relative velocity at the slave and master node. For
this coupling, the slave node is a structure mesh node, whereas the master node is not a fluid
mesh node, it can be viewed as a fluid particle within a fluid element, with mass and velocity
interpolated from the fluid element nodes using finite element shape functions. The location
of the master node is also computed using the isoparametric coordinates of the fluid element.
If  d� n represents the penetration depth at time  , it is incrementally updated in Eqn.(18):

(18)

In Eqn.(18)  in which the fluid velocity vf� is the velocity
at the master node location and the structure velocity vs� is the velocity at the slave node
location. The coupling acts only if penetration occurs, , where  is built
up by averaging normals of structure elements connected to the structure node. The porous
coupling forces are derived from the integration of the Ergun Equation (Ergun, 1952) on the
shell volume:

(19)

in which ẑ is the local position along the fiber direction of the shell element and  is the
porosity: .

µ and ρ are the dynamic viscosity and density, respectively. The coefficient a(µ,ε)is the
reciprocal permeability of the porous shell or viscous coefficient. b(ρ,ε) represents the inertia
coefficient. For flows under very viscous conditions the second term in Eqn.(19), which
represents the inertia effects drops out and the Blake-Kozeny equation for laminar flows in
porous media is obtained. At high rates of flow it is the first term or viscous term, which
drops out and the Blurke-Plummer equation for turbulent flows in porous media is obtained.
For the parachute application the inertia effects should be preponderant. These coefficients
can be derived from the Ergun theory:
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(20)

(21)

D is a characteristic length defined by: with V, the volume of the canopy
and S, the “wetted” surface

The Ergun equation describes the magnitude of porous flow velocity at a given
differential pressure based upon two coefficients. These coefficients assume a constant
porosity, not to be confused with a constant permeability. Porosity is a characteristic of the
fabric, whereas permeability is a description of the flow velocity at a given condition. Many
materials can be highly porous without being permeable. It should also be noted that the
porosity of some fabrics can change significantly with applied load but in the applications of
this paper, a constant and uniform porosity is assumed. Figure 2 displays historical
permeability data [29] of a common parachute cloth fabric, of particular interest is the widely
used MIL-C-7020 Type III. 

Figure 2  Parachute Fabric Permeability Data [23]

The data shown in Figure 2 was obtained at constant porosity, fluid viscosity and density.
Under these assumptions the viscous and inertia parameters in Eqn.(19) are constant. To
determine these coefficients, the Ergun theoretical permeability should be a parabolic fit of
the experimental one. Thus the coefficients were computed by solving the following system:

(22)

where e is the shell thickness and the couple of points (v1, dp1)  and (v2, dp2) was chosen on
so that the Ergun equation fits the experimental plot as close as possible.
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The force F derived from Eqn.(19) is applied to both master and slave nodes in opposite
directions to satisfy force equilibrium at the interface coupling, and thus the coupling is
consistent with the fluid-structure interface condition namely the action-reaction principle.
At the structure coupling node, we applied a force:

(23)

whereas for the fluid, the porous coupling force is distributed to the fluid element nodes
based on the shape functions, at each node i (i=1,..,8 ), the fluid  force is scaled by the shape
function Ni :

(24)

where Ni is the shape function at node i. Since , the action-reaction principle
is satisfied at the coupling interface. 

This conservative load projection was described by Farhat et al. [19]. The following
paragraph presents the application of this approach to a porous disk parachute in terminal
descent.

3.2. MODEL TEST
A simple model was constructed to validate the method of coefficient selection and evaluate
the interpretation of the Ergun equation. Figure 3 illustrates a model containing two fluid
elements with a porous shell, for which the fabric is the MIL-C-7020 type. A constant
pressure was maintained in each solid element producing a constant differential pressure
across the fabric boundary. The experimental data presented in Figure 2 were then compared
with the flow velocities predicted in the model.

Figure 3  Permeability Coefficient Validation Model
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The range of differential pressures over which the coefficients are effective was also
assessed. Table 1 presents a comparison of experimental and simulation porous flow velocity
over a range of differential pressures, 1197.41-10776.74 Pa (25-225 lb/ft2).

Table 1: Comparison of Experimental and Numerical Porous Flow Velocity

Differential Pressure Experimental Velocity Numerical Velocity Relative Error
Pa lb/ft2 m/s ft/s m/s ft/s (%)

1197.41 25 201.17 660 208.79 685 3.6
2394.83 50 320.04 1050 329.18 1080 2.8
3592.25 75 426.72 1400 422.15 1385 1.1
4789.66 100 502.92 1650 501.40 1645 0.3
5987.08 125 563.88 1850 571.50 1875 1.3
7184.49 150 624.84 2050 635.51 2085 1.7
8381.91 175 685.80 2250 694.94 2280 1.3
9579.32 200 746.76 2450 749.81 2460 0.4
10776.74 225 807.72 2650 801.62 2630 0.8

The relative errors are within acceptable limits. It should be noted that similar validation
methods were performed for various fabrics over a variety of differential pressures, all with
similar success. Experimental data pertaining to MIL-C-7020 Type III was the most
extensive and reliable and for these reasons has been included in this paper

4. NUMERICAL APPLICATIONS
4.1. SIMULATION METHODOLOGY
Before the development of the porous Euler-Lagrange coupling it was possible to analyze the
parachute problem. A penalty Euler-Lagrange coupling algorithm permitted the interaction
of the Eulerian formulation for the flow field, and the Lagrangian formulation for the
parachute. Similarly to penalty contact algorithm [30], the coupling force in Eqns.(23-24) for
the penalty Euler-Lagrange coupling is given by:

(25)

where k represents the spring stiffness, and d the penetration computed by Eqn.(18). The
penalty Euler-Lagrange coupling was applied with the following methodology for parachute
performance predictions at Irvin:
• Model the parachute using a Lagrangian formulation.
• Model the fluid domain using a Navier-Stokes based Eulerian formulation.
• Perform the analyses using conditions similar to a wind tunnel, i.e. infinite mass flow;

equating the results to the quasi-steady-descent phase of the parachute flight.
The last step reduced the computational cost associated with modeling vast spatial

timelines associated with real parachute functions, specifically deployment and inflation. It
also permitted the reduction in complexity of boundary conditions. Irvin developed this
methodology several years ago and it has yielded excellent results for a number of parachutes
with a low-permeability fabric. Tutt [31] has previously published data that described the use
of the penalty coupling to simulate the parachute behavior. This work discussed the benefit
of visualizing the flying shape and anticipating the performance of a newly designed tactical
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mass assault troop parachute, prior to fabrication and testing. Particularly noteworthy is the
replication of an undesirable flight characteristic exhibited by a replacement candidate for
the venerable T-10 mass tactical assault parachute. The identification, and subsequent
removal, of this flight mode through simulation design iterations demonstrated the powerful
potential of such techniques. The modified version of that parachute system is now
undergoing operational testing and will replace the T-10 later in this decade. Figure 4
illustrates a flight test with simulation flow field velocity vectors overlaid. The fabric shown
in Figure 4 is classified as a low-permeability fabric. When assessing the steady state
characteristics of this parachute the approximation of an impermeable fabric was valid.
Minimal differential pressure is developed across the canopy when a constant rate of descent
is achieved.

Figure 4  Flight Test and Simulation Comparison

However the study of Tutt [31] exposed also the inability to consider fabric permeability
as an authentic limitation that would restrict the application of the methodology for a number
of applications. To circumvent this drawback the porous Euler-Lagrange coupling was
developed and it now replaces the penalty coupling in the previous methodology. The
following paragraph compares the two coupling method and shows the limits of the penalty
coupling in solving parachute problems with a high-permeable canopy fabric.

4.2. PARACHUTE SIMULATION
A pertinent example of a parachute design that could not accurately be assessed using the
penalty Euler-Lagrange coupling is the TP8 low altitude troop parachute. The TP8 is an
aeroconical class of parachute. Aeroconical parachutes are commonly used for aircrew
ejection systems. The TP8, shown in Figure 5, is fabricated from two base cloths of different
permeability. The crown of the canopy is constructed from cloth exhibiting a permeability of
0.0508m/s (10 CFM/ft2), and the major part of the skirt is rated at 0.4064m/s (80 CFM/ft2),
both at 1⁄2 inch water pressure.
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Figure 5  TP8 Flight Test

Drag coefficient, Cd, is widely used as a measure of parachute performance and is
defined:

(19)

where FD is the drag force, S0 canopy surface area and V is the velocity at the inlet of the
channel.

Test data indicates that the TP8 exhibits a drag coefficient of approximately 0.6.
A constant flow rate with a velocity of 5.486 m/s (18 ft/s), which equates to the steady

rate of descent in an actual flight test is applied to the inlet of the wind tunnel modeled by an
Eulerian grid with 8-node elements ranging from 0.05m (2in) to 2m (80in). Initial and
boundary conditions reflect a wind tunnel conditions. Sliding conditions are applied on the
lateral boundaries of the Eulerian grid. The parachute is modeled by a Lagrangian
formulation. The canopy is meshed with 4-node Belytschko-Lin-Tsay [23] shell elements
ranging from 0.13m (5in) to 0.26m (10in).

Two different simulations are compared with the experimental test: 
- In the first modeling, the fluid-structure interaction is handled by a penalty Euler-

Lagrange coupling and,
- In the second one, the fluid-structure interaction problem is solved with a porous Euler-

Lagrange coupling.  
With a time step of 0.05ms, the number of cycles to conduct the simulation is around

200.000. It takes 220h to complete on a single 32bit Intel Xeon® machine. Instabilities could
occur for a time step too large. The CFL time step is actually scaled down to prevent the run
from the crash. It has been noticed that the higher the inflow velocity is, the lighter the fabric
is, and the lower the time step should be. 

Figure 6 provides time history data of the drag force produced by the canopy when
subjected to a flow velocity of 5.486 m/s (18 ft/s). On this figure, the coupling force time
history reaches the steady state after 9s. The drag coefficient is computed after this time. The
penalty coupling predicts a drag coefficient of 0.75. Clearly, this prediction is in conflict with
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the experimental value of 0.6, a value derived from a significant and reliable test series. The
assumption of an impervious canopy cloth is the obvious factor in the difference between test
and simulation results. Figure 7 presents a qualitative assessment of the permeability affect.
It illustrates a cross-section of flow velocity for the TP8 simulation with and without
accounting for fabric permeability. This figure presents an excellent illustration of the
influence of fabric permeability in parachute design. The porous flow through the canopy
cloth has completely changed the nature of the parachute wake. The large recirculation of air
behind the parachute remains very close to the canopy on the left and has a significant effect
on the parachute stability. By permitting air to flow through the canopy, the recirculating air
has been pushed further downstream where it has considerably less influence on the stability
of the parachute. Thus the “wake recontact phenomenon”, which may cause the parachute
collapse, is clearly prevented. This results in a discernible difference in drag coefficient.
Figure 6 gives also a quantitative comparison of the same simulation with and without
permeability. The data clearly depicts the reduction in drag associated with the incorporation
of permeability. Also noticeable is the reduction in numerical noise, this is associated with a
more benign parachute inflation, a characteristic of porous canopies. The steady-state drag
force from Figure 7 can be used to calculate a modified drag coefficient; the simulation now
predicts a Cd of 0.59, which is close to the experimental value: 0.6.

Figure 6  Drag Force Time History Data

WITHOUT PERMEABILITY WITH PERMEABILITY

Figure 7  Visualization of the permeability effect
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5. CONCLUSIONS
The combination of bluff body aerodynamics and a highly deformable structure, fabricated
from a porous media, creates a truly unique and multifaceted environment. To appropriately
simulate, and therefore understand and predict, this behavior requires an accurate method of
assessing this complex relationship. This paper has provided a description of the
implementation and validation of the porous Euler-Lagrange coupling algorithm for a
transient dynamic finite element method. It has also discussed the importance of such a
development to the parachute engineer and the future of parachute design. Numerical results
have been shown to provide excellent correlation with actual test data, providing an authentic
capability to model parachutes fabricated from permeable fabrics. The prospective goals of
this ongoing research are to incorporate the effect of fluid viscosity and particularly density
changes during parachute flight. This will enable extremely high altitude and interplanetary
aerodynamic decelerators to be evaluated over a range of conditions. Also of interest is the
influence of fabric loading on porosity and the subsequent change in permeability. 
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